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Abstract: This paper explores the data hiding schemes which are based on the principle of matrix
embedding. Under the same embedding rate, the efficiency of each data hiding scheme is evaluated by
the metric of average embedding efficiency. In the literature, both the row-column embedding and the
weight approximation embedding algorithms are sub-optimal solutions for the product code-based
data hiding problem. For the former, it is still based on the concept of one-dimensional (1-D) toggle
syndrome, and the concept of two-dimensional (2-D) toggle syndrome is directly adopted for the
latter one. Data hiding with multiple embedding channels is the practice of hiding messages into
hidden media many times. Here, two multi-channel embedding-based data hiding techniques—one
is the 1-D toggle syndrome-based embedding scheme (1DTS-1), and the other is the improved weight
approximation-based embedding scheme (2DTS-1), are presented. In the former, the proposed
one-off decision technique is used to determine the locations of the required modification bits,
and the amount of modification will be reduced through utilizing the characteristics of the linear
code. With the technique of the former, in the latter, the amount of modification bits can be further
reduced because that a toggle array with better structure is generated, which is more suitable
for being assigned as the initial toggle array while applying the weight approximation approach.
The experimental results show our proposed hybrid 1-D/2-D toggle syndrome-based embedding
scheme (2DTS-1) has increased the embedding efficiency by 0.1149 when compared to the weight
approximation embedding algorithm. Further, the embedding efficiency of the latter one can be
further and significantly enhanced through the Hamming+1 technique.

Keywords: matrix embedding; multiple-channel embedding; product code; Hamming+1;
embedding efficiency

1. Introduction

Data (or information) hiding is one kind of steganographic technique to embed the secret
information into a cover host, such as an image. Usually, the naked eye cannot perceive any change
when the image is modified slightly.

In 1998, Crandall [1] first introduced the idea of matrix embedding. The technique of matrix
embedding was deeply studied in [2–4] by utilizing the characteristic of the strong algebraic structure
of one-dimensional (1-D) linear code. Matrix embedding is also termed as syndrome coding and 1-D
linear code is categorized as one kind of data hiding code [3,4].

The idea of product code-based data hiding was introduced in [5–8]. Basically, it can be considered
as an extension of the previous works [1–4] by taking a cover matrix block, not a cover sequence, for
embedding on each time. They divided the cover image into disjoint matrix blocks of (2y− 1) × (2x− 1)
pixels and applying the 1-D linear code-based embedding algorithm in each row and the first 2x−1 − 1
columns. During each column embedding, it is very likely that the pixel modification to some row must
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be adjusted with more pixels changed to ensure the correct extraction of the secret information. Although,
it will induce higher distortion in image quality, the amount of embedded information can be increased.

The product code is a two-dimensional (2-D) linear code that is composed of two 1-D linear
codes. Although, the embedding concepts for both the 1-D and 2-D linear code-based data hiding
schemes are similar in respectively adopting the technique of 1-D syndrome coding and 2-D syndrome
coding, the embedding efficiency of the latter is much higher. However, due to the tremendous
computational complexity in finding a coset leader [9,10] of a 2-D linear code, only sub-optimal
approaches with moderate computational complexity were presented in the literature [5–8,11,12].
In [5–8,12], the authors still utilized the 1-D toggle syndrome coding technique to solve the product
code-based data hiding problem, whereas the authors of [11] directly utilized the concept of the 2-D
toggle syndrome and proposed a sub-optimal approach with better embedding efficiency and low
computational complexity. Therefore, in essence, each of the schemes that were proposed in [5–8,12] is
not considered to be one kind of product code-based data hiding scheme.

Data hiding with multiple embedding channels is the practice of hiding messages into hidden
media many times. Usually, divide and conquer is a good technique to solve a hard problem. In
this paper, instead of directly utilizing the concept of the 2-D toggle syndrome, eventually a hybrid
1-D/2-D toggle syndrome-based embedding scheme is proposed with good embedding efficiency
and low computational complexity. We first propose a 1-D toggle syndrome-based scheme with two
embedding channels. In this scheme, a one-off decision technique is presented to determine the
locations of the required modification bits and the amount of modification will be reduced by utilizing
the characteristics of the linear code. Next, to integrate the technique of [11] into our proposed scheme,
we continue to propose another 1-D toggle syndrome-based scheme with three embedding channels.
Since the resultant toggle array is more suitable for being assigned as the initial toggle array in the
weighted approximation embedding scheme, thus a better solution is found. Further, there almost
exists at least one bit 1 in each row of the toggle array of the proposed 1-D/2-D toggle syndrome-based
embedding scheme. Hence, the embedding efficiency can be further and significantly enhanced when
combined with the strategy of Hamming+1.

This paper is organized as follows. Section 2 briefly introduces the concept of matrix embedding.
The product code-based data hiding schemes are reviewed in Section 3. The proposed scheme is
presented in Section 4. Section 5 presents the proposed Scheme combined with the technique of
Hamming+1. Experimental results are shown in Section 6. Some concluding remarks are given in
Section 7. Finally, the proposed 1-D toggle syndrome-based embedding scheme is also listed in the
Appendix A.

2. Matrix Embedding

Given a 1-D linear code (n, k), the secret message m = (m1, m2, . . . , mn-k) of n-k bits is hidden into
the least significant bits (LSBs), denoted as x = (x1, x2, . . . , xn) of the original n image pixels. Due to
the characteristic of the strong algebraic structure, the resultant fact is at most only one LSB needs to
be modified among those n LSBs. Taking a (7, 4) binary systematic Hamming code with the generator
polynomial 1 + x + x3 as the example, as shown in Figure 1. Table 1 is the standard array of the (7, 4)
Hamming code.
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Table 1. The standard array of size 23 × 24 for a (7, 4) Hamming code.

Syndrome

Coset Leader

000 0000000 1101000 0110100 1011100 1110010 0011010 1000110 0101110 1010001 0111001 1100101 0001101 0100011 1001011 0010111 1111111
100 1000000 0101000 1110100 0011100 0110010 1011010 0000110 1101110 0010001 1111001 0100101 1001101 1100011 0001011 1010111 0111111
010 0100000 1001000 0010100 1111100 1010010 0111010 1100110 0001110 1110001 0011001 1000101 0101101 0000011 1101011 0110111 1011111
001 0010000 1111000 0100100 1001100 1100010 0001010 1010110 0111110 1000001 0101001 1110101 0011101 0110011 1011011 0000111 1101111
110 0001000 1100000 0111100 1010100 1111010 0010010 1001110 0100110 1011001 0110001 1101101 0000101 0101011 1000011 0011111 1110111
011 0000100 1101100 0110000 1011000 1110110 0011110 1000010 0101010 1010101 0111101 1100001 0001001 0100111 1001111 0010011 1111011
111 0000010 1101010 0110110 1011110 1110000 0011000 1000100 0101100 1010011 0111011 1100111 0001111 0100001 1001001 0010101 1111101
101 0000001 1101001 0110101 1011101 1110011 0011011 1000111 0101111 1010000 0111000 1100100 0001100 0100010 1001010 0010110 1111110

First, calculate the 1-D syndrome s (= x × HT) and the 1-D toggle syndrome ts (= s ⊕m), where
⊕ denotes the component-wise EXCLUSIVE OR (XOR) operation between s and m. Then, according
to Table 1, find the coset leader e with the minimum Hamming weight of the coset to which ts belongs,
that is e × HT = ts, and change x to y (= x ⊕ e) to complete the data embedding. In the receiving end,
the receiver can easily extract the message m by y × HT. Usually, the coset leader e for a 1-D linear
code is called the optimal toggle sequence t, which is the optimal vector matrix that we are looking for
to make the image pixels change as little as possible.

