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Abstract: Effective feature selection can help improve the classification performance in bearing
fault diagnosis. This paper proposes a novel feature selection method based on bearing fault
diagnosis called Feature-to-Feature and Feature-to-Category- Maximum Information Coefficient
(FF-FC-MIC), which considers the relevance among features and relevance between features and fault
categories by exploiting the nonlinearity capturing capability of maximum information coefficient.
In this method, a weak correlation feature subset obtained by a Feature-to-Feature-Maximum
Information Coefficient (FF-MIC) matrix and a strong correlation feature subset obtained by
a Feature-to-Category-Maximum Information Coefficient (FC-MIC) matrix are merged into a final
diagnostic feature set by an intersection operation. To evaluate the proposed FF-FC-MIC method,
vibration data collected from two bearing fault experiment platforms (CWRU dataset and CUT-2
dataset) were employed. Experimental results showed that accuracy of FF-FC-MIC can achieve
97.50%, and 98.75% on the CWRU dataset at the motor speeds of 1750 rpm, and 1772 rpm, respectively,
and reach 91.75%, 94.69%, and 99.07% on CUT-2 dataset at the motor speeds of 2000 rpm, 2500 rpm,
3000 rpm, respectively. A significant improvement of FF-FC-MIC has been confirmed, since the
p-values between FF-FC-MIC and the other methods are 1.166× 10−3, 2.509× 10−5, and 3.576 × 10−2,
respectively. Through comparison with other methods, FF-FC-MIC not only exceeds each of the
baseline feature selection method in diagnosis accuracy, but also reduces the number of features.

Keywords: feature selection; Maximum Information Coefficient (MIC); FF-MIC; FC-MIC;
bearing fault diagnosis

1. Introduction

As one of the most significant parts of rotating machines, rolling bearing has a great influence on
operating status of mechanical equipment. According to the statistics of mechanical faults, more than
40% of the faults are caused by rolling bearings [1,2]. Therefore, it is important and meaningful for
researchers to do research on fault diagnosis of rolling bearings. In bearing fault diagnosis, an essential
role to improve the diagnosis accuracy of bearings is played by feature selection, which aims at
selecting a subset from the original set of features according to discrimination capability [3].

Traditional feature selection methods can be divided into three types: filters, wrappers and
embedded methods [4]. Filter methods evaluate the quality of features through some feature evaluation
criteria and select the top high-ranked features. Based on the advantages of high generality and
low computational cost, filter-based feature selection methods are suitable for high-dimensional
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datasets [5,6]. Although filter-based methods are computationally fast, they usually do not take feature
relevance into considerations. Wrapper methods utilize the performance of machine learning model
to judge the quality of the feature subset. They usually repeat the two steps, including searching for
an optimal feature subset and evaluating the selected features, until a stopping measure is met [5,6].
The computational speed of wrapper-based methods is slow and the computational complexity is high,
because of search strategies which involve sequential selection algorithms like sequential forward
selection (SFS), sequential backward selection (SBS) and heuristic search algorithms like genetic
algorithms (GAs), particle swarm optimization (PSO), gravitational search algorithm (GSA), and ant
colony optimization (ACO). The complementary strengths of both filter and wrapper are exploited by
embedded methods. Embedded methods define the feature that has the best ability to differentiate
among classes in each stage and take feature selection as part of the training process. Thus, embedded
methods are more effective than filter approaches since they involve interaction with the learning
algorithm, and they are superior to wrapper methods as they do not need to evaluate the feature
subsets iteratively [5]. However, embedded methods have the shortcomings of low computational
speed and high computational complexity as well.

As mentioned above, feature selection in bearing fault diagnosis is helpful to improve the accuracy
of diagnosis and reduce the dimensions of features. Fu [7] combined filter and wrapper methods to
select features in bearing fault diagnosis. Ou [8,9] proposed a supervised Laplacian score (SLS)-based
feature selection method. Hui [10] applied an improved wrapper-based feature selection method
for bearing fault diagnosis. Liu [11] selected features through an evolutionary Monte Carlo method,
which is a wrapper-based method. Islam [12] proposed a hybrid feature selection method which
employed a genetic algorithm (GA)-based filter analysis to select optimal features. Luo [13] used the
real-valued gravitational search algorithm (RGSA) to optimize the input weights and bias of extreme
learning machine (ELM), and the binary GSA (BGSA) was used to select important features from
a compound feature set. Yu [14] combined the K-means method with standard deviation to select the
most sensitive characteristics. Liu [15] and Yang [16] utilized distance evaluation technique (DET) to
select sensitive features. Vepa [17] presented a feature selection method involved in feature weight,
monotonicity, correlation, and robustness. However, the above methods have some problems that lack
considerations for relevance; for example, the computational speed is slow, and the computational
complexity is high.

Some researchers recently took signal relevance into consideration. Cui [18] selected intrinsic mode
functions (IMFs) as features through correlation. A correlation coefficient of two simplified neutrosophic sets
(SNSs) was proposed to diagnose the bearing fault types by Shi [19]. In [20], Laplacian Score (LS) for feature
selection was utilized to refine the feature vector by sorting the features according to their importance and
correlations. Besides, Zhang [21] employed the Decision Tree algorithm to select the important features
of the time-domain signal, and the low correlation features was selected. Jiang [22] computed the mutual
information (MI) of decomposed components and the original signal, and extracted the noiseless component,
in order to obtain the reconstructed signal. However, in terms of relevance, researchers did not take relevance
between features and fault categories into account in feature selection, only considering the correlation
between features.

