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Abstract: Binary scalar multiplication, which is the main operation of elliptic curve cryptography,
is vulnerable to side-channel analysis. It is especially vulnerable to side-channel analysis using
power consumption and electromagnetic emission patterns. Thus, various countermeasures have
been reported. However, they focused on eliminating patterns of conditional branches, statistical
characteristics according to intermediate values, or data inter-relationships. Even though secret
scalar bits are directly loaded during the check phase, countermeasures for this phase have not been
considered. Therefore, in this paper, we show that there is side-channel leakage associated with secret
scalar bit values. We experimented with hardware and software implementations, and experiments
were focused on the Montgomery–López–Dahab ladder algorithm protected by scalar randomization
in hardware implementations. We show that we could extract secret key bits with a 100% success rate
using a single trace. Moreover, our attack did not require sophisticated preprocessing and could defeat
existing countermeasures using a single trace. We focused on the key bit identification functions of
mbedTLS and OpenSSL in software implementations. The success rate was over 94%, so brute-force
attacks could still be able to recover the whole secret scalar bits. We propose a countermeasure and
demonstrate experimentally that it can be effectively applied.

Keywords: side-channel analysis; elliptic curve cryptography; single-trace attack; key bit-dependent
attack; countermeasure

1. Introduction

The blockchain and fast identity online (FIDO), which are emerging as key technologies to lead the
Fourth Industrial Revolution, authenticate users by using an elliptic-curve digital signature algorithm
(ECDSA). However, scalar multiplication, which is the core operation of ECDSA, is vulnerable to
side-channel analysis (SCA). SCAs were first proposed by Paul Kocher in 1996 [1]; they use the
leakage consumed while cryptographic algorithms are performed on embedded systems. Various
side-channel attacks against elliptic-curve cryptography (ECC) have been researched [2–16]. Among
them, power analysis using power patterns consumed during algorithm operations is known as the
most powerful. Electromagnetic analysis using emitted electromagnetic patterns is similar to power
analysis, but there is a difference in useable side-channel information. Therefore, in this paper, we focus
on power analysis.
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As SCAs become more powerful, various countermeasures to resist them have been
studied [17–22]. However, only countermeasures to eliminate patterns of data-dependent conditional
branches, statistical characteristic according to intermediate values, or data inter-relationships have
been studied. No countermeasure has been taken into account for the secure design of the key bit
identification phase even though secret scalar bits are directly loaded during that phase. Since the
secret scalar bit value is extracted and stored in the variable, the secret scalar can be exposed if the
vulnerability is discovered.

Our Contributions. In this paper, we analyzed the power consumption (we also considered
information leakage via electromagnetic emanation throughout this paper.) properties of the key bit
identification phase and experimentally showed that attacks based on these properties can recover
secret scalar bits. Our proposed attacks require only a single power consumption or electromagnetic
trace. They also do not require any knowledge of in–out values; thus, they can defeat any combination
of existing countermeasures. Two implementations (i.e., hardware and software) were targeted, and we
could recover secret scalar bits by applying SPA-VI (SPA based on visual inspection) and a k-means
clustering algorithm. Among various scalar multiplication algorithms, we focused on binary scalar
multiplication algorithms. The first set of experiments is based on hardware implementation of the
Montgomery–López–Dahab ladder algorithm protected by scalar randomization. Experimental results
show that the secret scalar bits can be recovered with a 100% success rate using only single power
consumption or electromagnetic trace. In the second set of experiments, on software implementation,
we targeted algorithms composed using the key bit identification functions of mbedTLS and OpenSSL.
Here, secret scalar bits could be recovered with over 94% success rate. If we attacked the power
consumption trace using the leakage associated with referenced register addresses, the success rate was
100%. We propose two kinds of countermeasures, one each for hardware and software implementations.
Their effectiveness is experimentally demonstrated.

Extension. This paper is an extended version of our paper published in ISPEC 2017 [23]. In that
paper, we showed key bit-dependent attack results using only a single power consumption trace.
However, in this paper, we show new key bit-dependent attack results using a single electromagnetic
trace and a low-pass filter. Thus, we show four experimental results using a power-consumption trace,
a power-consumption trace passed through a low-pass filter, electromagnetic trace, and electromagnetic
trace passed through a low-pass filter. Measuring electromagnetic traces is not an easy task because it
very much depends on the angle and position of the probe. Moreover, in the case of hardware
implementation, our latest results using electromagnetic traces have a higher success rate than
previous results.

Organization. The rest of this paper is organized as follows. In Section 2, we describe SCAs
in scalar multiplication algorithms. In Section 3, we regulate the leakage properties of the attack
targets; in Section 4, we establish the attack framework. Experimental results are described in Section 5.
We discuss countermeasures in Section 6, and conclusions are presented in Section 7.

2. Conventional SCAs on Scalar Multiplication

2.1. Simple-Power Analysis

Simple-power analysis (SPA) is a method of directly analyzing a secret scalar using only one
trace or a few traces collected during cryptographic operations [9]. Because cryptographic algorithms
have different power-consumption patterns according to the instructions of the processor, the secret
scalar or instantaneous command could be analyzed from these patterns. For instance, in the case
of a binary scalar multiplication algorithm that performs a point-doubling operation at all times,
and performs a point addition operation only when the secret key bit value is 1, the secret key can
be found if the point-doubling and point-addition operations have different power-consumption
patterns. That is, as per Figure 1a, this irregular sequence of instructions according to the secret scalar
bit (i.e., the data-dependent conditional branch) leads to a serious security problem.
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(a) Binary scalar multiplication (b) Regular binary scalar multiplication

Figure 1. Power-consumption trace of binary scalar multiplication. (a) Binary scalar multiplication;
(b) regular binary scalar multiplication.

