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Featured Application: This paper presents a method for optimizing void-free copper filling
of through-silicon vias (TSVs) through the interaction of additives and current density for
applications in 3D integrated circuits such as those used in dynamic random access memory
(DRAM) and complementary metal-oxide semiconductor (CMOS) image sensors.

Abstract: Studies of through-silicon vias (TSVs) have become important owing to the increasing
demand for 3D packaging. To obtain high-performance devices, it is important to fill the holes
inside TSVs without voids. In this study, poly(ethylene glycol), bis-(3-sodiumsulfopropyl disulfide),
and Janus Green B are used as a suppressor, accelerator, and leveler, respectively, to achieve void-free
filling of a TSV. The optimum conditions for the additives were studied, and electrochemical analysis
was performed to confirm their effects. Different current conditions, such as pulse, pulse-reverse,
and periodic pulse-reverse, were also employed to enhance the filling properties of copper (Cu) for
a TSV with a hole diameter of 60 µm and depth/hole aspect ratios of 2, 2.5, and 3. The behavior
of Cu filling was observed through a cross-sectional analysis of the TSV after Cu plating under
various conditions.

Keywords: through silicon via; void free filling; additive; current condition; electro deposition

1. Introduction

To meet the lightweight, high-speed signal transport, and low-power consumption trends
of the electronic packaging industry, devices require miniaturization and high-density packaging
through compact packaging technology [1,2]. Therefore, chip fabrication and interconnection form
an advanced spectrum in the microelectronics industry, where specifications for high performance
and miniaturization of semiconductors continue to change every 18 months [3]. A candidate to meet
such compact chip packaging technology demands is 3D chip stacking, because of its advantage of
volume reduction compared to conventional package-on-package technology [1,2,4]. As demonstrated
in Figure 1, there are two types of 3D lamination processes. Figure 1 is a schematic diagram of wire
bonding. The stacked chips on the printed circuit board (PCB) are connected by wire as shown in fig1a.;
3D lamination through wire bonding can be used to improve the performance of the device. However,
there is a limit to miniaturization as space is required to prevent signal noise and interference between
the chip and the wire [5]. To overcome these disadvantages, technical developments to commercialize
3D integrated circuits using through-silicon vias (TSVs) have been actively studied in recent years [6].
A TSV is a high-performance vertical electrical connection technique used as an alternative to wire
bonding and fillip chips to create 3D integrated circuits. As presented in Figure 1b, TSVs directly
connect between stacked chips. Compared to other methods such as wire bonding technology, the
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interconnect and device density are higher while the length of the connections is shorter [7]. To achieve
the characteristics of TSVs, it is important to completely fill the TSV hole without voids [2,5,8,9].
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In this study, the results before and after pretreatment were compared, and the optimal conditions
for void-free filling were determined by varying the concentrations of additives poly(ethylene glycol)
(PEG), bis-(3-sodiumsulfopropyl disulfide) (SPS), Janus Green B (JGB), as well as current parameters.

2. Materials and Methods

TSV samples with blind vias AR 1:2–1:3 (about 60 µm in diameter, about 120 µm/150 µm/180
µm in depth) on Si substrate were prepared using the Bosch process of inductively coupled plasma
reactive ion etching (ICP-RIE) for the TSV filling experiment [10,11]. Si wafer of 1 × 1 cm2 size was
used for small scale deposition. A nickel phosphorus (NiP) layer was formed as the diffusion barrier
and seed layer through electroless plating. After forming the NiP layer, pretreatment was conducted
using a vacuum desiccator to remove bubbles in the hole of the TSV after putting the TSV substrate in
deionized water (DI). After pretreatment, copper plating was performed.

Table 1 shows the composition of the Cu plating bath. The virgin makeup solution (VMS) for
copper plating consists of 0.79 M of CuSO4·5H2O, 1.02 M of H2SO4, and 1.4 mM of Cl−. The additives
PEG, SPS, and JGB were used as a suppressor, an accelerator, and a leveler, respectively.

Table 1. Composition of Cu bath.

The Virgin Makeup Solution (VMS) Additive

CuSO4·5H2O 0.79 M poly(ethylene glycol) (PEG) 100–500 ppm
H2SO4 1.02 M bis-(3-sodiumsulfopropyl disulfide) (SPS) 1–5 ppm

Cl− 1.4 mM Janus Green B (JGB) 10–50 ppm

The current conditions were conducted on DC 1 Ampere per Square Deci-metre (ASD) to obtain
the additive conditions, and on-reverse conditions were used for void-free filling. Electrochemical
analysis was performed on the influence of additives in three electrode cells using the EC-Lab
electrochemistry software. Figure 2 shows a schematic diagram of the cyclic voltammetry (CV)
analysis setup.

For the CV analysis, a platinum (Pt) disk electrode with a diameter of 1.6 mm was used as the
working electrode, and a Pt wire and Ag/AgCl electrode were used as the counter electrode and
reference electrode, respectively. The cross-section of the TSV was observed using an optical microscope
(OM) and a scanning electron microscope (SEM) in order to investigate the plating tendency inside the
TSV according to various plating conditions.
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Figure 2. Three-electrode system schematic.