The purpose of feature selection is not just simply reducing dimensions for the data. It is
more about eliminating redundant and irrelevant features. Redundant features can be eliminated
by the measurement of relevance among features. The stronger the relevance between two features,
the stronger the redundancy and replaceability between them. Moreover, irrelevant features can be
eliminated through the measurement of relevance between features and categories. The stronger
the relevance between features and categories, the stronger the distinguishability of features from
categories. Irrelevant and redundant features can be eliminated from a raw feature set according to
relevance. Therefore, consideration of relevance plays an essential role in reducing data dimensions in
feature selection.
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On the other hand, some work [8–13] selected features based on wrapper methods and increased
the computational complexity. To avoid the cost of searching, the idea of intersection or union operation
was put forward to merge feature subsets [23,24].

When it comes to the problem of coping with redundant information, principal component
analysis (PCA) has been extensively studied. PCA is an algorithm that can effectively extract subsets
from data by reducing the dimensions of the data set [25]. Since the principal component includes
most information of the raw features which are irrelevant and do not contain redundant information,
the principal component can be used to replace raw features. Based on this, PCA can realize data
reduction and reduce the complexity of data processing, preventing dimensional disaster [26]. Typical
PCA algorithms like those in [27–30] are used to extract features and to reduce data dimensions.

Based on the problems mentioned above, a novel feature selection method called FF-FC-MIC based
on the Feature-to-Category-Maximum Information Coefficient is proposed. The main contributions of
this paper are as follows:

(1) A new frame of feature selection is proposed for bearing fault diagnosis, which aims at considering
the relevance among features and the relevance between features and fault categories. In the new
feature selection frame, strong relevance features are eliminated by an FF-MIC matrix based on the
relevance between features and features. On the contrary, strong relevance features are selected by
the FC-MIC matrix based on the relevance between features and categories. The proposed frame
can eliminate not only redundant features but also irrelevant features from the feature set.

(2) In order to avoid computational complexity brought by wrapper methods, an intersection operation
is applied to merge the obtained feature subsets. The intersection operation has advantages of
forming a final subset with a lower dimension and saving time, instead of subset searching.

(3) This paper applied two datasets to validate the effectiveness and adaptability of proposed method.
It turned out the proposed method has a good applicability and stability.

The remainder of this paper is organized as follows. Section 2 introduces the basic theory and
algorithm applied in this paper. Section 3 gives the details of the proposed method. Section 4 shows
the experimental results. Section 5 concludes the findings shown in this paper.

2. Related Basic Theory and Algorithm

Based on the two main problems mentioned before, relevance and computational complexity,
the related theory for solving the problems are listed in this section. First, the maximum information
coefficient (MIC) is used to measure the relevance between features and features, and the relevance
between features and categories. Second, an intersection operation is employed so that it can avoid
high computational complexity. Third, in order to reduce data dimensions for further and to shorten
the training time of classification model, the PCA algorithm is utilized.

2.1. Maximum Information Coefficient

The MIC cannot only measure linear relationships and nonlinear relationships, but can extensively
excavate non-functional dependencies between variables. MIC mainly works with MI and meshing
methods. MI is an indicator of the degree of correlation between variables. Given a variable
A = {ai, i = 1, 2, . . . , n} and B = {bi, i = 1, 2, . . . , n}, where n is the number of samples, the MI is
defined as follow:

MI(A, B) = ∑a∈A ∑
b∈B

p(A, B)log2
p(A, B)

p(A)p(B)
(1)

where p(A, B) is the joint probability density of A and B, and p(A) and p(B) are the boundary
probability densities of A and B, respectively. Suppose D = {(ai, bi), i = 1, 2, . . . , n} is a set of finite
ordered pairs. It defines a division G, dividing the value range of variable A into x segments and also
dividing the value range of variable B into y segments. Therefore, the G is a grid with a size of x× y.
Meanwhile, MI(A, B) in each grid is calculated. Since the same grid with a size of x× y has several
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ways of dividing, the maximum value of MI(A, B) in different ways of dividing is chosen as the MI
value of a division G. Additionally, a definition of maximum MI under a division G is as follow:

MI∗(D, x, y) = maxMI(D|G) (2)

where D|G denotes data D are divided by G. Although it utilizes MI to indicate the quality of the grid,
MIC is not just simply estimating the MI. A characteristic matrix is formed by maximum normalized
MI values under different divisions. The characteristic matrix is defined as follow:

MI(D)x,y =
MI∗(D, x, y)
logmin{x, y} (3)

Moreover, the MIC is defined as:

MIC(D) = max
xy<B(n)

{
MI(D)x,y

}
(4)

where B(n) is the upper limit of the x× y grid. Generally, ω(1) < B(n) < O
(
n1−ε

)
, where 0 < ε < 1.

2.2. Merging Feature Subsets

Merging feature subsets usually has two ways. One is the intersection approach and the other is
the union approach.

Let S be the set of samples and F = { f1, f2, . . . , fi} be the feature set after preprocessing.
FS1 = { f1, f2, . . . , fm} is a subset of features selected with filter (M1), where m denotes the number
of features which are selected by M1 and m < i. FS2 = { f1, f2, . . . , fn} is a subset of features selected
with filter (M2), where n denotes the number of features which are selected by M2 and n < i.

The union approach is to create a feature subset FS3, which has the number of features
p (p ≥ {m, n}), by merging all features in FS1 and in FS2:

FS3 = FS1 ∪ FS2 (5)

The intersection approach is to create a feature subset FS4, which has the number of features
q(q ≤ {m, n}), including these features that are present in both feature subsets FS1 and FS2.