2.2. Differential Power Analysis (DPA)

DPA is a statistical analysis method that analyzes multiple power-consumption traces to find
the secret scalar [9]. Typically, DPA is based on the fact that power consumption depends on data
values being manipulated. To perform DPA, input or output values of cryptographic algorithms
have to be known. Similarly, there is an address-bit DPA based on the fact that power consumption
depends on the address value of the register that loads or stores data during the operation. Thus,
even if an SPA countermeasure [19,21,22], which has a regular power-consumption sequence, as shown
in Figure 1b, is applied, it is vulnerable to DPA. To cope with this, randomization techniques that
eliminate association between all possible intermediate values and power consumption are generally
used [17,18,20].

2.3. Sophisticated Power Analysis

SPA-and DPA-resistant countermeasures can be defeated by sophisticated attacks, such as a
template attack (TA) [6,10,12] or collision attack (CA) [7,11,13]. A TA characterizes power-consumption
traces by a multivariate normal distribution to build templates, and matches power-consumption
leakage to the templates to find a secret scalar value. A CA is a kind of higher-order DPA and is an attack
based on the inter-relationships among intermediate data (i.e., collisions of two intermediate values).
So far, no theoretically perfect countermeasures against TAs and CAs have been presented. However,
there is a disadvantage, in that they require precise preprocessing, such as decapsulation, localization,
and a multiprobe to obtain a power-consumption trace having a high signal-to-noise ratio [6,7,11,13].
Decapsulation in particular requires to physically modify the target devices, and numerous traces are
required to build templates.

To thwart previous attacks, various countermeasures to eliminate patterns of data-dependent
conditional branches, statistical characteristic according to intermediate values, or data
inter-relationships have been studied. However, no countermeasure has been taken into account
for the secure design of the key bit identification phase, although secret scalar bits are directly loaded
during that phase. Since the secret scalar bit value is extracted and stored in the variable, the secret
scalar can be exposed if the vulnerability is discovered. Thus, in this paper, we verify that this
vulnerability is sufficient to find a secret scalar.

3. Materials

3.1. Key Bit Identification Phase

Elliptic-curve scalar multiplication is a method for computing dP, where d is a secret scalar and P
is a point on an elliptic curve. It is an elementary operation of ECC, so it has been used in numerous
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PKCs. It basically consists of iterative operations determined according to the i-th bit di value of the
secret scalar d, where d is a λ-bit scalar, so d = (dλ−1, dλ−2, · · · , d1, d0)2 and 0 ≤ i < λ [19,21,22,24].
For instance, in the algorithms shown in Figure 2, while performing Steps 2 to 5, addresses of registers
Rx(x = 0 or 1) to be referenced are determined by the di value.

Thus, at the beginning of the i-th iterative operation, the i-th secret scalar bit value di is extracted
from a λ-bit scalar string and stored in a variable. This phase exists in almost all elliptic-curve scalar
multiplication algorithms because they are composed of iterative operations based on the value of di.
At this phase, secret scalar bits, di, are extracted at the beginning of each iterative operations. We define
this step as the key bit identification phase.

3.1.1. Key Bit-Dependent Properties

Binary scalar multiplication consists of iterative operations determined according to the i-th bit di
value of secret scalar d (Figure 2). Therefore, there exists a key bit identification phase in which the i-th
scalar bit value is extracted from a λ-bit scalar string d = (dλ−1, dλ−2, · · · , d1, d0)2 and stored in a di
variable at the beginning of each i-th iteration. Thus, power consumption associated with the di value
occurs. We can categorize these properties according to hamming distance (HD) and hamming weight
(HW), mainly used as power-consumption models as follows.

Left to Right

Input : P is a point on an elliptic curve,
a λ-bit scalar d = (dλ−1, · · · , d0)2

Output : Q = dP

1: R0 ← ∞, R1 ← P
2: for i = λ− 1 down to 0 do
3: R1−di

← Rdi
+ R1−di

4: Rdi
← 2Rdi

5: end for
6: Return R0

Right to Left

Input : P is a point on an elliptic curve,
a λ-bit scalar d = (dλ−1, · · · , d0)2

Output : Q = dP

1: R0 ← ∞, R1 ← P, R2 ← P
2: for i = 0 up to λ− 1 do
3: R1−di

← R1−di
+ R2

4: R2 ← R0 + R1
5: end for
6: Return R0

Figure 2. Examples of simple-power analysis (SPA)-resistant regular algorithms for binary
scalar multiplication.

Property 1. In hardware implementations, power consumption in the key bit identification phase is
simultaneously affected by the hamming distance between two consecutive bits di+1 and di, i.e., di+1 ⊕ di (0 ≤
i < λ − 1). Thus, if two consecutive bits are the same, i.e., di+1 = di, power consumption related to
di+1 ⊕ di = 0 occurs. Otherwise, power consumption related to di+1 ⊕ di = 1 occurs.

Property 2. In software implementations, power consumption in the key bit identification phase is affected by
the hamming weight of di (0 ≤ i ≤ λ− 1). Thus, if the value of i-th secret bit is 0, i.e., di = 0, then power
consumption is related to 0. Otherwise, power consumption related to 1 occurs.

3.1.2. Key Bit-Dependent Properties of SPA-Resistant Regular Algorithms

The binary scalar multiplication algorithm (Reference [25], Algorithm 3.26 and 3.27) can be easily
broken by SPA. Therefore, various SPA-resistant regular algorithms, as shown in Figure 2, have been
used. In regular algorithms, the referred register addresses RegAddrdi

differ depending on the di
value, and these influence power consumption. Since hardware and software operating structures are
different from each other, the effect on power consumption especially differs then.
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In hardware implementations, operations are executed in parallel. Thus, at the same time as the
secret scalar bits di are extracted at the beginning of each iterative operation, register addresses
RegAddrdi

to be referenced are also determined. In accordance with this characteristic, power
consumption when the secret scalar bit di is determined is also influenced by the HD between the
register addresses used in two successive loops. In software implementations, differing from hardware
implementations, operations are executed sequentially. Hence, register addresses RegAddrdi

to be
referenced do not affect power consumption at the same time as the secret scalar value di. In the
following, we describe additional power-consumption properties of SPA-resistant regular algorithms.
Note that RegAddr0 is different from RegAddr1.