3. Product Code-Based Data Hiding

Two 1-D linear block codes C1 (n1, k1) and C2 (n2, k2) can be used to generate a 2-D (n1 × n2,
k1 × k2) linear code (called product code), such that each codeword (called code array) is an array of
size n2 × n1, as shown in Figure 2. After sequentially encoding the k2 rows of the k2 × k1 array of
information bits (IB) by C1 to generate the array CR (Check on Rows), and the k1 columns of array IB
are sequentially encoded by C2 to generate the array CC (Check on Columns). Then, the array CCH
(Checks on Checks) can be obtained by performing either C1 encoding on the n2-k2 rows of array CC,
or C2 encoding on the n1-k1 columns of array CR [13]. Note, the L-shaped parity check block that is
the union of the arrays CC, CCH, and CR and is a function of array IB, denoted as P(IB). Take the (7,
4) Hamming code as the example. That is, n1 = n2 = 7 and k1 = k2 = 4, then a (49, 16) product code
can be generated, and there are 33 parity check bits. For the (49, 16) product code, similar to Table 1,
the size of the standard array is up to 233 × 216. Each element of the standard array is an array of size
7 × 7. There are 216 code arrays and 233 coset leaders in the standard array.
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3.1. Trivial Solution

Using the (49, 16) product code for data hiding, the secret message of size 33 bits can be hidden
into the cover array of 7 × 7 bits constructed by the LSB slicing of an array of 7 × 7 gray image pixels.

Let X be the cover array of 7 × 7 slicing bits, i.e., [xi,j]7×7. Similar to the partition of the code array
of a product code, X is partitioned into four parts, XIB, XCC, XCCH, and XCR. The L-shaped block that
is the union of XCC, XCCH, and XCR is denoted as XP, as shown in Figure 3a. The secret message with
33 bits is arranged as an L-shaped block M = (m1, m2, . . . , m11), where each mi (1 ≤ i ≤ 11) is an array
of size 1 × 3, as shown in Figure 3b.
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3.1.1. Embedding

Step 1: Calculate the 2-D syndrome of X denoted as S(X) which equals P(XIB) ⊕ XP, where ⊕ denotes
the element-wise EXCLUSIVE OR (XOR) operation between P(XIB) and XP.
Step 2: Calculate the 2-D toggle syndrome TS, which equals S(X) ⊕M, as shown Figure 4a.
Step 3: Attach the zero block of size 4 × 4 into the lower right corner of the toggle syndrome TS, as
shown Figure 4b, to obtain a 7× 7 toggle array T. That is, the syndrome of T denoted as S(T) equals TS.
Step 4: Perform the element-wise XOR operation between X and T, i.e., X ⊕ T = Y, to finish the
embedding, as shown in Figure 4c.
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3.1.2. Extracting

In the receiving end, once the 7 × 7 slicing bits (Y) of the stego image block is obtained, the secret
message block M can be easily extracted by calculating the syndrome of Y, that is S(Y) = P(YIB)⊕ YP = M.

Theorem 1. The syndrome of Y is exactly equal to the secret message block M.

Proof. Since S(Y) = S(X) ⊕ S(T) and S(T) = P(TIB) ⊕ TP = P(04×4) ⊕ TP = TS, hence S(X) ⊕ S(T) = S(X)
⊕ TS = M, where TIB and TP respectively denote the IB and P parts of T; and the code array of a zero
information array is a zero code array, that is the parity check part is a zero block.�

3.2. Optimal Solution

In Section 2, suppose the toggle syndrome ts = (011) and the toggle sequence t = (0110000) is
constructed by directly appending the four information bits into ts, then the found toggle sequence t is
not the coset leader e = (0000100). Further, in Table 1, we know the coset leader e is equal to the toggle
sequence t plus the codeword (0110100), which is closest to t. Hence, the toggle array T found in Step 3
of Section 3.1.1 and illustrated in the form of Figure 4b is not a good solution. Usually, it is not a coset
leader. Suppose we are allowed to sequentially add up to 216 code arrays of the (49, 16) product code
into the toggle array T. Then, among those 216 resultant arrays, the one with the minimum Hamming
weight is the coset leader, where the Hamming weight of a binary array is defined as the number of 1s
in the array. Here, the found coset leader for a 2-D linear code is termed the optimal toggle array.
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Since table lookup is impractical due to the issue that the size of the standard array for the (49,
16) product code is rather large, and finding the coset leader of the coset to which T belongs is a
time-consuming process, so finding the sub-optimal approach is necessary.

3.3. Weight Approximation Embedding Scheme

Wang et al. [11] proposed a sub-optimal approach called the weighted approximation embedding
scheme with low computational complexity to find a toggle array with smaller Hamming weight. The
details of this scheme are outlined, as follows:
Step 0: Initially, those 16 code arrays, each of which owns only one bit 1 in the IB part, are chosen and
included in the set PO, as shown in Figure 5.
Step 1: Sequentially add each code array in the set PO to T. Among those resultant arrays, let T′ be
the resultant array with the smallest Hamming weight and T′ = c ⊕ T for some code array c. If the
Hamming weight of T′ is smaller than that of T, then replace T with T′, remove c from PO, and repeat
Step 1. Otherwise, go to Step 2.
Step 2: T is the found toggle array with a smaller Hamming weight.
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Note, all the above three methods are categorized as the 2-D toggle syndrome-based embedding
scheme, and the 2-D syndrome S(X) is the unique embedding channel with 33 bits in total in this kind
of scheme.

4. An Improved Product Code-Based Data Hiding Scheme

Inspired by the ideas of [5,6] and [11], in this section, we eventually design a sub-optimal scheme
having three embedding channels to find a better solution with low computational complexity.

