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Abstract: The equalization enhanced phase noise (EEPN), caused by the interaction of the chromatic
dispersion (CD) with the phase noise of the local oscillator (LO), has been extensively studied for
single-mode optical communication systems. Few-mode fiber (FMF) transmission systems introduce
a new channel impairment, the differential mode delay (DMD), which also creates EEPN and hence
limits the maximum transmission distance of those systems. In this work, we numerically investigate
the optical signal to noise ratio (OSNR) penalties caused by the EEPN in a 3-mode FMF transmission
system at 25 GBd for quadrature phase-shift keying (QPSK), 16-quadrature amplitude modulation
(QAM), 32-QAM and 64-QAM modulation formats when using the blind phase search (BPS) carrier
phase recovery (CPR) algorithm, which has been demonstrated to be both robust and suitable for
optical communication systems. Our numerical study assumes a short-span of FMF, modeled in the
weakly-coupled regime, and includes two cases; the use of ideal mode-selective de/multiplexers
at both ends of the FMF span (model A), and the use of ideal non-mode-selective de/multiplexers
(model B). The results show that the EEPN has almost no effect in model A. However, EEPN produces
a severe penalty in model B with the onset of the OSNR degradation starting for a DMD spread of
the impulse response of about 100 symbols for all modulation formats investigated. The distribution
ratio of the amount of phase noise between the transmitter and receiver lasers is also assessed for
model B and we confirm that the degradation is mainly due to the phase noise of the LO.

Keywords: equalization enhanced phase noise; few-mode fiber optical communication systems;
time-domain MIMO equalization; mode-division multiplexing

1. Introduction

Coherent transmission systems using multi-mode fibers (MMFs), and in particular few-mode
fibers (FMFs) as a subset thereof, have recently attracted much research attention due to the
capacity enhancement enabled by transmitting multiple data streams on a set of orthogonal spatial
modes [1–3]. The incorporation of digital signal processing (DSP) algorithms, including multiple-input
multiple-output (MIMO) equalizers, enable the compensation in the digital domain of the differential
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mode delay (DMD) and the decoupling of the modes that were coupled both during propagation
through the FMF channel and at the input/output multiplexing devices. Conversely, in incoherent
optical communication systems, where DSP can be used with the squared modulus of the electrical
field and not with the amplitude and phase thereof [4], the impairments caused by the MMF channel,
e.g., the mode mixing/scrambling and the DMD, constitute a fundamental limitation to the system
capacity and reach. Hence, incoherent MMF/FMF links that employ modulation formats such as
ON-OFF keying (OOK) [5] or 4-way pulse amplitude modulation (PAM4) [6] are currently used
predominantly for short reach applications. Without loss of generality, in this manuscript we focus on
coherent FMF optical transmission systems as a particular case of MMF systems when the number
of modes is small. In FMF systems, some authors claim that the DMD spread does not constitute a
fundamental limitation because even large DMD spread values can be compensated with sufficiently
large linear MIMO equalizers, although at a very high computational cost of the DSP circuitry [7].
However, in a practical implementation the phase noise in the transmitter and receiver lasers cannot
be neglected and the interaction of the DMD with the phase noise of the local oscillator (LO) will cause
equalization enhanced phase noise (EEPN), which may significantly degrade the system performance.
The interaction of the DMD with the phase noise of the LO in FMF systems plays a similar role as the
interaction of the chromatic dispersion (CD) with the phase noise of the LO in single-mode fiber (SMF)
systems [8], and additionally in FMF transmission systems the CD also produces EEPN.

