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Abstract: The reliability information for novel products and specimens available for various tests is
limited during the development stage. In many real cases, the results of general tests under use and
the maximum stress levels for checking performance and design are not utilized to obtain reliability
information. To solve these problems, this paper proposes a practical partially accelerated degradation
test (PADT) plans with two stress variables using a two-phase strategy. In addition, a sample scenario
is introduced to demonstrate the feasibility of the proposed procedure. In the first phase, the ratios
of the specimens used and the maximum stress levels for each variable are determined to estimate
the parameters of an accelerated model based on the D-optimality criteria. To estimate the lifetime
information and check the curvature effects of the accelerated model, practical PADT plans are
developed in the second phase with three stress levels for each variable, which are based on the
compromise concept. In this phase, the ratios for all test points and the middle-stress levels for
two variables are determined. This information is used to minimize the asymptotic variance of
the maximum likelihood estimator for the q-th quantile of the lifetime distribution under the use
conditions. Thus, more accurate lifetime information and model validity can be obtained when using
practical PADT plans. Finally, the statistical efficiency of the proposed test plan is demonstrated in a
sample scenario.

Keywords: partially accelerated degradation test; two stress variables; constant stress loading;
wiener process; asymptotic variance; compromise concept

1. Introduction

The functions of products have steadily increased and become more complex due to advances in
technology and intense market competition. For this reason, the task of examining the reliability and
performance of products has also increased in complexity. However, reliability evaluations tend to
be time-consuming. It is also difficult to gather sufficient information about the product during the
development stage and available specimens for testing may be limited. Thus, to increase the speed at
which reliability information is acquired for a product, reliability test planning is necessary.

Conventional accelerated tests, in which all specimens are only allocated under accelerated
conditions, have previously been used to plan and provide solutions to the above problems. However,
various general tests should be performed under regular use (i.e., normal conditions), as well as under
accelerated conditions. Therefore, an alternative test plan concept that includes realistic situations
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and use conditions is required. Partially accelerated tests provide a method of simultaneously testing
products in the development stage simultaneously under both regular use and accelerated conditions.

Commonly, a partially accelerated test is classified either as a PALT or a partially accelerated
degradation test (PADT) based on whether the product can observe a performance characteristic or
not. Today, failures are rarely observed as the reliability of novel products has steadily improved.
Commonly, these products are tested under general use conditions. The PADT, which observes a
performance characteristic of a product over time, is more effective than the PALT at maximizing the
advantages of partially accelerated tests. However, there are few studies for PADT designs [1], and no
research has been published with two stress variables. In addition, Kim and Sung [1] mentioned the
practical shortage problem of prototypes in the development phase and presented the PADT strategy
to overcome this difficulty.

Thus, in this paper, to overcome the challenges described above, which include a low prototype
quantity (i.e., a lack of test samples), the disadvantages of PALT, and the lack of prior information,
we proposed a strategical approach for a constant stress-partially accelerated degradation test
(CS-PADT) with two stress variables based on the Wiener process (WP). In particular, the proposed
test plan can be simultaneously used for multipurpose tests such as design conformity, performance
requirement and hot temperature operating test [1]. First, the parameters of an acceleration model are
estimated by developing the CS-PADT plans with four test points. These test points are a combination
of use and maximum stress levels for each stress variable and are based on the D-optimality criteria.
Second, a practical PADT plan, which uses the stress levels of the first phase and the middle-stress
conditions for two stress variables, is developed to examine the validity and curvature effects of the
acceleration model. Subsequently, the lifetime, which is the q-th quantile of the lifetime distribution at
the use condition, is estimated by minimizing the asymptotic variance of the maximum likelihood
estimator (MLE). In addition, a scenario example is presented to demonstrate the validity of the
proposed CS-PADT model.

The rest of this paper is organized as follows. Section 2 introduces the related works and Section 3
presents the planning strategy, basic assumptions, and model description. The model of CS-PADT plan
with two stress and test plans is provided in Section 4. Section 5 presents the proposed test strategy
through an example and in Section 6, the conclusions and future research directions are provided.

2. Related Works

In this section, the existing literature on designing partially accelerated test (PAT) plans including
life test and degradation test are reviewed. Several previous studies have attempted to determine
the optimal testing procedures for PATs. Most studies focused on the planning of the PALT [2–14].
In addition, these studies also considered constant stress (CS) loading [2–7] and step stress (SS)
loading [2,8–14]. To design the test plans, the number of stress variables, degradation model,
optimization criterion, and the decision variable were mainly considered along with the stress loading
method [15,16]. In terms of failure distributions, exponential [2], lognormal [8], Gompertz [5,9],
Weibull (or inverse Weibull) [3,6,10,12–14], logistic [4,11], and Burr XII [7] were adopted.

In PATs, since the lowest accelerated stress level is fixed with the normal use condition, no or
few failures in the test samples are observed under test conditions including accelerated stress levels.
However, in the case of degradation tests, reliability information such as degradation data can be
obtained under the use and accelerated test conditions. Therefore, the PAT concept is more suitable for
PADTs than PALTs [1,17].

Studies of PADT plans have been performed under CS loading [17] and SS loading [1].
A two-phase planning strategy for the design of CS-PADT plans that minimizes the Avar of the
estimated qth quantile of the lifetime distribution was proposed [17]. In addition, practical SS-PADT
planning with three stress levels was suggested [1]. However, almost all of the previous studies on
the design of PALT and PADT plans have only considered a single stress variable. Thus, in this paper,
practical PSSADT plans with two stress variables were developed.
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Table 1 summarizes the literature on the design of PAT plans. In addition, decision variables
were also considered as sample proportions were allocated to the allocation ratio (π), stress level (s),
stress change time (SCT), and SCT based on the number of failures (SCF).