First, we propose a pure 1-D toggle syndrome-based scheme (1DTS-1) with two embedding
channels, as shown in the Appendix A. Based on the one-off decision technique that was proposed in
1DTS-1, we then propose a better sub-optimal scheme (2DTS-1) with three embedding channels. In
2DTS-1, there are two phases in dealing with the construction of the toggle array. In the first phase
(Step 1~ Step 5), based on the concept of 1-D toggle syndrome and the properties (Property 1 and
the Property 2), a toggle array T′ with better structure is generated, which is more suitable for being
assigned as the initial toggle array in the weighted approximation embedding scheme. In the second
phase (Step 6), based on the Property 2 and the concept of 2-D toggle syndrome, the number of 1s in T′

can be further reduced through the technique of the weighted approximation embedding scheme to
obtain the final toggle array T”.

4.1. Embedding

Step 1: Calculate the syndromes of the last four rows in the cover array X, i.e., si = [xi+3,1 xi+3,2 . . .
xi+3,7] × HT, i = 1~ 4, where (s1, s2, s3, s4) is the first embedding channel with 12 bits in total. The
toggle syndrome tsi = si⊕mi, i = 1~ 4. From Table 1, respectively, find the corresponding coset leaders
ei (i.e., the toggle sequence ti), i = 1~ 4. The four toggle sequences constitute a 4 × 7 array with each
column denoted as f i, i = 1~ 7. Denote [f4f5f6f7] as F.
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Step 2: Calculate the syndromes of the last four columns in X, i.e., si = [x1,i−1 x2,i−1 . . . x7,i−1] × HT, i =
5~ 8. (sT

5 , sT
6 , sT

7 , sT
8 ) is the second embedding channel with 12 bits in total. The toggle syndrome tsi = si

⊕mi, i = 5~8.
Step 3: Make the syndromes of the last four rows and the last four columns of the resultant stego array
after embedding respectively equal m1, m2, m3, m4, and m5, m6, m7, m8. This can be done through
Table 2 (instead of finding the coset leader) to find the toggle sequence ti (under the constraint the last
four bits of ti and the four bits of fi−1 are equal) with its toggle syndrome equal to tsi, i = 5~8.
Step 4: First, calculate the CCH part of the parity P(XIB ⊕ F) denoted as P(XIB ⊕ F)CCH, then we obtain
the syndrome of size 3 × 3 which equals to P(XIB ⊕ F)CCH ⊕ XCCH. Let the three columns of the
syndrome be denoted, respectively, as sT

i , 9≤ i≤ 11, where (sT
9 , sT

10, sT
11) is the third embedding channel

with nine bits in total. Second, calculate the toggle syndrome tsT
i , which equals to sT

i ⊕mT
i , 9 ≤ i ≤ 11.

Third, those column matrices fi, i = 1~ 3,tT
i , 5 ≤ i ≤ 8, and tsT

i , i = 9~ 11, constitute the toggle array T,
as shown in Figure 6.
Step 5: To reduce the number of 1s in T, first check the last four columns of T and whether there is
more than one column with a Hamming weight in each column of greater than 2. If it does not exist,
just skip this step. Otherwise, take the element-wise OR operation among those columns to obtain a
new vector u. Then, using the lookup of Table 1, find a codeword c, which is closest to u in terms of
minimal Hamming distance. Add (XOR operation) the codeword c to each of those columns. Then, it
is very likely some of the rows of T have been changed. Let w be the induced non-zero vector with the
non-zero component denoting the changed position of any changed row. From Table 1, find the coset
leader e of the coset to which the vector w belongs. Hence, to keep the syndrome of the toggle array
unchanged, we need to add e respectively to those changed rows. Suppose that the bit 1 is located in
the i-th component of e, once codeword c is also added into the i-th column of T, then the syndrome
of the new toggle array remains the same as T. Denote the new toggle array as T′. If the Hamming
weight of T′ is not smaller than that of T, T′ is changed back to T.
Step 6: Utilize the technique of weight approximation to further reduce the number of 1s in T′ to get
the toggle array T”.
Step 7: Perform X ⊕ T” = Y to finish the embedding.

Theorem 2. The technique described in Step 5 can guarantee the syndrome of T′ will be the same as that of T.

Proof. In Step 5, first the task of adding e respectively to those changed rows can be easily accomplished
by adding the codeword c into the i-th column of T; second, w⊕e is a codeword. Then, the net vector
added into any row or column of T is a codeword; hence, the syndrome remains unchanged.�

Suppose the probability of each secret bit with a value of 1 or 0 equals 1/2 (this can be done easily
by encrypting the secret bit sequence with a pseudo-random bit sequence by the XOR operation).
Whatever the probability of each cover bit 1 or 0, the probability of each toggle syndrome bit with the
value of 1 or 0 will equal 1/2. That is, each coset leader will be evenly selected. Hence, in Figure 6, the
last four rows of T (i.e., the four coset leaders) will most likely differ. That is, the last four bits of each
column of the rightmost four columns in the toggle array T own at most one bit 1. Then, we have:

Property 1. For each of the four toggle sequences tT
i , 5 ≤ i ≤ 8, in upright form, most of the bits 1 are

concentrated in the top three bits. Hence, the resultant sequence constructed by performing the component-wise
OR operation on the toggle sequences with the Hamming weight greater than 2 is almost the same as each of
the original toggle sequences. Therefore, the number of 1s in T can be reduced almost at each time through the
technique described in Step 5 and most of the bits (1s) are located in the upper left corner of 3 × 3 sub-array of
the new toggle array T′.

Further, due to the property 2, while applying the technique of weight approximation to the
toggle array T′, the number of 1s in T′ can be further reduced.
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Property 2. For each of the 16 chosen code arrays shown in Figure 5, the bits in the upper left corner of 3 × 3
sub-array of the code array have a higher density of 1.
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0110 1000110 1010110 1100110 1110110 0000110 0010110 0100110 0110110 

0111 0010111 0000111 0110111 0100111 1010111 1000111 1110111 1100111 

1000 1101000 1111000 1001000 1011000 0101000 0111000 0001000 0011000 

1001 0111001 0101001 0011001 0001001 1111001 1101001 1011001 1001001 

1010 0011010 0001010 0111010 0101010 1011010 1001010 1111010 1101010 

1011 1001011 1011011 1101011 1111011 0001011 0011011 0101011 0111011 

1100 1011100 1001100 1111100 1101100 0011100 0001100 0111100 0101100 

1101 0001101 0011101 0101101 0111101 1001101 1011101 1101101 1111101 

1110 0101110 0111110 0001110 0011110 1101110 1111110 1001110 1011110 
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Table 2. Toggle sequence ti, i = 5~8.