FS4 = FS1 ∩ FS2 (6)

Usually, the two approaches mentioned above are utilized to merge feature subsets selected by
different filter-based feature selection methods. The union approach selects all features in both subsets.
At the same time, it increases the number of features and does not achieve the goal of reducing data
dimensions. On the contrast, the intersection approach selects only common features. It reduces the
total number of features. However, it is possible to lose some features which are proficient [31].

3. Proposed Method

A new feature selection method was proposed to address two issues in feature selection: relevance
and computational complexity.

The MIC cannot only measure the relevance between features and features, but also measure the
relevance between features and categories. The method is divided into two parallel steps to select
features from both aspects mentioned above. First, strong irrelevance features can be selected based
on the MIC between features and features. Second, strong relevance features can be selected based
on the MIC between features and fault categories. This frame has the advantage of a comprehensive
consideration of relevance to eliminate redundant and irrelevant features from a feature set.

In term of computational complexity, an intersection operation is employed to merge feature subsets
which are selected by the relevance between features and features, and by the relevance between features
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and fault categories. The intersection operation has the advantage of obtaining a lower-dimension final
subset with a lower computational complexity, containing as much as information.

Based on the above consideration, MIC is applied to measure the relevance among features and the
relevance between features and fault categories. In addition, to avoid computational complexity caused by
wrapper methods, an intersection operation is applied, instead of wrapper methods, to merge subsets.

The detailed implementation steps are as follows. First, MIC among features and MIC between features
and fault categories are calculated to obtain two MIC matrixes. MIC among features is called FF-MIC and
MIC between features and categories is named FC-MIC. Second, strong relevance values in FF-MIC and in
FC-MIC are calculated to distinguish strong and weak relevance features. Third, strong irrelevance features
selected by FF-MIC and strong relevance features selected by FC-MIC are merged through an intersection
operation to form a final feature subset. Finally, PCA is applied to further reduce dimensions of the final
feature set. The whole process of feature selection is shown in Figure 1.
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Figure 1. Flowchart of the proposed method. (a) Data preprocessing: Features are obtained through
the time domain and frequency domain, forming a feature set (FS) matrix with a size of n × m;
(b) MIC (Maximum Information Coefficient) calculation: relevance between features and features
are calculated to obtain an FF-MIC matrix with a size of m × m by MIC, and relevance between
features and fault categories are calculated to obtain the FC-MIC matrix with a size of m× p by MIC;
(c) relevance calculation: a threshold FF_threshold is set to distinguish strong irrelevance features from
FS, and a threshold FC_threshold is set to distinguish strong relevance features from FS; (d) obtaining
of feature subsets: according to the thresholds, Subset1 and Subset2 are obtained; (e) merging of feature
subsets: An intersection operation is applied to merge Subset1 and Subset2, obtaining a final subset
F− Subset; (f) PCA: PCA is employed to further reduce the dimension of F− Subset.

3.1. Data Preprocessing

Since the vibration signal measured by sensors carries vital information, it should be transformed
by the appropriate action and sensitive features, which can efficiently reflect the bearing working
condition will be obtained. To avoid missing sensitive features, almost all features in the time and
frequency domains are acquired. In order to improve the convergence speed of the model and the
accuracy of the model, all features will be performed by feature scaling after the features are obtained.
The details are given in Algorithm 1.
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Algorithm 1. Data preprocessing.

Input: samples: S = {s1, s2, . . . sn}, where n is the number of samples.
Output: the preprocessed feature set FS.

1. for each si in S
2. calculate each feature value from both the time domain and frequency domain and scale each feature

value to [0,1], forming a feature set: FS = { f1, f2, . . . fm}, where m is the number of features
3. end for

3.2. MIC Calculation

MIC is used to define the relevance between features and features, and the relevance between features
and categories. A matrix called FF-MIC is formed by the MIC between features and features, and a matrix
called FC-MIC is formed by the MIC between features and fault categories. The construction details of
FF-MIC and FC-MIC are described in Algorithm 2.

Algorithm 2. MIC calculation.

Input: FS = { f1, f2, . . . fm}, where C =
{

c1, c2, . . . cp
}

are fault categories, and p is the number of fault categories.
Output: FF-MIC and FC-MIC.

1. for each fi, f j(1 ≤ i, j ≤ m) in FS

2. calculate MIC between fi and f j, obtaining the FF-MIC matrix with a size of m×m; the row and column
denote the serial number of features.

3. for each fi in FS
4. for each cj in C

5. calculate MIC between fi and cj, obtaining the FC-MIC matrix with a size of m× p; the row denotes the
serial number of features and the column denotes the serial number of fault categories.

6. end for

3.3. Relevance Calculation

As mentioned before, the value of MIC ranges from 0 to 1. FF-MIC denotes a matrix which can
measure the relevance between features and features. The closer to 0 each element in the FF-MIC matrix
approaches, the stronger the irrelevance between the features corresponding to the row and column
of the element is. On the contrary, the closer to 1 each element in the FC-MIC matrix approaches,
the stronger the relevance between the feature and category is. On this basis, a feature can be judged
whether it is a weak relevance or strong relevance through the value in the FF-MIC matrix.

In each column of the FF-MIC matrix, each minimum value is found to form a set FFmin =

{min1, min2, . . . , minm}, and then the maximum value FF_threshold is found in the set FFmin. Therefore,
the features, of which corresponding FF-MIC values are smaller than FF_threshold are, are called strong
irrelevance features. The reason of setting up FFmin is that the condition of the strong irrelevance between
a certain feature and each one in the rest can be observed. Through the set FFmin, the maximum of FFmin
is utilized to judge whether a feature is strong irrelevant with other features.