Table 1. The literature on the design of PAT (partially accelerated test) plans [1].

Authors
Test Type

(The Number of
Stress Variables)

Stress Loading
Method

Lifetime
Distribution or

Degradation Model

Optimization
Criterion

Decision
Variable

Bai and Chung [2] ALT (1) Constant, Step Exponential Avar π, SCT
Ismail [3] ALT (1) Constant Weibull Avar π, s

Srivastava and Mittal [4] ALT (1) Constant Logistic Avar π
Anwar and Islam [5] ALT (1) Constant Gompertz Avar π, s

Ismail [6] ALT (1) Constant Weibull Avar π
Srivastava and Mittal [7] ALT (1) Constant Burr XII Avar π

Bai et al. [8] ALT (1) Step Lognormal Avar SCT
Ismail [9] ALT (1) Step Gompertz Avar SCT

Aly and Ismail [10] ALT (1) Step Weibull Avar SCT
Srivastava and Mittal [11] ALT (1) Step Logistic Avar SCT

Hassan and Al-Thobety [12] ALT (1) Step Inverse Weibull Avar SCF
Ismail [13] ALT (1) Step Weibull Avar SCT

Hassan [14] ALT (1) Step Exponentiated
inverse Weibull D-opt SCF

Kim and Sung [1] ADT (1) Step WP Avar s
Lim et al. [17] ADT (1) Constant WP Avar π, s

Note, WP: Wiener process, Avar: asymptotic variance, D-opt: D-optimality, π: sample proportions, s: stress level,
SCT: stress change time, SCF: SCT based on the number of failures.

In addition to the design of optimal PAT plans, studies that estimated the parameters of probability
distribution and compared performances of the estimators have been conducted. The MLEs and
Bayesian estimators and credible intervals of the Weibull parameters were obtained to analyze the
competing risks model in the PALTs under progressively type-I hybrid censoring [18]. Nassar et al. [19]
analyzed performances of the estimators in the SS-PALTs under type-I and type-II progressive
hybrid censoring. Soloman et al. [20] concentrated on the estimation of inverse Weibull parameters
under progressive type-II censoring. Lone and Rahman [21] introduced a competing risk model
with the SS-PADT plan under type-I progressively hybrid censoring. Abd and Fawzy [22] and
Mohamed et al. [23] considered parameters estimations of two-parameters linear exponential [22] and
Weibull-exponential distribution [23] with the CS-PALTs under progressively type-II censoring.

The WP degradation model is one of the stochastic processes for modeling of degradation
pattern over time. The WP degradation model is often applied for degradation test planning and
degradation analyses [1,17,24–33]. Recently, degradation data analysis and remaining useful life
estimation approaches based on Wiener process were reviewed [33]. Sawik [34,35] applied the
weighted-sum approach for four bi-objective vehicle routing problems and worker allocation problems
with integer and mixed-integer programming. As seen above, studies have focused on PADT analysis,
few studies on the design of PADT have not been published.

3. Planning Strategy and Basic Assumptions

3.1. Planning Strategy

General tests for multiple purposes should be performed to verify design conformity and the
performance for novel products during the development stage. As the number of specimens is
insufficient at this stage, the specimens must be used efficiently to maximize the specimen utility.
If information from general tests can be applied to estimate the reliability of the novel product, it is
possible to effectively use the specimens for reliability estimations. Therefore, the strategic planning of
PADTs is required to gather sufficient reliability information for both use and accelerated conditions
when two stress variables are applied.
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This strategic approach is a two-phase process. In the first phase, the general tests are
performed under use and accelerated conditions to obtain degradation data. For statistical efficiency,
the accelerated condition of each stress variable is mostly determined at the maximum stress level;
two stress levels of each stress variable are required. Four test points, which are combined with
two stress variables, are considered to utilize the degradation data. The basic reliability information
is gathered through these tests as there is no information when the novel products are developed.
The information is used to estimate the parameters of the acceleration model. Thus, the allocation
ratios for each of the test points are determined by the D-optimality criteria to minimize the variance
of the estimated parameters [36].

In the above phase, each stress variable is tested at two levels to reduce the test time, cost,
and specimen usage. However, this approach cannot identify the curvature effect of the model or
estimate an accurate lifetime from the degradation data. Generally, three levels of each stress variable
should be considered to provide reliable performance when solving this problem. In particular,
the compromise concept with three levels has been used to resolve this problem in the accelerated
degradation test (ADT) literature [24,37]. Therefore, an extra test point should be considered alongside
the previously mentioned test points in the first and second phase. The new test point is tested at the
combined middle level of each stress variable. In addition, the minimum and maximum stress levels
are set to the use and maximum conditions, respectively, according to the PADT concept. In other
words, in the second phase, the degradation data from the first phase (the use and maximum stress
levels) is reused to identify the validity of the model and estimate the lifetime. Thus, the rest of the
specimens are allocated to five test points according to the optimal ratios. In this case, the optimal ratio
of the five test points and the middle-stress levels of each variable are determined to minimize the
asymptotic variance of the MLE for the q-th quantile of lifetime distribution under use conditions with
two stress variables. The two-phase process for the strategic PADT plan with two stress variables is
shown in Figure 1.
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3.2. Basic Assumptions