fT
i−1

tsi

000 001 010 011 100 101 110 111

0000 0000000 0010000 0100000 0110000 1000000 1010000 1100000 1110000
0001 1010001 1000001 1110001 1100001 0010001 0000001 0110001 0100001
0010 1110010 1100010 1010010 1000010 0110010 0100010 0010010 0000010
0011 0100011 0110011 0000011 0010011 1100011 1110011 1000011 1010011
0100 0110100 0100100 0010100 0000100 1110100 1100100 1010100 1000100
0101 1100101 1110101 1000101 1010101 0100101 0110101 0000101 0010101
0110 1000110 1010110 1100110 1110110 0000110 0010110 0100110 0110110
0111 0010111 0000111 0110111 0100111 1010111 1000111 1110111 1100111
1000 1101000 1111000 1001000 1011000 0101000 0111000 0001000 0011000
1001 0111001 0101001 0011001 0001001 1111001 1101001 1011001 1001001
1010 0011010 0001010 0111010 0101010 1011010 1001010 1111010 1101010
1011 1001011 1011011 1101011 1111011 0001011 0011011 0101011 0111011
1100 1011100 1001100 1111100 1101100 0011100 0001100 0111100 0101100
1101 0001101 0011101 0101101 0111101 1001101 1011101 1101101 1111101
1110 0101110 0111110 0001110 0011110 1101110 1111110 1001110 1011110
1111 1111111 1101111 1011111 1001111 0111111 0101111 0011111 0001111

4.2. Extracting

The procedure of extraction is the same as that in Section 3.2.

4.3. Example

Given X and M, and they are respectively as follows:

0 1 0 0 1 0 1
1 1 0 1 1 1 0
0 0 1 1 1 1 0
1 0 1 0 0 1 0
1 1 0 0 0 0 1
0 0 0 1 1 1 0
1 1 0 1 0 0 0


,



1 0 0 1 0 1 1
0 1 0 0 1 1 0
0 1 0 0 0 0 1
0 1 1
1 1 1
1 0 1
0 1 1


.
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4.3.1. Embedding

Step 1: From (s1, s2, s3, s4) = (010, 011, 010, 000) and (m1, m2, m3, m4) = (011, 111, 101, 011), we obtain
(ts1, ts2, ts3, ts4) = (s1, s2, s3, s4) ⊕ (m1, m2, m3, m4) = (001, 100, 111, 011). Hence, (e1, e2, e3, e4) =
(0010000, 1000000, 0000010, 0000100). Then,

[f1f2f3f4f5f6f7] =


0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

 and F =


0 0 0 0
0 0 0 0
0 0 1 0
0 1 0 0

.

Step 2: Since (s5, s6, s7, s8) = (001, 000, 010, 111) and (m5, m6, m7, m8) = (100, 010, 110, 101), therefore
(ts5, ts6, ts7, ts8) = (s5, s6, s7, s8) ⊕ (m5, m6, m7, m8) = (101, 010, 100, 010).
Step 3: For each i, 5 ≤ i ≤ 8, given tsi and fi−1, ti can be obtained respectively through the lookup in
Table 2 as follows: t5 = [1010000], t6 = [1110001], t7 = [0110010], t8 = [0100000].
Step 4: XIB, XIB ⊕ F, P(XIB ⊕ F)CCH, XCCH, and P(XIB ⊕ F)CCH ⊕ XCCH are respectively as follows:

0 0 1 0
0 0 0 1
1 1 1 0
1 0 0 0

,


0 0 1 0
0 0 0 1
1 1 0 0
1 1 0 0

,

 1 1 1
1 1 1
1 0 1

,

 0 1 0
1 1 0
0 0 1

,

 1 0 1
0 0 1
1 0 0


Since (s9, s10, s11) = (101, 000, 110) and (m9, m10, m11) = (100, 011, 000), therefore (ts9, ts10, ts11) =

(s9, s10, s11) ⊕ (m9, m10, m11) = (001, 011, 110).
Now,

T =



0 0 1 1 1 0 0
0 1 1 0 1 1 1
1 1 0 1 1 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0


.

Step 5: For the last four columns of T, the fifth and sixth columns, of each has a Hamming weight of
greater than 2. Take the element-wise OR operation between both columns, we obtain u = (1110011).
c = (1110010) is the closest codeword to u. Then, c (in the form of column vector) is added sequentially
to the fifth and sixth columns. This is equivalent to vector w = (0000110) being added implicitly into
the first, second, third, and sixth rows. The coset leader e = (1000000) of the coset to which w belongs
is determined and the bit 1 is located in the first component. Therefore, the codeword c is also added
to the 1st column of T. Now, the toggle array T is updated as T′ with a smaller Hamming weight.

T′ =



1 0 1 1 0 1 0
1 1 1 0 0 0 1
0 1 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 1 0 0
0 0 0 0 1 0 0


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Note

S(T) = P(TIB)⊕ TP =



1 0 0 0 1 1 0

1 1 1 0 0 1 0

1 0 0 0 1 1 0

0 0 0

0 0 0

1 1 1

0 1 1


⊕



0 0 1 1 1 0 0

0 1 1 0 1 1 1

1 1 0 1 1 1 0

0 0 1

1 0 0

0 0 0

0 0 0


=



1 0 1 1 0 1 0

1 0 0 0 1 0 1

0 1 0 1 0 0 0

0 0 1

1 0 0

1 1 1

0 1 1


.

S(T′) = P(T′IB)⊕ T′P =



0 0 0 0 0 0 0

0 1 1 0 1 0 0

0 0 0 0 0 0 0

0 0 0

0 0 0

0 1 1

0 1 1


⊕



1 0 1 1 0 1 0

1 1 1 0 0 0 1

0 1 0 1 0 0 0

0 0 1

1 0 0

1 0 0

0 0 0


=



1 0 1 1 0 1 0

1 0 0 0 1 0 1

0 1 0 1 0 0 0

0 0 1

1 0 0

1 1 1

0 1 1


.

Hence, S(T) = S(T′) = TS, where

S(X) = P(XIB)⊕ XP =



0 1 1 0 1 0 0

0 0 0 1 1 0 1

0 0 1 0 1 1 1

1 1 1

1 0 1

0 1 0

1 1 0


⊕



0 1 0 0 1 0 1

1 1 0 1 1 1 0

0 0 1 1 1 1 0

1 0 1

1 1 0

0 0 0

1 1 0


=



0 0 1 0 0 0 1

1 1 0 0 0 1 1

0 0 0 1 0 0 1

0 1 0

0 1 1

0 1 0

0 0 0


and

TS = S(X)⊕M =



1 0 1 1 0 1 0
1 0 0 0 1 0 1
0 1 0 1 0 0 0
0 0 1
1 0 0
1 1 1
0 1 1


.

Step 6: T′ is further refined as T” by adding the 4th code array in the first round to the toggle array T′

while combining the technique of the weight approximation embedding scheme. In the second round,
there are no code arrays remaining in set PO, which can be further used to refine the toggle array T”.