At the same time, in each row of FC-MIC, each maximum value is found to form a set FCmax =

{max1, max2, . . . , maxm}, and then the minimum value FC_threshold is found in the set FFmax. The features,
of which corresponding FC-MIC values are bigger than the FC_threshold, are called strong relevance features,
which are being selected soon. The reason of setting up FCmax is that the condition of the strongest relevance
between a certain feature and each category can be observed. Through the set FCmax, the minimum of
FCmax is utilized to judge whether a feature is strong relevant with categories.

The details of relevance calculation are shown in Algorithm 3.
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Algorithm 3. Relevance calculation

Input: FS = { f1, f2, . . . fm}, FF-MIC, and FC-MIC.
Output: FF_threshold, and FC_threshold.

1. for each column in the FF-MIC matrix
2. for elements in each column
3. find each minimum value to form a set FFmin = {min1, min2, . . . , minm}
4. end for
5. for each mini in FFmin
6. find the maximum FF_threshold in FFmin
7. end for
8. for each row in FC-MIC
9. for elements in each row
10. find each maximum value to form a set FCmax = {max1, max2, . . . , maxm}
11. end for
12. for each maxi in FCmin
13. find the minimum FC_threshold in FCmax
14. end for

3.4. Obtaining Feature Subsets

After relevance calculation, two feature sets are formed called Subset1 and Subset2, respectively,
according to the FF_threshold and FC_threshold. The features, of which corresponding FF-MIC values
are smaller than the FF_threshold, will be the elements of Subset1, because the closer to 0 the FF-MIC
value, the stronger the irrelevance between features. Additionally, the features, of which corresponding
FC-MIC values are bigger than the FC_threshold, will become the members of Subset2, because the
closer to 1 the FC-MIC value, the stronger the relevance between features and categories. The details
of obtaining feature subsets are shown in Algorithm 4.

Algorithm 4. Obtaining feature subsets

Input: FS = { f1, f2, . . . fm}, FF_threshold, and FC_threshold.
Output: Subset1 and Subset2.

1. for each fi in FS
2. select the features corresponding FF-MIC values smaller than the FF_threshold to form a Subset1
3. end for
4. for each fi in FS
5. select the features corresponding FC-MIC values bigger than the FF_threshold to form a Subset2
6. end for

3.5. Merging Feature Subsets and Reducing Dimensions with PCA

In above steps, two feature subsets are obtained. Subset1 is a strong-irrelevance subset which
contains features with strong irrelevance among them. Subset2 is a strong-relevance subset which
consists of features which have strong correlation with fault categories. First, an intersection operation
is carried between Subset1 and Subset2 to obtain a final subset F − Subset. F − Subset contains the
common elements of Subset1 and Subset2. Next, the variance of each feature is calculated and then the
five features with the largest variance are selected. The reason of selecting the features with the five
largest variances is that the smaller a variance of the feature, the less information this feature contains.
Therefore, the five features with the largest variance means that almost all information is retained.
Finally, PCA is employed to reduce dimensions of the F− Subset. The details are given in Algorithm 5.
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Algorithm 5. Merging feature subsets.

Input: Subset1 and Subset2.
Output: F− Subset.

1. Merge Subset1 and Subset2 with an intersection operation to obtain F− Subset.
2. for each fi in F− Subset
3. employ PCA to select five features with the largest variance
4. end for

4. Experimental Results and Analysis

In this paper, the proposed method was applied to two datasets. One was the vibration dataset
provided by the Bearing Data Center of Case Western Reserve University (CWRU) [32], and the
other was the vibration dataset which was obtained by the CUT-2 platform. Based on both datasets,
the proposed method was compared with 3 traditional feature selection methods, which are filter
based on variance, wrapper based on recursive feature elimination (RFE), and embedded based
on gradient boosting decision tree (GBDT). Performances of these methods were evaluated by the
diagnosis accuracy on two popular fault classification models, which are Support Vector Machine
(SVM) and K-Nearest Neighbor (KNN).

The features were calculated both in the time domain and frequency domain. All the features are
shown in Table 1.

Table 1. Features in the time domain and frequency domain [14,33,34].

Features in the Time Domain Features in the Frequency Domain

f0 = ∑N
n=1 x(n)

N
f6 = ∑N

n=1(x(n)− f0)
4

(N−1) f 4
2

f12 = ∑K
k=1 s(k)

K f19 =

√
∑K

k=1 fk
4s(k)

∑K
k=1 fk

2s(k)

f1 =

√
∑N

n=1(x(n))2

N−1
f7 =

f4
f3 f13 = ∑K

k=1(s(k)− f12)
2

K−1

f20 =√
∑K

k=1 fk
2s(k)

∑K
k=1 s(k)∑K

k=1 fk
4s(k)

f2 = (
∑N

n=1

√
|x(n)|

N )
2

f8 =
f4
f2

f14 = ∑K
k=1(s(k)− f12)

3

K
(√

f13

)3 f21 =
f17
f16

f3 =

√
∑N

n=1(x(n))2

N
f9 =

f3
1
N ∑N

n=1|x(n)|
f15 = ∑K

k=1(s(k)− f12)
4

K( f13)
2 f22 = ∑K

k=1( fk− f16)
3s(k)

K f17
3

f4 = max|x(n)| f10 =
f4

1
N ∑N

n=1|x(n)|
f16 = ∑K

k=1 fks(k)
∑K

k=1 s(k) f23 = ∑K
k=1( fk− f16)

4s(k)
K f17

4

f5 = ∑N
n=1(x(n)− f1)

3

(N−1) f 3
2

f11 =
N
∑

n=1
|x(n)|2 f17 =

√
∑K

k=1( fk− f16)
2s(k)

K
f24 = ∑K

k=1( fk− f16)
1/2s(k)

K
√

f17

f18 =

√
∑K

k=1 fk
2s(k)

∑K
k=1 s(k)

x(n) is the time-domain signal sequence, n = 1, 2, . . . , N,
N is the number of each sample points.

s(k) is the frequency-domain signal sequence,
k = 1, 2, . . . , K, K is the number of spectral lines.