Property 3. In hardware implementations, power consumption in the key bit identification phase is
simultaneously affected by:

(a) the hamming distance between two consecutive bits di+1 and di, i.e., di+1 ⊕ di

(b) the hamming distance between referred register addresses RegAddrdi+1
and RegAddrdi

determined by di+1
and di, i.e., RegAddrdi+1

⊕ RegAddrdi

Thus, if two consecutive bits are the same, i.e., di+1 = di; power consumption related to di+1 ⊕ di = 0
and RegAddrdi+1

⊕ RegAddrdi
= 0 occurs at the same time. Otherwise, power consumption related to

di+1 ⊕ di = 1 and RegAddrdi+1
⊕ RegAddrdi

6= 0 occurs at the same time (0 ≤ i < λ− 1).

Property 4. In software implementations, power consumption is affected by:

(a) the hamming weight of i-th secret bit value di

(b) the hamming weight of referred register address RegAddrdi
determined by value of i-th secret bit di

Thus, if the i-th secret bit value is 0, i.e., di = 0, then power consumption related to 0 and RegAddr0

occurs. Otherwise, power consumption related to 1 and RegAddr1 occurs (0 ≤ i ≤ λ− 1).

We can classify power-consumption traces into two groups, G0 and G1, using the properties. G0

includes power-consumption traces when leakage is zero, and G1 includes traces when leakage is
nonzero. Once the traces are classified into two groups, we can recover the respective bit di, since
the most significant bit is always 1. We define a study exploiting Property 1 and 2 as Case Study 1
(Figures 3a,c, 4a,c and 5a,c,e). Then, we define a study exploiting Property 3 and 4 as Case Study 2
(Figures 3b,d, 4b,d and 5b,d,f).

(a) Case Study 1 (Property 1, KBPA) (b) Case Study 2 (Property 3, KBPA)

Figure 3. Cont.
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(c) Case Study 1 (Property 1, KBPA, BLP 100-75) (d) Case Study 2 (Property 3, KBPA, BLP-100-75)

Figure 3. Classification result of Points of Interest (PoIs) (Hardware Implementation, Power Consumption).
(a) Case Study 1 (Property 1, KBPA); (b) Case Study 2 (Property 3, KBPA); (c) Case Study 1 (Property 1,
KBPA, BLP 100-75); (d) Case Study 2 (Property 3, KBPA, BLP-100-75).

(a) Case Study 1 (Property 1, KBEA, LF-R 400) (b) Case Study 2 (Property 3, KBEA, LF-R 400)

(c) Case Study 1 (Property 1, KBEA, LF-R 400, BLP
15-75+)

(d) Case Study 2 (Property 3, KBEA, LF-R 400, BLP
10.7-75+)

Figure 4. Classification result of PoIs (Hardware Implementation, Electromagnetic). (a) Case Study 1
(Property 1, KBEA, LF-R 400); (b) Case Study 2 (Property 3, KBEA, LF-R 400); (c) Case Study 1 (Property 1,
KBEA, LF-R 400, BLP 15-75+); (d) Case Study 2 (Property 3, KBEA, LF-R 400, BLP 10.7-75+).



Appl. Sci. 2018, 8, 2168 7 of 20

(a) Case Study 1 (Property 2, KBPA) (b) Case Study 2 (Property 4, KBPA)

(c) Case Study 1 (Property 2, KBPA, BLP 70+) (d) Case Study 2 (Property 4, KBPA, BLP 70+)

(e) Case Study 1 (Property 2, KBEA, LF-U 5, BLP 10.7+) (f) Case Study 2 (Property 4, KBEA, LF-U 5, BLP 10.7+)

Figure 5. Classification result of PoIs (Software Implementation, mbedTLS). (a) Case Study 1 (Property 2,
KBPA); (b) Case Study 2 (Property 4, KBPA); (c) Case Study 1 (Property 2, KBPA, BLP 70+); (d) Case
Study 2 (Property 4, KBPA, BLP 70+); (e) Case Study 1 (Property 2, KBEA, LF-U 5, BLP 10.7+); (f) Case
Study 2 (Property 4, KBEA, LF-U 5, BLP 10.7+).



Appl. Sci. 2018, 8, 2168 8 of 20

4. Methods

4.1. Key Bit-Dependent Attack Framework

In this paper, we consider binary scalar multiplication algorithms that are resistant against SPA
and DPA. In particular, we targeted algorithms based on regular algorithms protected by intermediate
data randomization. Therefore, we suppose that an attacker is obliged to use a single trace rather than
numerous traces. In addition, we assumed that the attacker could distinguish the iterative structure
in the traces of regular algorithms. We categorized the attack framework in four steps as follows.
Note that we did not consider side-channel atomicity algorithms that are SPA-resistant since it is
impossible to distinguish the starting point of iterative loop operations.

• Preprocessing
The attacker can divide trace T into λ subtraces, Oi, corresponding to each iteration (0 ≤ i ≤
λ− 1). As shown in Figure 6, trace T is described as a series of λ sub-races as

T = {Oλ−1 ||Oλ−2 || · · · ||O0}

since λ iterative operations are performed when the secret scalar is λ-bit, we divide trace T into λ

subtraces and align them.
• Select Points of Interest (PoIs)

If the attacker can use the same device as the target and acquire a trace with a known key, it is
easy to find PoIs. The attacker can calculate the sum of squared pairwise t-differences (SOST) [26]
of the subtraces classified based on the properties described in Sections 3.1.1 and 3.1.2. Then,
the PoIs are the points that have high SOST values. SOST is calculated as follows:

SOST =

 mG1
−mG2√

σ2
G1

nG1
+

σ2
G2

nG2

2

(1)

where m denotes the mean, σ is standard deviation, and n is the number of elements. If it is not
possible to use the same device, the attacker must know how the target algorithm is implemented
to find PoIs. Moreover, the key bit identification phase section should be recognized in the trace.
In general, since the di value must be decided in advance before each loop operation, the target
phase is positioned near the beginning of each subtrace Oi. We represent pi as PoIs of each
subtrace Oi (0 ≤ i ≤ λ− 1).