In this paper, we made the following two-phase PADT plan assumptions:

Assumption 1. Each stress level (T′i and V′j where i = 1, 2, · · · , r1 and j = 1, 2, · · · , r2) is loaded following
the CS loading scheme. T′i and V′j represent the i-th temperature stress level (in Kelvin) and j-th non-thermal
stress level (voltage, vibration, etc.), respectively. N is the pre-determined total number of specimens and each
un it, and nij, is allocated to each stress level such that

nij = πijN,
r1

∑
i=1

r2

∑
j=1

πij = 1, πij ≥ 0

Assumption 2. The maximum test duration (tM,ijk) and measurement times (tijkl , k = 1, 2, · · · , nij,
l = 1, 2, · · · , m) are given, with their equivalent intervals (tl − tl−1 = ∆t). Thus, it is assumed that the
maximum test duration is equal to m∆t

(
= tM,ijk

)
for all i, j, and k.

Assumption 3. The degradation (or performance) characteristic yijk(t) of the k-th unit at the stress levels

(T′i and V′j ) follows the WP with a drift η′
(

T′i , V′j
)

and diffusion constant σ2. It is assumed that a failure of the
test item is reached when yijk(t) becomes greater than the predetermined critical value ω.

Assumption 4. The use and the maximum stress levels are given (or pre-specified) as (T′1 and V′1) and
(T′r1

= T′M and V′r2
= V′M), respectively. In addition, the generalized Eyring model, which is one of the life-stress

relationship models, is assumed to express the relationship between the drift η′
(

T′i , V′j
)

and the two stress
variables T′i and V′j , as follows [38].

η′
(

T′i , V′j
)
= δ′1 exp

(
δ′2
T′i

+ δ′3V′j + δ′4
V′j
T′i

)

where δ′1(> 0), δ′2, δ′3 and δ′4 are unknown constants which satisfy δ′2 + δ′4V′j < 0 and δ′3 + δ′4/T′i > 0 for all i
and j.

Assumption 5. For each stress variable, the use and maximum stress levels were considered to estimate the
parameters of the acceleration model in the first phase, and the middle-stress level was considered to identify the
validity of the model and estimate the lifetime in the second phase.

The WP, which is one of the stochastic processes, is widely applied to degradation path
modeling [25–28,39]. In addition, WP is often used with degradation test design due to its mathematical
tractability [24,29–32,40,41]. The WP was also adopted for modeling the random behavior of the
degradation characteristic in this paper. The WP, W(t) (with drift η and diffusion constant σ2) has the
following properties:

(1) W(0) = 0,
(2) {W(t)|t ≥ 0} has stationary and independent increments, and
(3) for 0 ≤ t1 < t2, the increment, ∆W (=W(t2) −W(t1)), is normally distributed with mean η(t2 − t1)

and variance σ2(t2 − t1).

Let Y(t) be the degradation characteristic of the product at time t, and define y(t) = Y(t) − Y(0).
In this paper, the degradation increment y(t) followed a WP, and we assumed that the drift η

depends only on the stress level, whereas the diffusion constant σ2 does not. At tijkl , the degradation
characteristic, yijkl , follows a normal distribution with mean ηijtijkl and variance σ2tijkl . In addition,
each degradation increment between successive measurement times (∆tijkl = tijkl − tijk,l−1),

∆yijkl

(
= yijkl − yijk,l−1

)
also follows a normal distribution with mean ηij∆tijkl and variance σ2∆tijkl .
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Thus, a probability density function, f
(

∆yijkl

)
, and the log-likelihood function, ln L, of ∆yijkl are

respectively expressed as:

f
(

∆yijkl

)
=

1√
2πσ2∆tijkl

exp

−
{

∆yijkl − ηij∆tijkl

}2

2σ2∆tijkl

,−∞ < ∆yijkl < ∞

ln L =
r1

∑
i=1

r2

∑
j=1

nij

∑
k=1

m

∑
l=1

−1
2

ln
(

2π · ∆tijkl

)
− ln σ−

(
∆yijkl − ηij∆tijkl

)2

2σ2∆tijkl

 (1)

The stress levels of each variable, T′i and V′j , were standardized as Ti and Vj respectively,

for simplicity and without loss of generality. In terms of Ti and Vj, the drift η′
(

T′i , V′j
)

can be
rewritten as

Ti =
1/T′1 − 1/T′i
1/T′1 − 1/T′M

, Vj =
V′j −V′1
V′M −V′1

η
(
Ti, Vj

)
= exp

(
δ1 + δ2Ti + δ3Vj + δ4TiVj

)
= ηij (2)

where δ1 = ln δ′1 +
δ′2
T′1

+ δ′3V′1 + δ′4
V′1
T′1

, δ2 =
(
δ′2 + δ′4V′1

)( 1
T′M
− 1

T′1

)
, δ3 =

(
δ′3 +

δ′4
T′1

)(
V′M −V′1

)
,

δ4 = δ′4

(
1

T′M
− 1

T′1

)(
V′M −V′1

)
. Equation (2) is a modified drift of the WP that organizes η′

(
T′i , V′j

)
by δ1, δ2, δ3 and δ4. Note that δ2, δ3, δ2 + δ4 and δ3 + δ4 are always positive since δ′2 + δ′4V′j < 0,
δ′3 + δ′4/T′i > 0, T′1 < T′M and V′1 < V′M.