4.1. Experiments on CWRU Datasets

4.1.1. Experimental Setup and Datasets

Our datasets were constructed on CWRU bearing datasets [32] to apply the proposed method.
As shown in Figure 2, the experimental test rig included an electric motor (left), a torque
transducer/encoder (center), a dynamometer (right), and a control circuitry (not shown). The deep
groove ball bearings of the type 6205-2RS JEM SKF at the drive end (DE) was used for vibration
signal collection. The vibration signals were collected by accelerometers at 4 different motor speeds of
1797 rpm, 1772 rpm, 1750 rpm and 1730 rpm, where the sampling frequencies were 12 kHz and 48 kHz.
The faults were set by an electric discharge machine with diameters of 0.007 inches, 0.014 inches, 0.021
inches and 0.028 inches.
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Figure 2. CWRU bearing experimental platform.

There were 4 bearing categories, including 3 fault categories and 1 normal category. One hundred
fifty samples were acquired in each category and each sample contains 1024 continuous data points.
Two same datasets were constructed at the motor speeds of 1750 rpm and 1772 rpm. Table 2 shows the
details of the datasets. The training process and the test process were carried out at the same speed.
The training set included 420 samples and the testing set included 180 samples.

Table 2. Datasets obtained at the motor speeds of 1750 rpm and 1772 rpm on the CWRU bearing
experimental platform.

Conditions of the Bearings Fault Size (inch) Number of Samples Class

Normal 150 0

Inner race fault
0.007 50

10.014 50
0.021 50

Outer race fault
0.007 50

20.014 50
0.021 50

Baller fault
0.007 50

30.014 50
0.021 50

4.1.2. Result Analysis of CWRU Datasets

According to the proposed feature selection method, features selected by the proposed method
are shown in Table 3.
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Table 3. CWRU dataset features selected by the proposed method. (The pictures are the visualization
results for the corresponding speed samples. The horizontal axis in the figure represents the number of
features, and the vertical axis represents the first 13 samples. For the sake of beauty, the first 13 samples
are chosen).
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1750

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 17 

Table 3. CWRU dataset features selected by the proposed method. (The pictures are the visualization 
results for the corresponding speed samples. The horizontal axis in the figure represents the number 
of features, and the vertical axis represents the first 13 samples. For the sake of beauty, the first 13 
samples are chosen). 

Motor Speed 
(rpm) 

All Features 
Selected 
Features 

Selected Number 

1750 

  

0, 3, 8, 9, 11, 16, `22 

1772 

  

0, 3, 8, 9, 11, 15, 16, 20, 22 

As is shown in Table 3, at the motor speed of 1750 rpm, the proposed method selected 7 features 
from 25 features in total, and selected 9 features at the speed of 1772 rpm. 

KNN and SVM classifiers and 3 traditional feature selection methods were applied to validate 
the proposed method. As mentioned before, 2 datasets were constructed at 1750 rpm and 1772 rpm. 
Both of them were used in the training and testing processes. The results are shown in Table 4. 

Table 4. Comparison of classification accuracy of SVM and KNN at motor speeds of 1750 rpm and 
1772 rpm using different feature selection methods. 

Motor Speed (rpm) Feature Selection Methods 
Classification Models 

SVM KNN 

1750 

Var_FS 0.8750 0.8750 
RFE_FS 0.8500 0.8333 

GBDT_FS 0.9417 0.9600 
FF_FC_MIC 0.9583 0.9750 

1772 

Var_FS 0.7750 0.7417 
RFE_FS 0.8000 0.7666 

GBDT_FS 0.9833 0.9917 
FF_FC_MIC 0.9917 1.0000 

As shown in Table 4, the proposed method has a higher accuracy than the other 3 feature 
selection methods. Especially, the best classification accuracy has achieved 100% at the motor speed 
of 1772 rpm with KNN. Comparing with the other 3 methods, the proposed method can improve the 
accuracy by about an average of 1.21% at least, and by about an average of 15.25% at most. 
Meanwhile, the classification accuracies of the proposed method at different motor speeds with 2 
classifiers reached are all above 95%. Above all, it is obvious that the proposed method has a pretty 
performance on the aspect of diagnosis accuracy. 

In addition, in order to validate the propose method’s effectiveness, the number of features 
selected is compared between the proposed method and the other 3 traditional methods. All the 
numbers of features selected by these 4 methods are shown in Figure 3. 

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 17 

Table 3. CWRU dataset features selected by the proposed method. (The pictures are the visualization 
results for the corresponding speed samples. The horizontal axis in the figure represents the number 
of features, and the vertical axis represents the first 13 samples. For the sake of beauty, the first 13 
samples are chosen). 

Motor Speed 
(rpm) 

All Features 
Selected 
Features 

Selected Number 

1750 

  

0, 3, 8, 9, 11, 16, `22 

1772 

  

0, 3, 8, 9, 11, 15, 16, 20, 22 

As is shown in Table 3, at the motor speed of 1750 rpm, the proposed method selected 7 features 
from 25 features in total, and selected 9 features at the speed of 1772 rpm. 

KNN and SVM classifiers and 3 traditional feature selection methods were applied to validate 
the proposed method. As mentioned before, 2 datasets were constructed at 1750 rpm and 1772 rpm. 
Both of them were used in the training and testing processes. The results are shown in Table 4. 