T′′ =



1 0 1 1 0 1 0
1 1 1 0 0 0 1
0 1 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 1 0 0
0 0 0 0 1 0 0


⊕



1 0 1 0 0 0 1
1 0 1 0 0 0 1
0 0 0 0 0 0 0
1 0 1 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


=



0 0 0 1 0 1 1
0 1 0 0 0 0 0
0 1 0 1 0 0 0
1 0 0 0 0 0 1
1 0 0 0 0 0 0
1 0 0 0 1 0 0
0 0 0 0 1 0 0


Step 7: Finally, the stego array Y is obtained by adding T” to X.
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4.3.2. Extracting

Y, P(YIB), and S(Y), i.e., message M are respectively as follows:

0 1 0 1 1 1 0
1 0 0 1 1 1 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1
0 1 0 0 0 0 1
1 0 0 1 0 1 0
1 1 0 1 1 0 0


,



1 1 0 0 1 0 1
1 1 0 1 0 0 0
0 0 1 0 1 1 1
0 1 0
1 0 1
0 0 1
1 0 1


,



1 0 0 1 0 1 1
0 1 0 0 1 1 0
0 1 0 0 0 0 1
0 1 1
1 1 1
1 0 1
0 1 1


.

5. Proposed Scheme Combined with Hamming+1

Zhang et al. [14] proposed the Hamming+1 concept in 2007 to increase the embedding rate and
the embedding efficiency. For the Hamming code (2t − 1, 2t − t − 1) with the strategy of Hamming+1,
through checking (1a) and (1b), the secret message m = (m1, m2, . . . , mt+1) of t + 1 bits can be hidden
into 2t pixels of that pixel values equal (p1, . . . , p2t), and at most, one pixel value will be changed by
increasing or decreasing one:

[m1, . . . , mt] = [LSB(p1), LSB(p2), . . . , LSB(p2t−1)]× HT (1a)

mt+1 = SLSB(p1)⊕ SLSB(p2)⊕ . . .⊕ SLSB(p2t−1)⊕ LSB(p2t) (1b)

where LSB(.) and SLSB(.) respectively represent the first and the second LSB slicing of the pixel value,
and ⊕ represents the bit-wise exclusive-or operation. When only (1a) does not hold, the lowest bit of a
certain pixel value pi needs to be changed to make (1a) hold, where 1 ≤ i ≤ 2t − 1, and the status of
(1-2) is not affected. When only (1b) does not hold, the lowest bit of the pixel value p2t needs to be
changed. When neither of (1a) and (1b) hold, once a certain pixel value pi, 1 ≤ i ≤ 2t − 1, is increased
or decreased by one, then (1a) and (1b) hold simultaneously. Here, t = 3.

Suppose the proposed scheme introduced in the previous section allows for modification to the
other bit of the pixel. We consider the block of 7 × 8 pixels formed by adding one more pixel for each
row of the original 7 × 7 block. For the 7 × 8 block, the Hamming+1 technique can be used to let each
row hide one more secret bit and the overall distortion is usually not increased, that is the value of the
new pixel is unchanged.

Let the additional seven secret bits be denoted as (m1, m2, . . . , m7). Let PX be the cover array of 7
× 8 pixels, i.e., [pxi,j]7×8, where 1 ≤ i ≤ 7 and 1 ≤ j ≤ 8. Let the second LSB of each pixel in the first
seven columns of PX be denoted as sxi,j, and the LSB of each pixel in the last column of PX be denoted
as xi,8, where 1 ≤ i ≤ 7 and 1 ≤ j ≤ 7. Let PY be the stego array of 7 × 8 pixels, i.e., [pyi,j]7×8, where 1 ≤
i ≤ 7 and 1 ≤ j ≤ 8. Let the second LSB of each pixel in the first seven columns of PY be denoted as syi,j,
and the LSB of each pixel in the last column of PY be denoted as yi,8, where 1 ≤ i ≤ 7 and 1 ≤ j ≤ 7.

According to the toggle array T” that is described in step 6 of the embedding process in Section 4.1,
the non-zero element of the toggle array T” implies the LSB of the corresponding pixel must be changed
and its second LSB can also be changed simultaneously by increasing or decreasing the pixel value by
one if necessary. Hence, we form Equation (2).

zi = sxi,1 ⊕ sxi,2 ⊕ . . .⊕ sxi,7 ⊕ xi,8, 1 ≤ i ≤ 7. (2)

(z1, z2, . . . , z7) is the fourth embedding channel which can be used to embed another seven secret bits.
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<Embedding>

For i = 1 to 7
If (there exists at least one bit 1 in the row i of T”)
If (zi and mi are not equal)

randomly choose a pixel, said pi,k that must be changed //suppose we choose the first one
If (LSB(pi,k)==1) pi,k = pi,k + 1
Else pi,k = pi,k − 1
mark the pixel
Else

If (zi and mi are not equal)
change the LSB of pi,8
For i = 1 to 7

For j = 1 to 7
If (T”ij==1) and (pi,j is not marked) // T”ijdenotes the element of i-th row and j-th column of T”

change the LSB of pi,j

<Extracting>

Step 1: (m1, m2, . . . , m11) is extracted by the same extracting process of Section 4.2.
Step 2:

mi = syi,1 ⊕ syi,2 ⊕ . . .⊕ syi,7 ⊕ yi,8, 1 ≤ i ≤ 7. (3)

Example 1. The additional seven secret bits (m1, m2, . . . , m7) = (0, 0, 1, 0, 0, 1, 0). The cover array of 7 × 8
pixels, the array of LSB slicing bits for the last column of PX, and the array of SLSB slicing bits for the first
seven columns of PX are respectively as follows:

PX =



80 81 82 82 83 80 81 81
81 81 80 81 81 81 82 82
80 80 81 81 81 81 82 82
81 80 81 84 84 83 84 84
81 81 82 84 84 84 85 85
80 80 82 83 83 83 84 83
81 81 82 83 82 82 84 83


, X8 =



1
0
0
0
1
1
1


, SX =



0 0 1 1 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 1 1 1 1 0
0 0 1 1 1 1 0


.

<Embedding>

From Equation (2), we have (z1, z2, . . . , z7) = (0, 1, 1, 1, 0, 1, 1). Since m2 6= z2, m4 6= z4, and m7 6=
z7, so the three pixels p2,2, p4,1, and p7,5 are marked; and p2,2 = p2,2 + 1, p4,1 = p4,1 + 1, and p7,5 = p7,5 − 1.
Then, according to the toggle array T”, the LSBs of the other pixels are modified accordingly. Further,
there exists at least one bit 1 in each row of T”, so all of the pixel values in the last column of PX do not
need to be changed. Now, we have

PY =



80 81 82 83 83 81 80 81

81
=
82 80 81 81 81 82 82

80 81 81 80 81 81 82 82
=
82 80 81 84 84 83 85 84
80 81 82 84 84 84 85 85
81 80 82 83 82 83 84 83

81 81 82 83
=
81 82 84 83


.