3. Results and Discussion

3.1. Effect of Pretreatment

The effect of pretreatment before plating was confirmed. If the TSV is put into the plating solution
without pretreatment, the plating solution may not act on the inside of the hole caused by the air
bubbles in the hole. At this time, if the TSV substrate is put in DI water and then into a vacuum
desiccator and to create a vacuum state, the bubbles emerge from the hole.

Figure 3 presents the cross-sectional image from an OM before and after pretreatment.
The pretreatment results confirm that the filling ratio of the plating was increased by removing
the bubbles inside the hole.
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vacuum desiccator.

3.2. Cyclic Voltammetry (CV) Analysis

The effects of additives during copper plating were confirmed by CV measurement.
CV measurement is an electrochemical technique that measures the current developing in an

electrochemical cell under conditions where the voltage is higher than that predicted by the Nernst
equation [12]. CV is performed by changing the potential of a working electrode (Ewe) versus Ag/AgCl
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electrode through a cycle and measuring the resulting current. In the reduction section of the CV curve,
the cathode peak potential value represents the voltage value needed for plating. If the cathode peak
potential is shifted to a positive value by the additive, then the plating rate can be expected to increase.
Conversely, if the cathode peak potential is shifted to a negative value, then the plating rate can be
expected to decrease.

CV measurements were performed between −0.6 V and 0.8 V at a scan rate of 20 mV/s. Figure 4a
shows the CV curves corresponding to the behavior of Cu ions in a VMS bath after the addition of
PEG. The onset potential for Cu deposition started at −0.03 V without PEG, and the cathode peak
potential is observed at −0.192 V. As the amount of PEG increased, the cathode peak potential tended
to be negative and shifted toward the negative direction (from −0.18 V to −0.4 V). This means that
an amount of shifted energy should be applied to allow the same current to flow, indicating that the
reduction reaction shifted to a state where it is difficult to occur. In other words, as PEG concentration
increases, plating is suppressed [13–17].Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 11 
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(PEG) concentration in the virgin makeup solution (VMS) bath; (b) CV curve according to the
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according to Janus Green B (JGB) concentration in a VMS bath with 500 ppm PEG and 3 ppm SPS.

When PEG concentration exceeded 500 ppm, no further negative shift was observed, indicating
that the maximum concentration of PEG in the VMS bath is 500 ppm.

Figure 4b shows the CV polarization curves for different SPS concentrations. When SPS was
added to PEG with a concentration of 500 ppm, the cathode peak potential and onset potential shifted
toward the positive direction. As SPS concentration increased from 1 ppm to 5 ppm, the cathode peak
tended to present a positive shift (from −0.35 V to −0.30 V). This means that the reduction potential is
reduced, indicating that the plating process speeds up as SPS concentration increases [14–19].

However, when SPS concentration exceeded 5 ppm, the peak shifted toward the negative direction.
From this point of view, the suitable SPS concentration is expected to be 5 ppm.

As observed in Figure 4c, similar to PEG, when JGB was added to the plating bath, both the
cathode peak potential and initiation potential also shifted toward the negative direction [13,16,20].
It can be seen that, as JGB concentration increased from 10 ppm to 50 ppm, the cathode peak potential
shifted from −0.35 V to −0.37 V. The peak potential values at JGB concentrations of 30 ppm and
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50 ppm were not significantly different and were expected to be saturated at 30 ppm. The CV analysis
further demonstrated that the suppressor and leveler suppressed the plating rate, while the accelerator
accelerated the plating rate. Based on the CV analysis data, electrodeposition experiments were
performed on the different additives.

3.3. Tendency of Plating by Additive

The effects of each additive on plating are presented in Figure 5 [2,4,13,21]. As shown in Figure 5a,
PEG and JGB captured Cu+ ions. This cation is strongly adsorbed onto the surface of the wafer owing
to electrostatic interaction with the chloride ion (Cl−) on the surface of the Cu electrode, which prevents
the precipitation of Cu. As shown in Figure 5b, SPS is an accelerator that promotes the precipitation of
Cu through the reaction of the Cu+ ion with the sulfur trioxide ion (SO3

−) of SPS. PEG suppressed the
plating rate on the surface, SPS accelerated the plating rate in the hole, and JGB suppressed the plating
rate at the edge, thereby controlling the clogging of the hole due to the edge effect [2,21].
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Copper electroplating was performed with DC 1 ASD (−10 mA/cm2) to confirm the effect of
additives on plating. The effect of additive on plating was confirmed by analyzing images taken with
an OM.

Figure 6a–d shows the plating cross-sectional image and filling ratio graph according to PEG
concentration. The experiment results show that as PEG concentration increased, the filling ratio
increased, and the highest filling ratio was observed at 500 ppm. Compared with the CV analysis,
it was confirmed that plating occurred inside the TSV as the plating rate of the surface was suppressed
and clogging of the hole entrance was controlled by PEG. However, bottom-up filling should be
undertaken for void-free filling, but it is difficult to satisfy the condition using only PEG. Therefore,
the interaction of 500 ppm of PEG with other additives and current conditions was studied.