• Classify into Two Groups and Extract Secret Scalar Bits
The attacker can separate pi into two groups, G0 and G1, applying SPA-VI or a clustering algorithm
(e.g., k-means, fuzzy k-means, or EM algorithm [27,28]). Because the most significant bit is always
1, the attacker can configure dλ−1 as 1 and find the respective scalar bit di based on the power
model and properties described in Sections 3.1.1 and 3.1.2. For instance, when power consumption
complies with the HD model, the attacker can recover secret scalar bits di as follows. It is possible
to assume that the group that contains pλ−1 indicates that leakage is nonzero, if di is at first
initialized as zero. Consequently, if pi is contained in the same group that contains pλ−1, di is
one; otherwise, di is zero (0 ≤ i < λ− 1). Similarly, when power consumption complies with the
HW model, the group that includes pλ−1 indicates that leakage is non-zero, and the other group
indicate that leakage is zero. Consequently, if pi is contained in the same group that contains
pλ−1, then di is one; otherwise, di is zero (0 ≤ i < λ− 1).
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Figure 6. Key bit-dependent attack framework.

4.2. Experiment Environments

The first experimental platform is VHDL implementation on a SASEBO-GII FPGA board, as shown
in Figure 7. We measured traces using a Teledyne Lecroy HDO6104A oscilloscope at a sampling rate of
2.5 GS/s. Electromagnetic traces were recorded using a Langer LF-R 400. Additionally, we used Mini
Circuit BLP (low-pass filter) to increase the signal-to-noise ratio. The second experimental platform
was software implementation on an Atmel AVR XMEGA 128D4 microcontroller equipped with a
CW-Lite XMEGA target board, as shown in Figure 7. We measured power-consumption traces using
the CW-Lite main board at a sampling rate of 29.5 MS/s. Electromagnetic traces were recorded using a
Teledyne Lecroy HDO6104A oscilloscope at a sampling rate of 2.5 GS/s, using a Langer LF-U 5 and
Mini Circuit BLP(low-pass filter) to increase the signal-to-noise ratio.

Figure 7. Key bit-dependent attack experiment environments.
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5. Experimental Results

In this section, we demonstrate that a key bit-dependent attack could extract secret scalar bit
using a single trace.

5.1. Key Bit-Dependent Power/Electromagnetic Attack on Hardware Implementation

Our target binary scalar multiplication algorithm was the Montgomery–López–Dahab ladder
algorithm [24] protected by scalar randomization [18]. Therefore, the attacker is restricted to using
a single trace. To attack algorithms operating on the first experimental platform, we focused
on Properties 1 and 3, described in Sections 3.1.1 and 3.1.2, respectively. However, in hardware
implementations, operations are executed in parallel. Thus, at the same time as secret scalar bits di are
extracted at the beginning of each iterative operation, the addresses of registers Rx(x = 0 or 1) to be
referenced are also determined. Thus, there is no SPA-resistant regular algorithm that only satisfies
Property 1. Our target was an SPA-resistant regular algorithm. Hence, we modified the code as shown
in Figure 8a to identify how much information was present according to Property 1. The code as
shown in Figure 8b is a general implementation that satisfies Property 3.

Version October 19, 2018 submitted to Journal Not Specified 8 of 21

1: assign di = regD[i];
2: assign R1−di

= R0;
3: assign Rdi

= R1;

1: assign di = regD[i];
2: assign R1−di

= (di) ? R0 : R1;
3: assign Rdi

= (di) ? R1 : R0;

Figure 5. Hardware implementation: Case Study 1 (left) and Case Study 2 (right)

Figure 6. Hardware implementation: one of the sub-traces (top) and SOST value between two
sub-groups (bottom)
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• Classify into Two Groups and Extract Secret Scalar Bits238

(1) When we target Case Study 1 and exploit the power consumption trace, it is impossible to239

clearly split them into two groups through SPA-VI. Since two distributions are overlapped as240

shown in Figure 7(a), we can extract secret scalar bits di with a 96.75% success rate when we241

classify pi into two groups based on the differences from an average trace. Besides, we can extract242

secret scalar bits di with a 96.74% success rate when we apply the k-means clustering algorithm243

to classify pi into two groups (i.e., 8 errors). Consequently, the brute-force attack to recover the244

entire secret scalar could be viable, because the error rate is sufficiently small. Therefore, it is245

(a) Case Study 1 (b) Case Study 2

Figure 8. Hardware implementation: Case Study 1 (a) and Case Study 2 (b).

• Preprocessing
Operations for the most significant bit dλ−1 do not exist in the Montgomery–López–Dahab ladder
algorithm, as shown in Algorithm A1 and Appendix A. In accordance, trace T is composed
of λ-1 subtraces for a λ-bit scalar, so we divided trace T into λ − 1 subtraces Oi, and aligned
them (0 ≤ i ≤ λ− 2). Figure 9 (top) shows one of the subtraces, consisting of six finite-field
multiplications, captured from the first experimental platform.

• Select Points of Interest
The key bit identification phase is operated on the second clock cycle of each subtrace of the target
algorithm. We also confirmed that points of the second clock cycle of each subtrace are PoIs pi,
since the SOST value is the greatest on the points of the second clock cycle, as shown in Figure 9
(bottom) (0 ≤ i ≤ λ− 2). When we calculated the SOST value, we classified PoIs of subtraces pi
into two groups according to Property 1 (or 3).