Table 4. Comparison of classification accuracy of SVM and KNN at motor speeds of 1750 rpm and 
1772 rpm using different feature selection methods. 

Motor Speed (rpm) Feature Selection Methods 
Classification Models 

SVM KNN 

1750 

Var_FS 0.8750 0.8750 
RFE_FS 0.8500 0.8333 

GBDT_FS 0.9417 0.9600 
FF_FC_MIC 0.9583 0.9750 

1772 

Var_FS 0.7750 0.7417 
RFE_FS 0.8000 0.7666 

GBDT_FS 0.9833 0.9917 
FF_FC_MIC 0.9917 1.0000 

As shown in Table 4, the proposed method has a higher accuracy than the other 3 feature 
selection methods. Especially, the best classification accuracy has achieved 100% at the motor speed 
of 1772 rpm with KNN. Comparing with the other 3 methods, the proposed method can improve the 
accuracy by about an average of 1.21% at least, and by about an average of 15.25% at most. 
Meanwhile, the classification accuracies of the proposed method at different motor speeds with 2 
classifiers reached are all above 95%. Above all, it is obvious that the proposed method has a pretty 
performance on the aspect of diagnosis accuracy. 

In addition, in order to validate the propose method’s effectiveness, the number of features 
selected is compared between the proposed method and the other 3 traditional methods. All the 
numbers of features selected by these 4 methods are shown in Figure 3. 

0, 3, 8, 9, 11, 16, 22

1772

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 17 

Table 3. CWRU dataset features selected by the proposed method. (The pictures are the visualization 
results for the corresponding speed samples. The horizontal axis in the figure represents the number 
of features, and the vertical axis represents the first 13 samples. For the sake of beauty, the first 13 
samples are chosen). 

Motor Speed 
(rpm) 

All Features 
Selected 
Features 

Selected Number 

1750 

  

0, 3, 8, 9, 11, 16, `22 

1772 

  

0, 3, 8, 9, 11, 15, 16, 20, 22 

As is shown in Table 3, at the motor speed of 1750 rpm, the proposed method selected 7 features 
from 25 features in total, and selected 9 features at the speed of 1772 rpm. 

KNN and SVM classifiers and 3 traditional feature selection methods were applied to validate 
the proposed method. As mentioned before, 2 datasets were constructed at 1750 rpm and 1772 rpm. 
Both of them were used in the training and testing processes. The results are shown in Table 4. 

Table 4. Comparison of classification accuracy of SVM and KNN at motor speeds of 1750 rpm and 
1772 rpm using different feature selection methods. 

Motor Speed (rpm) Feature Selection Methods 
Classification Models 

SVM KNN 

1750 

Var_FS 0.8750 0.8750 
RFE_FS 0.8500 0.8333 

GBDT_FS 0.9417 0.9600 
FF_FC_MIC 0.9583 0.9750 

1772 

Var_FS 0.7750 0.7417 
RFE_FS 0.8000 0.7666 

GBDT_FS 0.9833 0.9917 
FF_FC_MIC 0.9917 1.0000 

As shown in Table 4, the proposed method has a higher accuracy than the other 3 feature 
selection methods. Especially, the best classification accuracy has achieved 100% at the motor speed 
of 1772 rpm with KNN. Comparing with the other 3 methods, the proposed method can improve the 
accuracy by about an average of 1.21% at least, and by about an average of 15.25% at most. 
Meanwhile, the classification accuracies of the proposed method at different motor speeds with 2 
classifiers reached are all above 95%. Above all, it is obvious that the proposed method has a pretty 
performance on the aspect of diagnosis accuracy. 

In addition, in order to validate the propose method’s effectiveness, the number of features 
selected is compared between the proposed method and the other 3 traditional methods. All the 
numbers of features selected by these 4 methods are shown in Figure 3. 

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 17 

Table 3. CWRU dataset features selected by the proposed method. (The pictures are the visualization 
results for the corresponding speed samples. The horizontal axis in the figure represents the number 
of features, and the vertical axis represents the first 13 samples. For the sake of beauty, the first 13 
samples are chosen). 

Motor Speed 
(rpm) 

All Features 
Selected 
Features 

Selected Number 

1750 

  

0, 3, 8, 9, 11, 16, `22 

1772 

  

0, 3, 8, 9, 11, 15, 16, 20, 22 

As is shown in Table 3, at the motor speed of 1750 rpm, the proposed method selected 7 features 
from 25 features in total, and selected 9 features at the speed of 1772 rpm. 

KNN and SVM classifiers and 3 traditional feature selection methods were applied to validate 
the proposed method. As mentioned before, 2 datasets were constructed at 1750 rpm and 1772 rpm. 
Both of them were used in the training and testing processes. The results are shown in Table 4. 

Table 4. Comparison of classification accuracy of SVM and KNN at motor speeds of 1750 rpm and 
1772 rpm using different feature selection methods. 

Motor Speed (rpm) Feature Selection Methods 
Classification Models 

SVM KNN 

1750 

Var_FS 0.8750 0.8750 
RFE_FS 0.8500 0.8333 

GBDT_FS 0.9417 0.9600 
FF_FC_MIC 0.9583 0.9750 

1772 

Var_FS 0.7750 0.7417 
RFE_FS 0.8000 0.7666 

GBDT_FS 0.9833 0.9917 
FF_FC_MIC 0.9917 1.0000 

As shown in Table 4, the proposed method has a higher accuracy than the other 3 feature 
selection methods. Especially, the best classification accuracy has achieved 100% at the motor speed 
of 1772 rpm with KNN. Comparing with the other 3 methods, the proposed method can improve the 
accuracy by about an average of 1.21% at least, and by about an average of 15.25% at most. 
Meanwhile, the classification accuracies of the proposed method at different motor speeds with 2 
classifiers reached are all above 95%. Above all, it is obvious that the proposed method has a pretty 
performance on the aspect of diagnosis accuracy. 