<Extracting>



Appl. Sci. 2018, 8, 2119 12 of 18

Step 1: From message block M of Section 4.3.2, (m1, m2, m3, m4, m5, m6, m7, m8, m9) = (011, 111, 101,
011, 100, 010, 110, 101, 100, 011, 000).
Step 2: From Equation (3), the additional secret bit vector (m1, m2, . . . , m7) = (0, 0, 1, 0, 0, 1, 0)
is obtained.

Property 3. Usually, there is at least one bit 1 in each row of toggle array T′ ′ obtained in the proposed 2DTS-1
scheme, hence the additional cover pixels don’t need to be modified.

6. Experimental Results

In the experiment, each embedding scheme was performed for a total of 1 million times. At
each time, 49 (or 56) LSB slicing bits, 49 SLSB slicing bits, and 33 (or 40) secret message bits were
pseudo-randomly generated.

Let R be the embedding rate (R = 33/49 = 0.673) defined by the number of embedding bits per
pixel (bpp) and Ma be the expected number of changed bits per embedding. Hence, the average
modification for each bit denoted as D equals Ma/49. Then, the embedding efficiency α defined as the
expected hidden bits per embedding modification equals R/D, and the PSNR (Peak Signal to Noise
Ratio) equals 10 × log10(2552/D).

6.1. Computational Complexity

For the proposed 1-D Toggle Syndrome-based embedding scheme (1DTS-1) shown in the
Appendix A.1, Table 3 shows the average number of different row combinations, that is the average
number of times that the loop in Step 4 will run. If all of the row combinations are considered in Step 4,
then there will be CN

2 + CN
3 + . . . + CN

N different row combinations and a more complicated scheme
denoted as 1DTS-2 will have about one more loop than 1DTS-1 to get a gain of about 4 percent in
embedding efficiency.

Table 3. Comparisons of computational complexity between 1DTS-1 and 1DTS-2.

1-D Toggle Syndrome-Based Embedding Scheme The Average Number of
Different Row Combinations α

1DTS-1 (with CN
2 different combinations) 2.1454 2.5744

1DTS-2 (with CN
2 + CN

3 + . . . + CN
N different

combinations)
3.1529 2.6767

For the proposed hybrid 1-D/2-D Toggle Syndrome-based embedding scheme (2DTS-1) that is
presented in Section 4, Table 4 shows the average number of different row combinations that is the
average number of times the Step 5 of Section 4.1 will perform. Similar to the 1DTS-2 scheme (here, N
∈ [2 . . . 4]), if all kinds of combination are considered, then a more complicated scheme denoted as
2DTS-2 will have about two times the computational complexity of 2DTS-1. However, the gain in the
embedding efficiency is only 0.0227. Thus, 2DTS-1 is preferred and the primary scheme with good
embedding efficiency and low computational complexity.

Table 4. Comparison of computational complexity between 2DTS-1 and 2DTS-2.

1-D/2-D Toggle Syndrome-Based Embedding
Scheme

The Average Number of
Different Row Combinations α

2DTS-1 (with only one combination) 0.4675 2.8261

2DTS-2 (with CN
2 + CN

3 + . . . + CN
N different

combinations)
0.8495 2.8488
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6.2. Performance

In Table 5, except the last solution, the embedding rate for each solution is equal to 33/49 (≈0.6735)
for fair comparison. In the original row-column scheme [5], after embedding in each row, only the
first three columns are further used to embed data, whereas we adopt the first four columns in
our implementation of [5] to enhance the embedding rate, but with larger distortion. The resultant
algorithm is termed as Row-Column. Further, the one-off decision technique proposed in Step 4 of
Appendix A.1.1 is used to reduce the distortion and the resultant algorithms are respectively termed as
1DTS-1 and 1DTS-2. In the original row-column scheme, R and D respectively equal 30/49 (≈0.6122)
and 0.212 for x = y = 3. When x = 2 and y = 8, R and D respectively equal about 0.6771 and 0.252. The
performance in terms of embedding efficiency for this scheme and 1DTS-2 are close to each other. For
the former, they divided the pixels of cover image into disjoint matrix blocks of skew and large size
255 × 3, whereas matrix block of small size 7 × 7 is adopted in the latter one.

Table 5. Comparison of embedding efficiency among all schemes.

Embedding Schemes R Ma D α
Average

PSNR (dB)

1-D Toggle
Syndrome-based

Row-Column 33/49 13.3084 0.2716 2.4796 53.7915

Ours (1DTS-1) 33/49 12.8209 0.2616 2.5744 53.9544

Ours (1DTS-2) 33/49 12.3297 0.2516 2.6767 54.1237

2-D Toggle
Syndrome-based

Weight Approximation
[11] 33/49 12.1725 0.2484 2.7112 54.1793

1-D/2-D Toggle
Syndrome-based

Ours (2DTS-1) 33/49 11.6786 0.2383 2.8261 54.3596

Ours (2DTS-2) 33/49 11.5854 0.2364 2.8488 54.3943

Optimal solution 33/49 10.2812 0.2098 3.2100 54.9128

Ours(2DTS-1) +
(Hamming+1) 40/56 11.9699 0.2137 3.3424 54.8328

From the results of Table 5, the embedding efficiency of the 2-D or hybrid 1-D/2-D Toggle
Syndrome-based embedding scheme is much higher than that of the 1-D Toggle Syndrome-based
embedding scheme. Hence, the former one is preferred. Our proposed scheme (2DTS-1) reduces the
average number of modification bits per embedding by 0.4938 when compared to [11]. That is, the
average number of hidden bits per embedding modification is increased by 0.1149. Further, due to
Property 3, the embedding efficiency can be significantly enhanced when combined with the strategy
of Hamming+1.

6.3. Practical Examples

The secret image shown in Figure 7 is independently embedded into six cover images that are
respectively shown in Figure 8 by 2DTS-1, and the stego images are shown in Figure 9. The embedding
rate equals 0.6685 bpp and the PSNR values of all stego images are around 54.39 dB, as shown in
Table 6.