For example, the relationship between the drift parameter and the stress variables, temperature,
and voltage is assumed to follow the generalized Eyring model. The use and maximum stress
levels (r1 = r2 = 3) of each stress variable were assumed to be (45 (= 318 K), and 130 (= 403 K))

and (3.8 V, 4.4 V), respectively. The stress levels standardized based on the above standardization
equation are given below. If the middle-stress levels are given as 100 (T′2) and 4.1 V (V′2), they also are
standardized as follows.

45◦C
standardization
−−−−−−−−−−→

use condition
T1 = 1/318−1/318

1/318−1/398 = 0, 3.8V
standardization
−−−−−−−−−−→

use condition
V1 = 3.8−3.8

4.4−3.8 = 0

⇒ η(T1, V1) = exp(δ1 + δ2T1 + δ3V1 + δ4T1V1) = exp(δ1)

130◦C
standardization

−−−−−−−−−−−−−→
maximum stress level

TM = 1/318−1/403
1/318−1/403 = 1, 4.4V

standardization
−−−−−−−−−−−−−→

maximum stress level
VM = 4.4−3.8

4.4−3.8 = 1

⇒ η(TM, VM) = exp(δ1 + δ2TM + δ3VM + δ4TMVM) = exp(δ1 + δ2 + δ3 + δ4)

100◦C
standardization

−−−−−−−−−−−→
middle stress level

T2 = 1/318−1/373
1/318−1/403 = 0.7, 4.1V

standardization
−−−−−−−−−−−→

middle stress level
V2 = 4.1−3.8

4.4−3.8 = 0.5

⇒ η(T2, V2) = exp(δ1 + δ2T2 + δ3V2 + δ4T2V2) = exp(δ1 + 0.7δ2 + 0.5δ3 + 0.35δ4)

In addition, an accelerated factor (AF) between the use (T1, V1) and maximum (TM, VM) stress
levels of two stress variables can be calculated by Equation (2) as

AF =
drift at maximum stress level

drift at use condition
=

η(TM, VM)

η(T1, V1)
=

exp(δ1 + δ2 + δ3 + δ4)

exp(δ1)
= exp(δ2 + δ3 + δ4)

According to Assumptions 5, we considered whether r1 = r2 = 2 or r1 = r2 = 3 should be the
design for the test plan (Section 4). In the case of r1 = r2 = 2, the accelerated model parameters
were estimated. In the case of r1 = r2 = 3, the planning of PADT plan with two stress variables was
performed to identify the curvature effect of the model and to estimate the accurate lifetime of the
novel product.
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The mathematical notations and their descriptions are shown in Table 2.

Table 2. The list of symbols and descriptions.

Symbol Description Index

i Index of temperature stress variable (i = 1, 2, · · · , r1) -
j Index of non-thermal stress variable (j = 1, 2, · · · , r2) -
k Index of test units -
l Index of measurement times -

T′i i-th temperature stress level (in Kelvin) i
V′j j-th non-thermal stress level (voltage, vibration, etc.) j
N Pre-determined total number of specimens -
nij Test unit at i-th and j-th stress level i, j

tM,ijk Maximum test duration i, j, k
tijkl Measurement time i, j, k, l

yijk(t)
Degradation characteristic of k-th test unit at i-th and j-th stress level
and time t i, j, k

η′
(

T′i , V′j
)

Drift of the Wiener process model i, j
σ2 Diffusion constant of the Wiener process model -
ω Pre-determined critical value -

δ′1, δ′2, δ′3, δ′4, Parameters of generalized Eyring model -
Ti i-th standardized temperature stress level i
Vj j-th standardized non-thermal stress level (voltage, vibration, etc.) j
TM Maximum standardized temperature stress level (TM = 1) -
VM Maximum standardized non-thermal stress level (VM = 1) -

δ1, δ2, δ3, δ4 Modified parameters of generalized Eyring model by Ti and Vj -
η
(

Ti, Vj

)
Modified drift by δ1, δ2, δ3 and δ4 i, j

AF Accelerated factor -

4. Design of Practical PADT Plan with Two Stress Variables

4.1. First Phase: PADT Plan with Two Stress Levels by Each Variable

In the development stage of novel products, the general tests under the use and maximum stress
levels should be performed in order to acquire basic performance and reliability information such as
the acceleration model parameter. Therefore, in the first phase, a PADT plan with two stress levels
(r1 = r2 = 2) is presented to estimate the parameters of the acceleration model. Two stress levels are
assigned as the use and maximum stress levels by each variable (see Figure 2).Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 18 
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To estimate the unknown parameters of the model (δ1, δ2, δ3, δ4 and σ), the ratios
(π11, π12, π21 and π22) which were allocated to each test point, should be considered based on
D-optimality criteria. Particularly, the ratios were determined to maximize the determinant of the
Fisher information matrix for the model parameters. First, the maximum likelihood estimators (MLEs)
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for the unknown parameters can be obtained by calculating the first partial derivatives of ln L in
Equation (1) of each parameter and solving the simultaneous equations: ∂ ln L/∂δ1 = 0, ∂ ln L/∂δ2 = 0,
∂ ln L/∂δ3 = 0, ∂ ln L/∂δ4 = 0 and ∂ ln L/∂σ = 0. The first partial derivatives of ln L are given
as follows

∂ ln L
∂δ1

=
2

∑
i=1

2

∑
j=1

nij

∑
k=1

m

∑
l=1


(

∆yijkl − ηij∆tijkl

)
ηij

σ2

,

∂ ln L
∂δ2

=
2

∑
i=1

2

∑
j=1

nij

∑
k=1

m

∑
l=1


(

∆yijkl − ηij∆tijkl

)
ηijTi

σ2

,

∂ ln L
∂δ3

=
2

∑
i=1

2

∑
j=1

nij

∑
k=1

m

∑
l=1


(

∆yijkl − ηij∆tijkl

)
ηijVj

σ2

,

∂ ln L
∂δ4

=
2

∑
i=1

2

∑
j=1

nij

∑
k=1

m

∑
l=1


(

∆yijkl − ηij∆tijkl

)
ηijTiVj

σ2

,

∂ ln L
∂σ

=
2

∑
i=1

2

∑
j=1

nij

∑
k=1

m

∑
l=1

− 1
σ
+

(
∆yijkl − ηij∆tijkl

)2

σ3∆tijkl

.