• Classify into Two Groups and Extract Secret Scalar Bits
(1) When we targeted Case Study 1 and exploited the power-consumption trace, it was impossible
to clearly split them into two groups through SPA-VI. Since two distributions are overlapped as
shown in Figure 3a, we could extract secret scalar bits di with a 96.75% success rate when we
classified pi into two groups based on the differences from an average trace. We could also extract
secret scalar bits di with a 96.74% success rate when we applied the k-means clustering algorithm
to classify pi into two groups (i.e., 8 errors). Consequently, a brute-force attack to recover the
entire secret scalar could be viable, because the error rate is sufficiently small. Therefore, it was
confirmed that the key bit-dependent leakage based on Property 1 was sufficiently large to recover
the secret scalar bits.
(2) By using the low-pass filter to increase the signal-to-noise ratio, the success rate slightly
improved to 97.17% when we applied the k-means clustering algorithm. It could not be classified
into two groups through SPA-VI because distribution overlapped, as shown in Figure 3c.
(3, 4) When we targeted Case Study 2 and exploited the power-consumption trace, it was possible
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to perfectly split it into two groups via SPA-VI, as shown in Figure 3b,d. The success rate of
classification was 100%, as shown in Table 1; thus, we could acquire all the secret scalar bits di.
From this result, we noticed that changing a referring register leaks more significant information
than changing the secret scalar bits. Moreover, we demonstrated that we could recover whole
secret scalar bits based on Property 3 using only one power-consumption trace. We define attacks
such as in Steps (1) to (4) as key bit-dependent power attacks (KBPA).
(5) Figure 4a shows the PoIs chosen from electromagnetic subtraces when we targeted Case
Study 1. Although it was not easy to clearly divide them into two groups via SPA-VI, we could
classify pi into two groups with a 100% success rate using the differences from an average trace.
Accordingly, the classification success rate based on k-means clustering algorithm was also 100%;
thus, we could find the entire secret scalar bits di based on Property 1.
(6) Moreover, if we could use the low-pass filter to increase the signal-to-noise ratio, we could
extract whole secret scalar bits through SPA-VI as shown in Figure 4c.
(7) Figure 4b shows the PoIs chosen from electromagnetic subtraces when we targeted Case Study 2.
Unlike the result of (3, 4), it was not easy to clearly divide them into two groups via SPA-VI.
However, it was possible to divide pi into two groups based on the differences from an average
trace. Thus, the classification success rate based on k-means clustering algorithm was also 100%;
therefore, we could find all the secret scalar bits di based on Property 3 (0 ≤ i ≤ λ− 1).
(8) Moreover, if we could use the low-pass filter to increase the signal-to-noise ratio, we could
extract whole secret scalar bits through SPA-VI as shown in Figure 4d.
To sum up, we also showed that we could recover all secret scalar bits using only one
electromagnetic trace. Compared to the key bit-dependent power attack, the secret scalar bits
could be recovered with a 100% success rate based on Property 1. We define attacks such as in
Steps (5) to (8) as key bit-dependent electromagnetic attacks (KBEA).

Figure 9. Hardware implementation: one of the subtraces (top) and the SOST value between two
subgroups (bottom).
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Table 1. Experimental results: hardware implementations.

Power Consumption (Figure 3) Electromagnetic (Figure 4)

Hardware None Low-Pass Filter None Low-Pass Filter

diff k-means diff k-means diff k-means diff k-means

Property 1 96.75% 96.74% 96.75% 97.71% 100% 100% 100% 100%

Property 3 100% 100% 100% 100% 100% 100% 100% 100%

diff: clustering based on the difference from an average trace; k-means: clustering using the k-means clustering algorithm.

5.2. Key Bit-Dependent Power/Electromagnetic Attack on Software Implementation

In this section, we focus on the key bit identification function of mbedTLS (polarSSL) as shown in
Figure 10, which is an extensively used embedded transmission security TLS/SSL public encryption
library. It should be noted that to capture an entire binary scalar multiplication trace using the CW-Lite
main board is impossible; thus, we used the modified algorithm shown in Figure 11 based on the
function in Figure 10 to identify how much information exists. In Appendix B, we describe the key bit
identification function of OpenSSL as shown in Figure A1. We also show the experimental results of
when we used it. For attack algorithms operating on the second experimental platform, we focused on
Properties 2 and 4 described in Sections 3.1.1 and 3.1.2, respectively.

1: int mbedtls_mpi_get_bit (const mbedtls_mpi *X, size_t pos)
2: {
3: if (X-> n * biL <= pos)
4: return(0);
5:

6: return ((X->p[pos / biL] � (pos % biL)) & 0x01);
7: }

Figure 10. Key bit identification function of mbedTLS.

1: di = mbedtls_mpi_get_bit (&d, i);
2: BN_MUL(&R2, &Rdi

, &R2);

Figure 11. Software implementation (mbedTLS): acquisition range.

• Preprocessing
We uniformly divided trace T into λ subtraces, Oi, and aligned them (0 ≤ i ≤ λ− 1). Figure 12
(top) shows one of the subtraces.

• Select Points of Interest
In software implementation, operations are sequentially executed. Hence, differing from hardware
implementations, we targeted two positions. The first came immediately after the & 0x01 operation
was performed, as shown in Figure 10. The second was where the register was referred to.
The register addresses to be referenced were determined according to secret scalar bit di, so there
was information associated with di. Thus, we targeted where the register LOAD operation was
performed for a long integer operation. Points with high SOST values are located where the key
bit identification function is performed (see Figure 12). The second target points were located
behind the key bit identification function. Here, we chose points with high SOST values as PoIs.
When we calculated SOST values, we classified PoIs of subtraces pi into two groups according to
Property 2 (or 4).