Appl. Sci. 2018, 8, 2119 13 of 18 

In Table 5, except the last solution, the embedding rate for each solution is equal to 33/49 (≈0.6735) 

for fair comparison. In the original row-column scheme [5], after embedding in each row, only the 

first three columns are further used to embed data, whereas we adopt the first four columns in our 

implementation of [5] to enhance the embedding rate, but with larger distortion. The resultant 

algorithm is termed as Row-Column. Further, the one-off decision technique proposed in Step 4 of 

Section A1.1 is used to reduce the distortion and the resultant algorithms are respectively termed as 

1DTS-1 and 1DTS-2. In the original row-column scheme, R and D respectively equal 30/49 (≈0.6122) 

and 0.212 for x = y = 3. When x = 2 and y = 8, R and D respectively equal about 0.6771 and 0.252. The 

performance in terms of embedding efficiency for this scheme and 1DTS-2 are close to each other. For 

the former, they divided the pixels of cover image into disjoint matrix blocks of skew and large size 

255 × 3, whereas matrix block of small size 7 × 7 is adopted in the latter one. 

From the results of Table 5, the embedding efficiency of the 2-D or hybrid 1-D/2-D Toggle 

Syndrome-based embedding scheme is much higher than that of the 1-D Toggle Syndrome-based 

embedding scheme. Hence, the former one is preferred. Our proposed scheme (2DTS-1) reduces the 

average number of modification bits per embedding by 0.4938 when compared to [11]. That is, the 

average number of hidden bits per embedding modification is increased by 0.1149. Further, due to 

Property 3, the embedding efficiency can be significantly enhanced when combined with the strategy 

of Hamming+1. 

Table 5. Comparison of embedding efficiency among all schemes. 

 Embedding Schemes R Ma D α 
Average 

PSNR (dB) 

1-D Toggle 

Syndrome-based 

Row-Column 33/49 13.3084 0.2716 2.4796 53.7915 

Ours (1DTS-1) 33/49 12.8209 0.2616 2.5744 53.9544 

Ours (1DTS-2) 33/49 12.3297 0.2516 2.6767 54.1237 

2-D Toggle 

Syndrome-based 

Weight 

Approximation [11] 
33/49 12.1725 0.2484 2.7112 54.1793 

1-D/2-D Toggle 

Syndrome-based 

Ours (2DTS-1) 33/49 11.6786 0.2383 2.8261 54.3596 

Ours (2DTS-2) 33/49 11.5854 0.2364 2.8488 54.3943 

Optimal solution 33/49 10.2812 0.2098 3.2100 54.9128 

Ours(2DTS-1) + 

(Hamming+1) 
40/56 11.9699 0.2137 3.3424 54.8328 

6.3. Practical Examples 

The secret image shown in Figure 7 is independently embedded into six cover images that are 

respectively shown in Figure 8 by 2DTS-1, and the stego images are shown in Figure 9. The 

embedding rate equals 0.6685 bpp and the PSNR values of all stego images are around 54.39 dB, as 

shown in Table 6. 

 

Figure 7. Secret image Finger (148 × 148). Figure 7. Secret image Finger (148 × 148).



Appl. Sci. 2018, 8, 2119 14 of 18
Appl. Sci. 2018, 8, 2119 14 of 18 

 

 

Figure 8. Cover images (512 × 512): Baboon, Boat, Cameraman, Goldhill, Lena, and Peppers. 

 

Figure 9. Stego images (512 × 512): Baboon, Boat, Cameraman, Goldhill, Lena, and Peppers. 

Table 6. Stego Image Quality. 

Tested Image Baboon Boat Cameraman Goldhill Lena Peppers 

PSNR 54.4018 54.3923 54.3850 54.3955 54.4018 54.3716 

7. Conclusions 

Figure 8. Cover images (512 × 512): Baboon, Boat, Cameraman, Goldhill, Lena, and Peppers.

Appl. Sci. 2018, 8, 2119 14 of 18 

 

 

Figure 8. Cover images (512 × 512): Baboon, Boat, Cameraman, Goldhill, Lena, and Peppers. 

 

Figure 9. Stego images (512 × 512): Baboon, Boat, Cameraman, Goldhill, Lena, and Peppers. 

Table 6. Stego Image Quality. 

Tested Image Baboon Boat Cameraman Goldhill Lena Peppers 

PSNR 54.4018 54.3923 54.3850 54.3955 54.4018 54.3716 

7. Conclusions 

Figure 9. Stego images (512 × 512): Baboon, Boat, Cameraman, Goldhill, Lena, and Peppers.

Table 6. Stego Image Quality.

Tested Image Baboon Boat Cameraman Goldhill Lena Peppers

PSNR 54.4018 54.3923 54.3850 54.3955 54.4018 54.3716

7. Conclusions

For the product code-based data hiding scheme, in constructing a toggle array, although the
optimal solution can be obtained by directly finding the corresponding coset leader for a 2-D toggle
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syndrome in 2-D linear codes, the computational complexity is rather tremendous. Usually, it is
infeasible. Instead of only utilizing the concept of 2-D toggle syndrome to find the globally optimal
solution, we propose a sub-optimal solution with reasonable computational complexity by utilizing
the concepts of 1-D toggle syndrome and 2-D toggle syndrome.

First, we utilize the concepts of 1-D toggle syndrome and the algebraic structure of 1-D linear code
to build a rough toggle array T. Second, the proposed one-off decision technique is used to reduce the
number of 1s in T in order to obtain a new toggle array T′. Finally, due to the property of the structure
of T′, it is more suitable for applying the strategy of the weighted approximation embedding scheme
(2-D toggle syndrome-based) to further refine the toggle array.

Author Contributions: W.-R.Z. conceived and performed the experiments; Y.-M.H. conceived, validated, and
wrote the paper.

Funding: This research is funded by the National Science Council, Taiwan, under Grant MOST 104-2221-E-260-007.
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Appendix A.

The secret message M with 33 bits is arranged as 11 groups, m1, m2, . . . , m11, where each mi (1 ≤
i ≤ 11) is an array of size 1 × 3.

Appendix A.1. 1-D Toggle Syndrome-based Embedding Scheme (1DTS-1)

Appendix A.1.1. Embedding

Step 1: Calculate the syndromes of the seven rows in X, i.e., si = [xi,1 xi,2 . . . xi,7] × HT, i = 1~ 7, where
(s1,s2,s3,s4,s5,s6,s7) is the first embedding channel with 21 bits in total. The toggle syndrome tsi = si ⊕
mi, i = 1~7.
Step 2: Calculate the syndromes of the first four columns in X, i.e., si = [x1,i−7 x2,i−7 . . . x7,i−7] × HT, i
= 8~ 11. (sT

8 ,sT
9 ,sT

10,sT
11) is the second embedding channel with 12 bits in total. The toggle syndrome tsi