Then, expectations of the negative second partial derivatives of ln L with each parameter were
derived to obtain the Fisher information matrix, F [42]. From above, the second partial derivatives of
the ln L are shown in Appendix A.

Finally, F and the determinant of F, |F|, are given by

F =
NtM

σ2



r1
∑

i=1

r2
∑

j=1
πijη

2
ij

r1
∑

i=1

r2
∑

j=1
πijη

2
ijTi

r1
∑

i=1

r2
∑

j=1
πijη

2
ijVj

r1
∑

i=1

r2
∑

j=1
πijη

2
ijTiVj 0

r1
∑

i=1

r2
∑

j=1
πijη

2
ijT

2
i

r1
∑

i=1

r2
∑

j=1
πijη

2
ijTiVj

r1
∑

i=1

r2
∑

j=1
πijη

2
ijT

2
i Vj 0

r1
∑

i=1

r2
∑

j=1
πijη

2
ijV

2
j

r1
∑

i=1

r2
∑

j=1
πijη

2
ijTiV2

j 0

r1
∑

i=1

r2
∑

j=1
πijη

2
ijT

2
i V2

j 0

symmetric 2m/tM


(3)

|F| = 2mN
σ2 η2

11η2
12η2

21η2
22π11π12π21π22 =

2mN
σ2 exp(8δ1 + 4δ2 + 4δ3 + 2δ4)π11π12π21π22. (4)

The ratios (π11, π12, π21 and π22) are decision variables and δ1, δ2, δ3, δ4 and 2mN/σ2 are constants
in Equations (3) and (4). From Equation (4), it can be shown that |F| is maximized when all decision
variables are equal to 0.25. Therefore, a lemma was derived as follows.

Lemma 1. The optimal specimen ratios for four test points, which are a combination of the use and the maximum
stress levels with two stress variables, are equal to 0.25 based on D-optimality criteria.

In this phase, for optimal test plans, the same specimen quantities were allocated to all test points
according to Lemma 1. The parameters of the model were estimated based on information from
the tests.
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4.2. Second Phase: The Practical PADT Plan Based on the Concept of the Compromise Plan with Three
Stress Levels

In the second phase, three stress levels with two stress variables were considered to detect
the curvature effect of the acceleration model based on the concept of a compromise plan [1,24,37].
In addition, the lifetime information was precisely estimated through the relationship between the drift
and stress variables. For these reasons, at least three stress levels are considered for most reliability
tests in various manufacturing industries (Figure 3).
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To optimize a PADT plan based on the compromise concept with three stress levels, that is, to find
the decision variables of proposed PADT plans, the Fisher information matrix for the second phase
should be derived in a similar fashion as the first phase. The degradation characteristic and the
lifetime (or failure time) were defined according to Assumption 3. The lifetime was determined by the
probability density function, gij(t), of an inverse Gaussian distribution. If tq,(i,j) is the q-th quantile of
the distribution at stress levels (Ti, Vj), then tq,(i,j) can be approximately defined as [37,43].

gij(t) =

√
w2

2πσ2t3 exp

[
−
{

ηijt− w
}2

2σ2t

]
, t > 0

tq,(i,j) ≈

[
zqσ +

√
z2

qσ2 + 4ηijw
]2

4η2
ij

where zq is the q-th quantile of the standard normal distribution. In addition, given that the drift at the
use conditions of the two stress variables is η11 = η(T1, V1) = η(0, 0) = exp(δ1), the MLE of tq,(1,1) is
given by

t̂q,(1,1) ≈

[
zqσ̂ +

√
z2

qσ̂2 + 4 exp
(
δ̂1
)
w
]2

4 exp
(
2δ̂1
)

where δ̂1 is the MLE of δ1 and σ̂ is the MLE of σ. Then, the first partial derivatives of tq,(1,1) with respect
to each parameter, are given by

h =


h1

h2

h3

h4

h5

 =



∂tq,(1,1)
∂δ1

∂tq,(1,1)
∂δ2

∂tq,(1,1)
∂δ3

∂tq,(1,1)
∂δ4

∂tq,(1,1)
∂σ


=



w
(

zqσ+
√

4 exp(δ1)w+z2
qσ2
)

exp(δ1)
√

4 exp(δ1)w+z2
qσ2
−
(

zqσ+
√

4 exp(δ1)w+z2
qσ2
)2

2 exp(2δ1)

0
0
0

zqσ+
√

4 exp(δ1)w+z2
qσ2

2 exp(2δ1)

(
zq +

z2
qσ2√

4 exp(δ1)w+z2
qσ2

)
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Let F−1 be the inverse of the Fisher information matrix, then the asymptotic variance of the MLE
of tq,(1,1) can be obtained by the inverse of the Fisher information matrix, F−1, and the above vector h
as follows.