In addition, in order to validate the propose method’s effectiveness, the number of features 
selected is compared between the proposed method and the other 3 traditional methods. All the 
numbers of features selected by these 4 methods are shown in Figure 3. 

0, 3, 8, 9, 11, 15, 16, 20, 22

As is shown in Table 3, at the motor speed of 1750 rpm, the proposed method selected 7 features
from 25 features in total, and selected 9 features at the speed of 1772 rpm.

KNN and SVM classifiers and 3 traditional feature selection methods were applied to validate
the proposed method. As mentioned before, 2 datasets were constructed at 1750 rpm and 1772 rpm.
Both of them were used in the training and testing processes. The results are shown in Table 4.

Table 4. Comparison of classification accuracy of SVM and KNN at motor speeds of 1750 rpm and 1772
rpm using different feature selection methods.

Motor Speed (rpm) Feature Selection Methods
Classification Models

SVM KNN

1750

Var_FS 0.8750 0.8750
RFE_FS 0.8500 0.8333

GBDT_FS 0.9417 0.9600
FF_FC_MIC 0.9583 0.9750

1772

Var_FS 0.7750 0.7417
RFE_FS 0.8000 0.7666

GBDT_FS 0.9833 0.9917
FF_FC_MIC 0.9917 1.0000

As shown in Table 4, the proposed method has a higher accuracy than the other 3 feature selection
methods. Especially, the best classification accuracy has achieved 100% at the motor speed of 1772 rpm
with KNN. Comparing with the other 3 methods, the proposed method can improve the accuracy by about
an average of 1.21% at least, and by about an average of 15.25% at most. Meanwhile, the classification
accuracies of the proposed method at different motor speeds with 2 classifiers reached are all above
95%. Above all, it is obvious that the proposed method has a pretty performance on the aspect of
diagnosis accuracy.

In addition, in order to validate the propose method’s effectiveness, the number of features
selected is compared between the proposed method and the other 3 traditional methods. All the
numbers of features selected by these 4 methods are shown in Figure 3.
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Figure 3. Average diagnosis accuracy of single fault and number of features selected at two motor
speeds. (a) Average diagnosis accuracy and number of features selected at 1750 rpm; (b) average
diagnosis accuracy and number of features selected at 1772 rpm.

In Figure 3, the number of features selected by the proposed method under both motor speeds
is the minimum, comparing to those in the other 3 methods. In other words, the proposed method
achieves a higher diagnosis accuracy based on fewer features. Fewer features indicate lower data
dimension and lower computation complexity for classifiers, which means the proposed method can
reach a better performance with respect to feature dimension.

The reason why the proposed method can reach a higher diagnosis with less number of features
can be explained as follow. First, in terms of relevance, not only the relevance among features but
also relevance among features and fault categories are taken into account. It can eliminate redundant
features based on relevance among features and fault categories, and eliminate irrelevant features
based on relevance among features. Second, an intersection operation is used, which deletes redundant
and weak relevance features in two subsets, avoiding complex computation.

In summary, a conclusion can be drawn that the proposed feature selection method performs
better in both reducing feature dimensions and achieving higher diagnosis accuracy, compared to the
other 3 feature selection methods on the datasets of CWRU.

4.2. Experiments on CUT-2 Datasets

In order to validate the adaptability of the proposed feature selection method, vibration signals
were collected and experiments were conducted on the CUT-2 platform. The whole experimental test
rig is shown in Figure 4. The test rig was composed of an oscilloscope, a data acquisition system,
a speed governor, a CUT-2 platform and a computer. All the measurements in the experimental
system were carried out without load. In terms of vibration signal collection, the type of sensor was
CT1010L, which is a kind of piezoelectric sensor, and the sensor was located in the horizontal direction
of the bearing box. As shown in Figure 4b, the bearing tested in the experiment was placed at the
far end of the motor. In addition, in order to validate the proposed method on the CUT-2 platform,
an electric discharge machine was utilized to set three different kinds of faults. Figure 5 shows the
bearing, of which the type was 6900ZZ in the experiments. The fault diameters were 0.2 mm and
0.3 mm. The vibration signals were collected by accelerometers at 3 different motor speeds of 2000 rpm,
2500 rpm and 3000 rpm, where the sampling frequency was 2 kHz.
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4.2.1. Experimental Setup and CUT-2 Datasets

In this section, the proposed method was applied on fault datasets from CUT-2. The details of the
datasets are shown in Table 5. There were 4 kinds of bearing condition, including 1 normal condition
and 3 fault conditions. The 3 fault conditions were inner race fault, outer race fault and baller fault.
Two hundred samples were collected for each condition. Each sample contained 1024 continuous data
points. Each dataset included 800 samples in total. Through data seeded, 3 kinds of datasets were
acquired at 2000 rpm, 2500 rpm, and 3000 rpm. The training process and the testing process were
carried out at the same speed. The training set included 560 samples and the testing set included
240 samples.
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Table 5. Datasets obtained at motor speeds of 2000 rpm, 2500 rpm and 3000 rpm on the CUT-2 platform.

Conditions of the Bearings Fault Size (mm) Number of Samples Class

Normal condition 200 0

Inner race fault 0.2
0.3

100
100 1

Outer race fault 0.2
0.3

100
100 2

Baller fault 0.2
0.3

100
100 3

4.2.2. Result Analysis of CUT-2 Datasets

According to the proposed feature selection method, the features selected on 3 datasets are shown
in Table 6. From Table 6, it can be seen that 9, 9 and 11 features were selected at 3 speeds.