= si ⊕mi, i = 8~ 11. From Table 1, respectively find the corresponding coset leaders ei (i.e., the toggle
sequence ti), i = 8~ 11. The four toggle sequences (placed in an upright form) constitute a 7 × 4 array
with each row denoted as fi, i = 1~7.
Step 3: Make the syndromes of the seven rows and the first four columns of the resultant stego array
after embedding respectively equal m1, m2, m3, m4, m5, m6, m7, and m8, m9, m10, m11. For the toggle
sequence ti, i = 1~ 7, instead of finding the coset leaders of the cosets to which tsi, i = 1~ 7, respectively
belongs, they are found by the lookup of Table A1 with the rule that the first four bits of ti and the four
bits of fi are equal. Those seven toggle sequence ti, i = 1~ 7, constitute a toggle array T of size 7 × 7.
// The following proposed one-off decision technique is used to reduce the number of 1s in T.
Step 4: To reduce the number of 1s in T, first check the seven rows of T and whether there is more
than one row with a Hamming weight in each row of greater than 2. If it does not exist, jump out to
the next step. Otherwise, suppose there are N rows (N ∈ [2 . . . 7]), each of which has a Hamming
weight greater than 2, and two rows are chosen randomly at a time. Hence, there are CN

2 different row
combinations. For each of those row combinations, do:

Take the component-wise OR operation among those rows to obtain a new vector u. Then,
utilizing the lookup of Table 1, find a codeword c which is closest to u in terms of minimal Hamming
distance. Add sequentially the codeword c to each of those rows. Then, it is very likely some of the
first four columns of T have been changed. Let w be the induced non-zero vector with the non-zero
component denoting the changed position of any changed column. From Table 1, find the coset leader
e of the coset to which the vector w belongs. Hence, to keep the syndromes unchanged for the first
four columns of the toggle array, we need to add e respectively to those changed columns. Suppose
the bit 1 is located in the i-th component of e, hence once codeword c is also added into the i-th row
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of T, then all of the syndromes of the seven rows and the first four columns of the new toggle array
remain the same as T. Denote the new toggle array as T′.

Among those new toggle arrays T′s found in the above loop, choose the new toggle array denoted
as T′min with the minimum Hamming weight. If the Hamming weight of T′min is smaller than that of T,
replace T with T′min.
Step 5: Perform the element-wise XOR operation between X and T to get the stego array Y,
i.e., Y= X ⊕ T.

Appendix A.1.2. Extracting

In the receiving end, once the 7 × 7 slicing bits (Y) of the stego image block is got, the secret
messages m1, m2, m3, m4, m5, m6, m7, and m8, m9, m10, m11 can be extracted easily by respectively
calculating the syndromes of the seven rows of Y and the first four columns of Y.

Appendix A.2. Example

Given the same X and M show in Section 4.3, but here M is not arranged as a L-shaped block.

Appendix A.2.1. Embedding

Step 1: From (s1, s2, s3, s4, s5, s6, s7) = (100, 100, 011, 010, 011, 010, 000) and (m1, m2, m3, m4, m5, m6,
m7) = (011, 111, 101, 011, 100, 010, 110), we obtain (ts1, ts2, ts3, ts4, ts5, ts6, ts7) = (111, 011, 110, 001,
111, 000, 110).
Step 2: From (s8, s9, s10, s11) = (010, 000, 111, 001) and (m8, m9, m10, m11) = (101, 100, 011, 000), we have
(ts8, ts9, ts10, ts11) = (111, 100, 100, 001). Hence, (t8, t9, t10, t11) = (e8, e9, e10, e11) = (0000010, 1000000,
1000000, 0010000). Then,

[
fT

1 fT
2 fT

3 fT
4 fT

5 fT
6 fT

7

]
=


0 0 0 0 0 1 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0


Step 3: For each i = 1~ 7, given tsi and fi, ti can be obtained respectively through the lookup in Table A1
as follows: t1 = [0110110], t2 = [0000100], t3 = [0001000], t4 = [0000111], t5 = [0000010], t6 = [1000110],
t7 = [0000101]. Now,

T =



0 1 1 0 1 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 1 1 1
0 0 0 0 0 1 0
1 0 0 0 1 1 0
0 0 0 0 1 0 1


.

Step 4: For the seven rows of T, the first, forth, and sixth rows, each of which has a Hamming weight
greater than 2. Suppose we choose the first and forth rows, take the element-wise OR operation
between both rows, we obtain u = (0110111). c = (0010111) is the closest codeword to u. Then, c
is added sequentially to the first and forth rows. This is equivalent to vector w = (1001000) being
added implicitly into the 3rd, 5th, 6th, and 7th columns. The coset leader e = (0100000) of the coset
to which w belongs is determined and the bit 1 is located in the second component. Therefore, the
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codeword c is also added to the 2nd row of T. Now, the toggle array T is updated as T′ with smaller
Hamming weight.

T′ =



0 1 0 0 0 0 1
0 0 1 0 0 1 1
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 1 1 0
0 0 0 0 1 0 1


Step 5: Finally, the stego array Y is obtained by adding T′ to X.

Y =



0 0 0 0 1 0 0
1 1 1 1 1 0 1
0 0 1 0 1 1 0
1 0 0 0 0 1 0
1 1 0 0 0 1 1
1 0 0 1 0 0 0
1 1 0 1 1 0 1


Appendix A.2.2. Extracting

The syndromes of the seven rows of Y and the first four columns of Y can be obtained respectively
as (011, 111, 101, 011, 100, 010, 110) and (101, 100, 011, 000).

Table A1. Toggle sequence ti, i = 1~7.

fi
tsi

000 001 010 011 100 101 110 111

0000 0000000 0000111 0000011 0000100 0000110 0000001 0000101 0000010

0001 0001101 0001010 0001110 0001001 0001011 0001100 0001000 0001111

0010 0010111 0010000 0010100 0010011 0010001 0010110 0010010 0010101

0011 0011010 0011101 0011001 0011110 0011100 0011011 0011111 0011000

0100 0100011 0100100 0100000 0100111 0100101 0100010 0100110 0100001

0101 0101110 0101001 0101101 0101010 0101000 0101111 0101011 0101100

0110 0110100 0110011 0110111 0110000 0110010 0110101 0110001 0110110

0111 0111001 0111110 0111010 0111101 0111111 0111000 0111100 0111011

1000 1000110 1000001 1000101 1000010 1000000 1000111 1000011 1000100

1001 1001011 1001100 1001000 1001111 1001101 1001010 1001110 1001001

1010 1010001 1010110 1010010 1010101 1010111 1010000 1010100 1010011

1011 1011100 1011011 1011111 1011000 1011010 1011101 1011001 1011110

1100 1100101 1100010 1100110 1100001 1100011 1100100 1100000 1100111

1101 1101000 1101111 1101011 1101100 1101110 1101001 1101101 1101010

1110 1110010 1110101 1110001 1110110 1110100 1110011 1110111 1110000

1111 1111111 1111000 1111100 1111011 1111001 1111110 1111010 1111101
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