F−1 =
σ2

NtM



f−1
11 f−1

12 f−1
13 f−1

14 0

f−1
22 f−1

23 f−1
24 0

f−1
33 f−1

34 0

f−1
44 0

symmetric f−1
55


,

Avar
(

t̂q,(1,1)

)
= hTF−1h =

σ2

NtM

[
f−1
11 h2

1 + f−1
55 h2

5

]
(5)

where f−1
11 =

π22π31π33η2
22η2

31η2
33(T2−1)2V2

2+π13η2
13

 π22π33η2
22η2

33T2
2(V2 − 1)2

+π31η2
31
(
π33η2

33 + π22η2
22T2

2V2
2)



π13π22π31π33η2
13η2

22η2
31η2

33(T2−1)2(V2−1)2+π11η2
11


π22π31π33η2

22η2
31η2

33(T2 − 1)2V2
2

+π13η2
13

(
π22π31η2

22η2
31T2

2(V2 − 1)2

+π31η2
31
(
π33η2

33 + π22η2
22T2

2V2
2)
) 

,

f−1
55 = 2m/tM and ‘T’ indicate a transposition.

As a result, the objective function can be determined by only f−1
11 because all terms in Equation (5)

without f−1
11 are constant terms in this case. Nevertheless, the objective function is sufficiently

complicated to obtain analytic optimal solutions. Therefore, a genetic algorithm (GA) was adopted
to determine the practical PADT plans with two stress variables. Table 3 presents the practical PADT
plans in various combined cases of the model parameters, where π33 = 1− (π11 + π13 + π22 + π31).
In Table 3, the parameters δ2, δ3, and δ4 were chosen to examine the effect of parameters on the
acceleration model. The parameters δ2 and δ3 indicate the severity of T (temperature) and V (voltage),
respectively. In addition δ4 represents the interaction effect of T and V. That is, if δ4 is positive or
negative, there is an interaction between T and V, whereas if δ4 is zero, there is no interaction. In thise
study, the values of δ4 are assumed to be −3, 0, and 3. However, δ1 was not considered in Table 3 since
it is a constant term and does not affect the design of the practical PADT plans.

In addition, some tendencies of the results of the practical PADT plan were derived from Table 3
as below.

(1) As δ2 increases, T2 increases and V2 decreases.
(2) As δ3 increases, T2 decreases and V2 increases.
(3) As δ2, δ3, or δ4 increases, π22 decreases.

First, when the parameter δ2 increases, T2 simultaneously increases with V2 decreasing. That is,
if the mean degradation increment caused by temperature stress is greater than the mean degradation
increment caused by voltage stress, the actual stress level T2 increases in the PADT plans. However,
when T2 increases, V2 should be decreased by δ4. Likewise, when δ3 increases, V2 increases with T2

decreasing simultaneously. In addition, an increase in δ2, δ3, and/or δ4 increases AF. When δ2, δ3, or δ4

increases, more test units at π13, π31 and/or π33 are required corresponding to the parameters. As a
result, π22 decreases.



Appl. Sci. 2018, 8, 2162 11 of 16

Table 3. The practical PADT plans with two stress variables.