Appl. Sci. 2018, 8, 2168 13 of 20

• Classify into Two Groups and Extract Secret Scalar Bits
(1) When we targeted Case Study 1 and exploited the power-consumption trace, we could not
clearly split it into two groups via SPA-VI, because the two distributions overlapped as shown
in Figure 5a, so we applied the k-means clustering algorithm to classify pi into two groups
(0 ≤ i ≤ λ− 1). Approximately 97.60% of the secret scalar bits di could be extracted, as shown in
Table 2. There are misclassified bits, but the number of error bits is sufficiently small. Hence, it is
possible to recover whole secret scalar bits with a brute-force attack. Consequently, we confirmed
that the key bit-dependent leakage based on Property 2 was sufficiently large to recover the secret
scalar bits.
(2) By using the low-pass filter to increase the signal-to-noise ratio, success rate was slightly
improved to 98.24% when we applied the k-means clustering algorithm. It could not be classified
into two groups through SPA-VI because the distribution overlapped, as shown in Figure 5c.
(3, 4) We investigated leakage associated with referred register addresses determined according
to di in Case Study 2. When we exploited the power-consumption trace, subtraces pi could be
divided into two groups through SPA-VI with a 100% success rate, see Figure 5b,d.
(5) Figure 5e shows the PoIs chosen from electromagnetic subtraces when we targeted Case Study 1.
They could not be clearly divided into two groups via SPA-VI; thus, the k-means clustering
algorithm was needed. Secret scalar bits recovery rate was 94.17%, as shown in Table 2. This was
slightly higher (0.17%) than the success rate when we divided pi into two groups based on the
differences from an average trace. (6) Unlike the result of (2), PoIs could not be perfectly split into
two groups by SPA-VI, as shown in Figure 5f. Thus, we applied the k-means clustering algorithm
and we could find approximately 95.96% of the secret scalar bits. This was slightly better than the
93.72% success rate when we divided pi into two groups based on differences from an average
trace. Here, we demonstrated that single-trace KBPA and KBEA can also defeat binary scalar
multiplication algorithms that are resistant against SPA and DPA in software implementations.

Figure 12. Software implementation (mbedTLS): one of the subtraces (top) and the SOST value between
two subgroups (bottom).
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Table 2. Experimental results: software implementations.

Power Consumption Electromagnetic

Hardware None Low-Pass Filter Low-Pass Filter

diff k-means diff k-means diff k-means

Property 2 97.60% 97.60% 97.31% 98.24% 93.72% 94.17%

Property 4 100% 100% 100% 100% 94.17% 95.96%

diff: clustering based on the difference from average trace; k-means: clustering using the k-means clustering algorithm.

6. Countermeasures

We have shown that single-trace KBPA and KBEA could recover whole secret scalar bits. Here,
we discuss countermeasures against KBPA and KBEA. We propose two kinds of countermeasures,
one each for hardware and software implementations.

6.1. Countermeasure for Hardware Implementations

For hardware implementations, we suggest random initialization that initializes the di variable
with random bit before each key bit identification phase, as per Algorithm 1. We verified that the
leakage based on Properties 1 and 3 could be efficiently eliminated. The result of the classification of pi
is shown in Figures 13a,b, and 14 (top). The success rate of the attack was approximately 50%, and it
was similar to randomly guessing the secret scalar bits with a probability of 1/2.

Algorithm 1: ECC Scalar Multiplication (initialized by random bit)

Input : P is a point on an elliptic curve, a λ-bit scalar d = (dλ−1, dλ−2, · · · , d0)2
Output : Q = dP

1: regD[λ− 1 : 0]← {dλ−1, dλ−2, · · · , d0}
2: R0 ← ∞, R1 ← P
3: di ← random bit
4: for i = n− 1 down to 0 do
5: di ← regD[i]
6: R1−di

← Rdi
+ R1−di

7: Rdi
← 2Rdi

8: di ← random bit
9: end for

10: Return R0

6.2. Countermeasure for Software Implementations

As a countermeasure for software implementations, we propose bit masking to remove the leakage
of Properties 2 and 4, as Algorithm 2. This method is a type of address-bit randomization [29,30].
However, there is an important difference, in that bit masking must be performed before loop operation
begins, which is shown in Step 2 of Algorithm 2. The result of classification of pi is shown in
Figures 13c,d and 14 (bottom). The success rate of the attack is also approximately 50%, and it is similar
to randomly guessing the secret scalar bits with a probability of 1/2.
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Algorithm 2: ECC Scalar Multiplication (Masking with random bit)

Input : P is a point on an elliptic curve, a λ-bit scalar d = (dλ−1, dλ−2, · · · , d0)2
Output : Q = dP

1: Generate λ-bit random number r = (rλ−1, rλ−2, · · · , r0)2
2: md← d⊕ (d� 1)⊕ r
3: Rrλ−1 ← 2P, R1−rλ−1 ← P
4: for i = n− 1 down to 1 do
5: R2 ← 2Rmdi
6: R1−ri−1 ← R0 + R1
7: Rri−1 ← R2
8: end for
9: Return Rr0

(a) Property 1 (hardware implementation) (b) Property 3 (hardware implementation)

(c) Property 2 (software implementation) (d) Property 4 (software implementation)

Figure 13. Countermeasure (Power). (a) Property 1 (hardware implementation); (b) Property 3 (hardware
implementation); (c) Property 2 (software implementation); (d) Property 4 (software implementation).
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Figure 14. SOST value of countermeasure: hardware implementations (top) and software
implementations (bottom).

7. Conclusions

In this paper, we suggested attacks using the leakage that occurs on the key bit identification
phase and demonstrated that such attacks could extract secret scalar bits using a single trace without
profiling. The attacks could be done not only by power consumption, but also by electromagnetic
trace. Compared with previous attacks that required sophisticated preprocessing and multitraces,
this represents a significant advantage. There is no need to apply preprocessing, and we could
recover the entire secret scalar bits through SPA-VI. Since the proposed KBPA and KBEA attacks could
defeat existing countermeasures, this leads to a very robust attack model. Although we focused on
ECC binary scalar multiplication algorithms, our proposed attacks are also applicable to RSA binary
modular exponentiation algorithms. We proposed countermeasures and experimentally verified that
the leakage was removed.