Under most circumstances of 3 motor speeds from Table 7, the proposed feature selection method
can reach the highest diagnosis accuracy, comparing to the other 3 methods. In addition, it performs
a certain adaptability and stability on SVM and KNN.

At the speeds of 2000 rpm, 2500 rpm, and 3000 rpm, the average diagnosis accuracies are 91.75%,
94.69% and 99.07%, respectively. From this phenomenon, it was found that the diagnosis accuracy increases
while the motor speed increases. There are 2 factors to cause this phenomenon. First, our bearings are
small in both size and fault size, which means the vibration signal is less obvious in a lower speed than
in a higher speed, leading to the phenomenon of a lower diagnosis accuracy in low speed and a higher
diagnosis accuracy in high speed. Second, a large difference in motor speed, ranging from 2000 rpm to
3000 rpm, causes such a diversity of diagnosis accuracy increases while the motor speed increases.

Table 6. Dataset features selected by the proposed method. (The pictures are the visualization results for the
corresponding speed samples. The horizontal axis in the figure represents the number of features, and the
vertical axis represents the first 13 samples. For the sake of beauty, the first 13 samples are chosen).

Motor Speed (rpm) All Features Selected Features Selected Number

2000
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For further analysis, compared with the other 3 methods, the proposed method can improve the
accuracy by about an average of 1.32% at least, and by about an average of 6.94% at most. In term of
diagnosis accuracy, the proposed method has a better performance than the other 3 feature selection methods.



Appl. Sci. 2018, 8, 2143 14 of 17

Table 7. Comparison of classification accuracy of SVM and KNN at motor speeds of 2000 rpm, 2500 rpm
and 3000 rpm using different feature selection methods.

Motor Speed (rpm) Feature Selection Methods
Classification Models

SVM KNN

2000

Var_FS 0.8688 0.8750
RFE_FS 0.8938 0.8875

GBDT_FS 0.9313 0.9012
FF_FC_MIC 0.9225 0.9125

2500

Var_FS 0.8562 0.8250
RFE_FS 0.8688 0.8812

GBDT_FS 0.9187 0.9175
FF_FC_MIC 0.9625 0.9313

3000

Var_FS 0.9437 0.9250
RFE_FS 0.9187 0.9062

GBDT_FS 0.9750 0.9875
FF_FC_MIC 0.9938 0.9875

In terms of number of features selected by different methods, the numbers of features selected
among the 4 methods were compared. All the numbers of features selected by 4 methods are shown
in Figure 6.
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4.3. Comparison of Significant Differences

In this section, a comparison of significant differences was made to validate the proposed method.
The proposed method was compared to each of the traditional feature selection method. Because of
the reason that the experimental results were obtained based on small samples, the t-test was applied
to test whether the mean difference between the two methods was significant. According to the t-test,
the assumption that judges whether the expectations of two compared methods were equal was made:

H0 : µ1 = µ2, H1 : µ1 6= µ2.

If p-value < 0.05, the assumption will be accepted and it means the there is a significant difference
between the two methods. If p-value > 0.05, the assumption will not be accepted and it means that
there is not a significant difference between the two methods.

Table 8 shows that different p-values were calculated under the t-test. From Table 8, it is can be
seen that under comparisons between each traditional method and the proposed method, the p-values
of proposed method are all smaller than 0.05.

A conclusion can be drawn that the proposed method can achieve the highest diagnosis accuracy
with fewer features and has a significant improvement in accuracy performance, compared with other
3 feature selection methods.

Table 8. Comparison between traditional feature selection methods and the proposed method.

Methods Compared p-Value Whether the Mean Difference between
the Two Methods Is Significant (Y/N)

Var_FS, FF_FC_MIC 1.166 × 10−3 Y
RFE_FS, FF_FC_MIC 2.509 × 10−5 Y

GBDT_FS, FF_FC_MIC 3.576 × 10−2 Y

5. Conclusions

This paper presents a bearing fault diagnosis method based on the feature selection method
called FF-FC-MIC by exploiting the capability of MIC to capture nonlinear relevance. The results
can be summarized as follows: First, the most intuitive indicator, diagnosis accuracy, shows that
the proposed method can reach 97.50%, and 98.75% in terms of average diagnosis accuracy in the
CWRU dataset, and reach 91.75%, 94.69%, and 99.07% in terms of average diagnosis accuracy in the
CUT-2 dataset. All the accuracies are the highest compared with those in the other feature selection
methods. Second, on the basis of relevance among features and relevance between features and
categories, the proposed method can select relatively low-dimension feature subsets to approach
a higher diagnosis accuracy, compared with the other feature selection methods. Third, by calculating
p-values under the t-test, the proposed method has a significant performance improvement, compared
with traditional feature selection methods. The reasons can be summarized as follows: First, since
the proposed method utilizes the MIC to measure the nonlinear and non-functional relationships
between features and features, and between features and categories, it can eliminate redundant and
irrelevant features. Second, the proposed method employs the intersection operation to merge two
subsets, avoiding subset searching. Third, extensive experiments on the CWRU dataset and CUT-2
dataset were conducted to validate the effectiveness and adaptability of the proposed method. It turns
out that the proposed method performs better in both reducing feature dimensions and achieving
higher diagnosis accuracy, compared with the other 3 feature selection methods.

The relationship between the weight of features and feature subset is as essential as the work
of feature selection. Besides, feature fusion technology should also be taken into consideration for
feature selection. Our next work would investigate the relationship between the weight of features
and feature subset and feature fusion technology to present more effective feature selection methods
to reach the higher diagnosis accuracy.
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