δ2 δ3 δ4 T2 V2 π11 π13 π22 π31 π33 f−1
11

3 4 −3 0.0004 0.6927 0.0456 0.1684 0.7566 0.0287 0.0007 6.480 × 10−2

3 4 0 0.4098 0.6566 0.0304 0.2162 0.5645 0.1839 0.0050 3.174 × 10−2

3 4 3 0.4251 0.6242 0.0376 0.2535 0.4073 0.2941 0.0075 1.392 × 10−2

3 6 −3 0.0001 0.8006 0.0503 0.1913 0.7063 0.0469 0.0052 2.912 × 10−3

3 6 0 0.1488 0.7867 0.0355 0.1796 0.6105 0.1663 0.0081 2.538×10−3

3 6 3 0.2029 0.7585 0.0396 0.1993 0.4757 0.2799 0.0055 1.621×10−3

3 8 −3 0.0006 0.8385 0.0620 0.1876 0.6945 0.0504 0.0055 9.856×10−5

3 8 0 0.0043 0.8454 0.0160 0.2015 0.6707 0.1079 0.0039 9.900×10−5

3 8 3 0.0136 0.8405 0.0453 0.1971 0.6529 0.0979 0.0068 9.757×10−5

5 4 −3 0.6896 0.3200 0.0199 0.0874 0.7126 0.1487 0.0314 1.183×10−2

5 4 0 0.6709 0.4761 0.0325 0.2948 0.4434 0.2275 0.0018 3.851×10−3

5 4 3 0.6403 0.4653 0.0281 0.3248 0.3280 0.3163 0.0028 1.789×10−3

5 6 −3 0.4737 0.7069 0.0082 0.1590 0.6032 0.1923 0.0373 1.373×10−3

5 6 0 0.4940 0.6838 0.0386 0.2516 0.3976 0.3115 0.0007 4.470×10−4

5 6 3 0.4500 0.6476 0.0484 0.3034 0.3031 0.3408 0.0043 2.292×10−4

5 8 −3 0.1610 0.8347 0.0403 0.1801 0.6065 0.1551 0.0180 8.763×10−5

5 8 0 0.2445 0.8167 0.0342 0.2155 0.4688 0.2791 0.0024 4.780×10−5

5 8 3 0.2336 0.7791 0.0311 0.2154 0.3774 0.3671 0.0090 2.956×10−5

7 4 −3 0.8170 0.0449 0.0432 0.0677 0.6879 0.1923 0.0089 5.439×10−4

7 4 0 0.7981 0.2074 0.0426 0.2461 0.5199 0.1819 0.0095 3.655×10−4

7 4 3 0.7845 0.2257 0.0505 0.3340 0.3975 0.2169 0.0011 2.233×10−4

7 6 −3 0.7263 0.5302 0.0265 0.2698 0.4784 0.2096 0.0157 1.425×10−4

7 6 0 0.6877 0.5022 0.0481 0.3249 0.3623 0.2614 0.0033 5.284×10−5

7 6 3 0.6542 0.4615 0.0327 0.4193 0.2351 0.2977 0.0152 2.906×10−5

7 8 −3 0.5498 0.7321 0.0347 0.2450 0.4179 0.2858 0.0166 1.463×10−5

7 8 0 0.4956 0.6942 0.0421 0.2975 0.2802 0.3791 0.0011 6.250×10−6

7 8 3 0.4577 0.6571 0.0502 0.3075 0.2838 0.3583 0.0002 3.748×10−6

5. Example of a Sample Scenario

In this section, a sample scenario is introduced to demonstrate the practicality of the proposed
procedure. The scenario is detailed as follows.

(1) A total of 3000 samples from a novel semiconductor prototype were gathered for tests.
(2) The degradation increment amount of the test units follows a normal distribution with mean

ηijtijkl and variance

(3) The generalized Eyring model for the accelerated model was assumed between the drift parameter
and the stress variables.

(4) The degradation characteristic was dependent on the temperature and the voltage stresses.
(5) The maximum and use stress levels of the temperature were specified as 130 ◦C (=403 ◦K) and

45 ◦C (=318 ◦K), respectively.
(6) The values of 4.4 and 3.8 V were determined as the maximum and use stress conditions for the

voltage stress, respectively.

In the first phase, according to Lemma 1, 20 specimens were allocated to the design check to
obtain the combination of typical use conditions, high temperature operating life (HTOL) under
maximum temperature and use voltage, voltage limit tests under use temperature and maximum
voltage, and biased highly accelerated stress test (HAST) for the combination of maximum stress
levels. In other words, 80 specimens among the 3000 samples were used to estimate the parameters of
the accelerated model. Thus, the model parameters were obtained using the degradation data from
the above tests. The model parameters, δ2, δ3, and δ4, were estimated as 5, 6, and −3, respectively,
according to the first phase procedure.
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After the model parameters were determined, the practical PADT plan with three stress levels
for two stress variables was designed in the second phase. Thus, the ratios and middle-stress levels
(Table 3) used were: π11 = 0.0082, π13 = 0.1590, π22 = 0.6032, π31 = 0.1923, π33 = 0.0373, T2 = 0.4737
and V2 = 0.7069.

According to the above results, four specimens were added to the design check (π11). Additionally,
457, 557, and 92 specimens were allocated for the voltage limit test (π13), the HTOL (π31), and the
HAST (π33), respectively. A total of 1810 specimens were tested (π22) under the middle-stress levels,
80.3 ◦C and 3.976 V, calculated based on Assumption 4. In the semiconductor area, qualification tests
should be used to verify various item requirements. In particular, the HTOL and the HAST were
included in the qualification tests, with 231 and 75 specimens, respectively, based on JEDEC standard
JESD-47. Therefore, the specimens for the tests, as well as the reliability information, were more
effectively applied during qualification.

A conventional test plan was also considered, in which the specimens were equally allocated to
each test and the middle-stress levels were placed in the median between use and maximum levels [44].
This conventional test plan is one of the simplest test plans as 600 specimens are allocated to 5 test
points. Thus, in this study, the practical PADT plan using the proposed procedure was compared with
the conventional test plan to validate the statistical efficiency, using the equation below:

Relative Efficiency (RE) =
v for the proposed PADT plan

v for the conventional PADT plan
(6)

A simplified objective function, v, for the conventional test plan was calculated as 3.20× 10−3,
which was larger than the value 1.373× 10−3 of the proposed PADT plan. The relative efficiency
between the proposed and conventional test plans was calculated as 0.4282 according to Equation (6).
That is, the proposed practical PADT plan was superior to the conventional plan in terms of the
statistical efficiency.

6. Conclusions

In this paper, CS-PADT plans with two stress variables are proposed using a strategic procedure
composed of two phases. In particular, a real situation in the development stage is reflected in the
PADT plans to minimize the issues of limited time, cost, and available specimen quantity for testing
during the development stage. Several studies on the PATs have been conducted to solve the above
issues. However, a study on the PADT plans with two stress variables has been not conducted. In the
real situation with limited time and number of specimens, more than two stress variables can be
considered, not a single stress variable, to obtain more reliable information. Therefore, this study
developed the PADT plans with two stress variables for practical lifetime estimation. In addition,
similar to Kim and Sung [1], the proposed test plan can be utilized for the various general tests such as
conformity, performance, and operational feasibility tests. Therefore, the proposed test plan can be
effectively utilized to solve the practical shortage problems of the prototype in the development phase.

In the first phase, two stress levels for each variable were considered to estimate the accelerated
model parameters when the degradation characteristic follows the WP. Therefore, in this phase,
four test points were considered, including the use and maximum stress levels. In addition, the optimal
allocation ratio of the test units was determined to be 0.25 based on the D-optimality criteria. That is,
the same specimen quantity was allocated to the four test points. The parameters of the model were
then estimated using the reliability information from the tests of the first phase.