8. Patents

This section is not mandatory, but may be added if there are patents resulting from the work
reported in this manuscript.
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Appendix A. Montgomery–López–Dahab Ladder Algorithm

Algorithm A1 performs except operations for the most significant bit, dλ−1. Each iterative operation
consists of six patterns, because Steps 7 to 9 (Steps 10 to 11) consist of six finite-field multiplications.
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Algorithm A1: Binary scalar multiplication: Montgomery–López–Dahab Ladder
Input : P = (x, y) is a point on elliptic curve, an λ-bit scalar d = (dλ−1, dλ−2, · · · , d0)2
Output : Q = dP

1: if d = 0 or x = 0 then
2: output (0, 0) and stop
3: end if
4: X1 ← x, Z1 ← 1, X2 ← x2 + b, Z2 ← x2

5: for i := λ− 2 down to 0 do
6: Z3 ← (X1Z2 + X2Z1)

2

7: if di = 1 then
8: X1 ← xZ3 + (X1Z2) (X2Z1) , Z1 ← Z3
9: X2 ← X4

2 + bZ4
2 , Z2 ← X2

2 Z2
2

10: else
11: X2 ← xZ3 + (X1Z2) (X2Z1) , Z2 ← Z3
12: X1 ← X4

1 + bZ4
1 , Z1 ← X2

1 Z2
1

13: end if
14: end for
15: A← Z1Z2, B← xZ2, C ← (xA)−1

16: D ←
((

x2 + y
)

A + (B + X2) (xZ1 + X1)
)

C
17: x0 ← BX1C, y0 ← (x + x0) + y
18: Return dP = (x0, y0)

Appendix B. openSSL

The first target points come immediately after the & ()(BN_ULONG)1) operation is performed,
as shown in Figure A3. The second is where the register is referred according to the di value, and it
is located after the key bit identification function is performed. We chose points with a high SOST
value as PoIs. (1) When we targeted Case Study 1 and exploited the power-consumption trace, it was
impossible to clearly split it into two groups through SPA-VI. Thus, we used the k-means clustering
algorithm and recovered secret scalar bits di with a 96.25% success rate. (2) Figure 4b shows the PoIs
chosen from power-consumption subtraces when we targeted Case Study 2. They could be clearly
divided into two groups through SPA-VI. The success rate was 100%, i.e., we could recover the whole
secret scalar bits.

1: int BN_is_bit_set (const BIGNUM *a, int n)
2: {
3: int i, j;
4:

5: bn_check_top(a);
6: if (n < 0)
7: return(0);
8:

9: i = n / BN_BITS2;
10: j = n % BN_BITS2;
11: if (a->top <= i)
12: return(0);
13:

14: return (int)(((a->d[i]) � j) & ((BN_ULONG)1));
15: }

Figure A1. Key bit identification function of OpenSSL.
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1: di = BN_is_bit_set (&d, i);
2: BN_MUL(&R2, &Rdi

, &R2);

Figure A2. Software implementation (OpenSSL) acquisition range.

Figure A3. Software implementation (OpenSSL): one of the subtraces (top), and the SOST value
between two subgroups (bottom).

(a) Case Study 1 (Property 2) (b) Case Study 2 (Property 4)

Figure A4. Points of Interest in the power-consumption trace (Software Implementation, OpenSSL).
(a) Case Study 1 (Property 2); (b) Case Study 2 (Property 4).



Appl. Sci. 2018, 8, 2168 19 of 20

References

1. Kocher, P. Timing Attacks on Implementation of Diffie-Hellman, RSA, DSS, and Other Systems. CRYPTO
1996, 9, 104–113. [CrossRef]

2. Diop, I.; Liardet, P.Y.; Maurine, P. Collision Based Attacks in Practice. DSD 2015, 24, 367–374. [CrossRef]
3. Clavier, C.; Feix, B.; Gagnerot, G.; Roussellet, M.; Verneuil, V. Horizontal Correlation Analysis on

Exponentiation. ICISC 2010, 5, 46–61. [CrossRef]
4. Diop, I.; Carbone, M.; Ordas, S.; Linge, Y.; Liardet, P.Y.; Maurine, P. Collision for estimating SCA Measurement

Quality and Related Applications. CARDIS 2015, 9, 143–157. [CrossRef]
5. Hanley, N.; Kim, H.S.; Tunstall, M. Exploiting Collisions in Addition Chain-based Exponentiation Algorithms

Using a Single Trace. CT-RSA 2015, 23, 431–448. [CrossRef]
6. Heyszl, J.; Mangard, S.; Heinz, B.; Stumpf, F.; Sigl, G. Localized Electromagnetic Analysis of Cryptographic

Implementations. CT-RSA 2012, 15, 231–244. [CrossRef]
7. Heyszl, J.; Ibing, A.; Mangard, S.; Saints, F.; Sigl, G. Clustering Algorithms for Non-Profiled Single-Execution

Attacks on Exponentiations. CARDIS 2013, 6, 79–93. [CrossRef]
8. Homma, N.; Miyamoto, A.; Aoki, T.; Satoh, A. Comparative Power Analysis of Modular Exponentiation

Algorithms. IEEE 2010, 176, 795–807. [CrossRef]
9. Kocher, P.; Jaffe, J.; Jun, B. Differential Power Analysis. CRYPTO 1999, 6, 388–397. [CrossRef]
10. Nascimento, E.; Chmielewski, L.; Oswald, D.; Schwabe, P. Attacking embedded ECC implementations

through cmov side channels. SAC 2016, 6, 99–119. [CrossRef]
11. Perin, G.; Imbert, L.; Torres, L.; Maurine, P. Attacking Randomized Exponentiations Using Unsupervised