Figure 7a–d shows the cross-sectional image of the sample and filling ratio graph according to
SPS concentration. A concentration of PEG of 500 ppm as well as the addition of SPS was studied
for AR 1:2.5 TSV, with (a), (b), and (c) representing SPS concentrations of 1 ppm, 3 ppm, and 5 ppm,
respectively. The addition of 500 ppm PEG and SPS to the VMS bath increased the filling ratio when
SPS concentration increased. Also, compared with the PEG test, it is observed that the bottom side
is plated even though the aspect ratio is increased. However, when the SPS concentrations of 3 ppm
and 5 ppm were compared, plating from the bottom of the hole was observed for 3 ppm but not
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for 5 ppm. Therefore, the optimum SPS concentration for void-free filling was confirmed in the
on-reverse condition.
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Figure 8a–d demonstrates that the filling ratio increases when JGB concentration increases, and the
highest filling ratio was obtained at JGB concentration of 30 ppm. As the amount of additive increased,
the rate of clogging of the hole slowed and the proportion of the void was small, but complete filling
did not occur. Therefore, complete filling of TSV was performed by pulse plating.
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3.4. Effect of On-Reverse Current Condition

Based on the CV curve analysis and DC plating data, the current condition was confirmed when
500 ppm PEG, 3 ppm and 5 ppm SPS, and 30 ppm JGB were added to the basic plating bath.

Figure 9 presents the effect of the on-reverse current on TSV plating [1,21]. Deposition occurred
with the on-current while reduction occurred with the reverse current. The effects of reverse current
change on plating were investigated, and the additive conditions and current conditions for void-free
filling were optimized [21,22].
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Firstly, copper electroplating was performed by changing the current conditions for PEG, SPS, and
JGB concentrations of 500 ppm, 3 ppm/5 ppm, and 30 ppm, respectively. Table 2 shows the condition
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of pulse current. On-reverse plating was performed under reverse current conditions of 8 mA/cm2, 16
mA/cm2, and 24 mA/cm2.

Table 2. On-reverse current condition.

On current 10 mA/cm2

Reverse current 8, 16, 24 mA/cm2

On time 80 ms
Reverse time 20 ms

At SPS concentration of 3 ppm (Figure 10a–d), the highest TSV filling ratio of approximately
90.57% was obtained with a reverse current of 16 mA/cm2. The presence of voids was attributed to
insufficient plating speed in the holes.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 11 
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Figure 10. Cross-sectional OM images and filling ratio graphs with changes in SPS concentration and
reverse current conditions. (a–d) 8 mA, 16 mA, and 24 mA in SPS 3 ppm, respectively. (e–h) 8 mA/cm2,
16 mA/cm2, 24 mA/cm2 in SPS 5 ppm, respectively.
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Figure 10e–h presents the results of plating with 500 ppm PEG, 5 ppm SPS, and 30 ppm JGB under
varying current conditions.

The filling ratio of the TSV was confirmed to be 90% at 8 mA/cm2 and 85% at 24 mA/cm2,
and void-free filling occurred at 16 mA/cm2. These results demonstrate that the 5 ppm of
SPS accelerates the plating rate in the hole and is sufficient to achieve plating from the bottom.
At 8 mA/cm2, it can be seen that the plating thickness of the surface is thick and the inside of the
hole is empty. This suggests that the hole was rapidly blocked as the reverse current of 8 mA/cm2

was insufficient for edge reduction to occur. At 24 mA/cm2, the reverse current was too high, and
it is deduced that reduction occurred at the bottom. As a result of this experiment, it was confirmed
that the ideal conditions for complete filling are additive concentrations of 500 ppm PEG, 5 ppm SPS,
30 ppm JGB for on-current of 10 mA/cm2 and reverse current of 16 mA/cm2.

The image of the void-free filled TSV was more clearly confirmed by SEM. Figure 11 represents
an SEM image of the void-free filled TSV section.
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The experimental results show that the additive and current conditions for void-free filling of a
TSV were optimized.

4. Conclusions

In this study, the effects of additives (PEG, SPS, and JGB) on copper electroplating were confirmed
using CV analysis. As the concentration of PEG and JGB increased, the suppressing effect on copper
plating also increased. As SPS concentration increased, the accelerating effect on copper plating
also increased.

Based on the results of the CV analysis, copper electroplating was performed by varying the
current and additive conditions, and the filling ratio was observed through cross-sectional analysis.
The highest filling ratio was obtained at concentrations of 500 ppm PEG, 5 ppm SPS, and 30 ppm
JGB. Thereafter, pulse electroplating was performed with fixed on-current of 10 mA/cm2 and varying
reverse current.

When the reverse current was set to 16 mA/cm2, a void-free filled TSV was obtained under
optimized plating conditions.
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