In the second phase, one more stress level for each stress variable was considered to check the
acceleration model validity and also to identify the curvature effects. Additional stress levels were
considered based on the compromise plans concept. Accordingly, a practical PADT plan with two
stress variables was developed using the proposed procedure. Under use case conditions for all stress
variables, the decision variables ratios were allocated based on a combination of all the test points
and the middle-stress level of the two stress variables, which minimized the asymptotic variance of
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the MLE for the q-th quantile of the lifetime distribution. Therefore, it is expected that more accurate
lifetime information is estimated. The presented sample scenario demonstrates the practicability of
the proposed PADT plan and improved efficiency compared with conventional test plans in terms of
statistical efficiency.

In future research, various stochastic degradation processes, such as the gamma process or
inverse Gaussian process can be considered for the PADT plan with two stress variables. In addition,
the proposed procedure may also be extended to design the SS-PADT plan.
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Appendix A

The second partial derivatives of the ln L with each parameter are given by
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]
,

∂2 ln L
∂δ3σ =

2
∑

i=1

2
∑

j=1

nij

∑
k=1

m
∑

l=1

[
− 2(∆yijkl−ηij∆tijkl)ηijVj

σ3

]
,

∂2 ln L
∂δ2

4
=

2
∑

i=1

2
∑

j=1

nij

∑
k=1

m
∑

l=1

[
−

η2
ij∆tijkl T2

i V2
j

σ2 +
(∆yijkl−ηij∆tijkl)ηijT2

i V2
j

σ2

]
,

∂2 ln L
∂δ4σ =

2
∑

i=1

2
∑

j=1

nij

∑
k=1

m
∑

l=1

[
− 2(∆yijkl−ηij∆tijkl)ηijTiVj

σ3

]
,

∂2 ln L
∂σ2 =

2
∑

i=1

2
∑

j=1

nij

∑
k=1

m
∑

l=1

[
1

σ2 −
3(∆yijkl−ηij∆tijkl)

2

σ4∆tijkl

]
.
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Since E
[
∆yijkl − ηij∆tijkl

]
= 0, E

[(
∆yijkl − ηij∆tijkl

)2
]

= σ2∆tijkl and
nij

∑
k=1

m
∑

l=1
∆tijkl = NπijtM.

The expectations of the above equations are obtained as follows.

E
[
− ∂2 ln L

∂δ2
1

]
= NtM

σ2

(
π11η2

11 + π12η2
12 + π21η2

21 + π22η2
22
)
,

E
[
− ∂2 ln L

∂δ1δ2

]
= NtM

σ2

(
π11η2

11T1 + π12η2
12T1 + π21η2

21T2 + π22η2
22T2

)
= NtM

σ2

(
π21η2

21 + π22η2
22
)
,

E
[
− ∂2 ln L

∂δ1δ3

]
= NtM

σ2

(
π11η2

11V1 + π12η2
12V2 + π21η2

21V1 + π22η2
22V2

)
= NtM

σ2

(
π12η2

12 + π22η2
22
)
,

E
[
− ∂2 ln L

∂δ1δ4

]
= NtM

σ2

(
π11η2

11T1V1 + π12η2
12T1V2 + π21η2

21T2V1 + π22η2
22T2V2

)
= NtM

σ2 π22η2
22,

E
[
− ∂2 ln L

∂δ1σ

]
= 0,

E
[
− ∂2 ln L

∂δ2
2

]
= NtM

σ2

(
π11η2

11T2
1 + π12η2

12T2
1 + π21η2

21T2
2 + π22η2

22T2
2
)
= NtM

σ2

(
π21η2

21 + π22η2
22
)
,

E
[
− ∂2 ln L

∂δ2δ3

]
= NtM

σ2

(
π11η2

11T1V1 + π12η2
12T1V2 + π21η2

21T2V1 + π22η2
22T2V2

)
= NtM

σ2 π22η2
22,

E
[
− ∂2 ln L

∂δ2δ4

]
= NtM

σ2

(
π11η2

11T2
1 V1 + π12η2

12T2
1 V2 + π21η2

21T2
2 V1 + π22η2

22T2
2 V2

)
= NtM

σ2 π22η2
22,

E
[
− ∂2 ln L

∂δ2σ

]
= 0,

E
[
− ∂2 ln L

∂δ2
3

]
= NtM

σ2

(
π11η2

11V2
1 + π12η2

12V2
2 + π21η2

21V2
1 + π22η2

22V2
2
)
= NtM

σ2

(
π12η2

12 + π22η2
22
)
,

E
[
− ∂2 ln L

∂δ3δ4

]
= NtM

σ2

(
π11η2

11T1V2
1 + π12η2

12T1V2
2 + π21η2

21T2V2
1 + π22η2

22T2V2
2
)
= NtM

σ2 π22η2
22,

E
[
− ∂2 ln L

∂δ3σ

]
= 0,

E
[
− ∂2 ln L

∂δ2
4

]
= NtM

σ2

(
π11η2

11T2
1 V2

1 + π12η2
12T2

1 V2
2 + π21η2

21T2
2 V2

1 + π22η2
22T2

2 V2
2
)
= NtM

σ2 π22η2
22,

E
[
− ∂2 ln L

∂δ4σ

]
= 0,

E
[
− ∂2 ln L

∂σ2

]
= 2mN

σ2 .
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