Learning. COSADE 2014, 11, 144–160. [CrossRef]
12. Perin, G.; Chmielewski, L. A Semi-Parametric Approach for Side-Channel Attacks on Protected RSA

Implementations. CARDIS 2015, 3, 34–53. [CrossRef]
13. Specht, R.; Heyszl, J.; Kleinsteuber, M.; Sigl, G. Improving Non-profiled Attacks on Exponentiations Based

on Clustering and Extracting Leakage from Multichannel High-Resolution EM Measurements. COSADE
2015, 1, 3–19. [CrossRef]

14. Sugawara, T.; Suzuki, D.; Saeki, M. Internal collision attack on RSA under closed EM measurement. SCIS
2014, 1, 1–8.

15. Sugawara, T.; Suzuki, D.; Saeki, M. Two Operands of Multipliers in Side-Channel Attack. COSADE 2015, 5,
64–78. [CrossRef]

16. Walter, C.D. Sliding Windows Succumbs to Big Mac Attack. CHES 2001, 24, 286–299. [CrossRef]
17. Ciet, M.; Joye, M. (Virtually) Free Randomization Techniques for Elliptic Curve Cryptography. ICISC 2003,

32, 348–359. [CrossRef]
18. Coron, J. Resistance Against Differential Power Analysis for Elliptic Curve Cryptosystems. CHES 1999, 25,

292–302. [CrossRef]
19. Joye, M.; Yen, S.M. The Montgomery Powering Ladder. CHES 2002, 22, 291–302. [CrossRef]
20. May, D.; Muller, H.; Smart, N. Random Register Renaming to Foil DPA. CHES 2001, 4, 28–38. [CrossRef]
21. Montgomery, P. Speeding the Pollard and Elliptic Curve Methods of Factorization. Math. Comput. 1987, 48,

243–264. [CrossRef]
22. Joye, M. Highly regular right-to-left algorithms for scalar multiplications. CHES 2007, 10, 135–147. [CrossRef]
23. Sim, B.-Y.; Han, D.-G. Key Bit-Dependent Attack on Protected PKC Using a Single Trace. ISPEC 2017,

168–185. [CrossRef]
24. Lopez, J.; Dahab, R. Fast Multiplication on Elliptic Curves over GF(2m) without Precomputation. CHES

1999, 27, 316–327. [CrossRef]
25. Hankerson, D.; Menezes, A.; Vanstone, S. Elliptic Curve Arithmetic. In Guide to Elliptic Curve Cryptography;

Springer: New York, NY, USA, 2004; pp. 75–152, ISBN 0-387-95273-X.
26. Gierlichs, B.; Lemke-Rust, K.; Paar, C. Templates vs. Stochastic Methos. A Performance Analysis for Side

Channel Cryptanalysis. CHES 2006, 2, 15–29. [CrossRef]
27. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley Interscience: Hoboken, NJ, USA, 2001;

ISBN 978-0-471-05669-0.
28. Bishop, C. Pattern Recognition and Machine Learning. In Information Science and Statistics; Springer:

New York, NY, USA, 2007; ISBN 978-1-4939-3843-8.

http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1109/DSD.2015.24
http://dx.doi.org/10.1007/978-3-642-17650-0_5
http://dx.doi.org/10.1007/978-3-319-31271-2_9
http://dx.doi.org/10.1007/978-3-319-16715-2_23
http://dx.doi.org/10.1007/978-3-642-27954-6_15
http://dx.doi.org/10.1007/978-3-319-08302-5_6
http://dx.doi.org/10.1109/TC.2009.176
http://dx.doi.org/10.1007/978-0-387-38162-6_6
http://dx.doi.org/10.1007/978-3-319-69453-5_6
http://dx.doi.org/10.1007/978-3-319-10175-0_11
http://dx.doi.org/10.1007/978-3-319-31271-2_3
http://dx.doi.org/10.1007/978-3-319-21476-4_1
http://dx.doi.org/10.1007/978-3-319-21476-4_5
http://dx.doi.org/10.1007/3-540-44709-1_24
http://dx.doi.org/10.1007/978-3-540-39927-8_32
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-44709-1_4
http://dx.doi.org/10.1090/S0025-5718-1987-0866113-7
http://dx.doi.org/10.1007/978-3-540-74735-2_10
http://dx.doi.org/10.1007/978-3-319-72359-4_10
http://dx.doi.org/10.1007/3-540-48059-5_27
http://dx.doi.org/10.1007/11894063_2


Appl. Sci. 2018, 8, 2168 20 of 20

29. Izumi, M.; Ikegami, J.; Sakiyama, K.; Ohta, K. Improved Countermeasure against Address-bit DPA for ECC
Scalar Multiplication. IEEE 2010, 981–984. [CrossRef]

30. Itoh, K.; Izu, T.; Takenaka, M. A Practical Countermeasure against Address-Bit Differential Power Analysis.
CHES 2003, 30, 382–396. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/DATE.2010.5456907
http://dx.doi.org/10.1007/978-3-540-45238-6_30
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Conventional SCAs on Scalar Multiplication
	Simple-Power Analysis
	Differential Power Analysis (DPA)
	Sophisticated Power Analysis

	Materials
	Key Bit Identification Phase
	Key Bit-Dependent Properties
	Key Bit-Dependent Properties of SPA-Resistant Regular Algorithms


	Methods
	Key Bit-Dependent Attack Framework
	Experiment Environments

	Experimental Results
	Key Bit-Dependent Power/Electromagnetic Attack on Hardware Implementation
	Key Bit-Dependent Power/Electromagnetic Attack on Software Implementation

	Countermeasures
	Countermeasure for Hardware Implementations
	Countermeasure for Software Implementations

	Conclusions
	Patents
	Montgomery–López–Dahab Ladder Algorithm
	openSSL
	References