EEPN has been studied in detail for dispersion-uncompensated SMF systems with digital
compensation of the CD. Shieh and Ho [9] studied the theoretical EEPN power penalty in SMF
systems resulting from the interaction of the CD and the LO phase noise and found that the EEPN
penalty increases for larger dispersion values and baud rates. Xie [10] numerically demonstrated,
using quadrature phase-shift keying (QPSK) as the modulation format, that the EEPN penalty increases
linearly with the baud rate. Lau et al. [11], both analytically and numerically, concluded that the effect
of the EEPN induced phase noise is approximately twice as large as the EEPN induced amplitude noise,
and also that the contribution of the transmitter phase noise is negligible compared to the LO for links
with residual dispersion higher than 700 ps/nm. Xu [12] presented an analytical model for differential
N-phase shift keying (PSK) systems and concluded that the EEPN performance degradation increases
significantly with the increment of the LO phase noise, the fiber dispersion and the order of the
modulation format. Kakkar et al. [13] conducted a frequency domain analysis and concluded that
the EEPN penalty mainly originates from the low frequency noise components of the LO. The same
authors [14] extended their analysis and concluded that the EEPN is similar to multi-path fading in
wireless communication systems. Qiu et al. [15] demonstrated both numerically and experimentally
that in systems with a Stokes-vector direct-detection (SV-DD) receiver the EEPN penalty increases with
the LO laser linewidth, the accumulated dispersion and the order of the modulation format, and this
penalty can be partially mitigated with a maximum-likelihood (ML) phase estimator.

Regarding the EEPN in FMF transmission systems, Shieh [16] analytically derived a simple
expression for the signal to noise ratio (SNR) penalty, which grows linearly with the total amount
of the DMD and the LO phase noise, for the worst case of total coupling between the two modes.
Ho and Shieh [17] extended the analysis of [16] to include all the possible ensemble averages of the
unitary matrices modeling the mode coupling in the strongly-coupled regime. Note that both analytical
analyses assume perfect and instantaneous estimation of the phase noise, yet practical phase estimation
algorithms [18] must average over a number of samples to remove noise from the estimated phase
value. Liang et al. [19] experimentally showed that in a 28 GBd 3-mode QPSK system, duo-binary
shaping combined with maximum likelihood sequence detection (MLSD) can relax the LO linewidth
requirements due to EEPN. Secondini and Antonelli [20] numerically studied the digital coherence
enhancement technique to mitigate the effects of EEPN in 3-mode FMF transmission systems.

In this work, we numerically assess the impact of the EEPN optical signal to noise ratio
(OSNR) penalty on a typical 3-mode short-span FMF transmission link with M-quadrature
amplitude modulation (QAM) formats at 25 GBd when using a MIMO time-domain equalizer.
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Time-domain MIMO equalizers are less efficient in terms of complexity than their frequency-domain
counterparts [21]. However, time-domain equalizers update the equalizer taps at a much higher rate
than frequency-domain equalizers and hence are more robust against quick variations in the phase
noise. We consider a short-span of FMF which can be modeled in the weakly-coupled regime and
include two models, model A and model B, to account for the use of mode-selective demultiplexers
and multiplexers (DE/MUXes) [22] or non-mode-selective DE/MUXes [2] at both ends of the FMF.
In both models, coupling of modes within a mode-group—for example, the X and Y polarizations
of the LP01 mode—is modeled with random complex unitarys (RCUs) matrices. In our numerical
simulations, we use the blind phase search (BPS) carrier phase recovery (CPR) algorithm, which has
a high performance at a cost of an additional computational complexity compared to Viterbi and
Viterbi-based CPR algorithms [23]. However, the BPS algorithm may be implemented in a hardware
efficient way due to the absence of feedback loops [18]. The BPS parameters B—the number of test
phases—and N—the number of averaged symbols—are carefully optimized to not bias the simulation
results. Compared to our previous work [24], here we describe in detail the optimization procedure
of the BPS CPR algorithm and extend the analysis to investigate the impact of the phase noise ratio
between the transmitter and LO lasers for QPSK and 16-QAM modulation formats. The results show
that the EEPN penalty is negligible for systems with mode-selective DE/MUXes with no crosstalk
between mode-groups (model A). However, non-mode-selective DE/MUXes (model B), even for
a short-span of FMF modeled in the weakly-coupled regime, induce a severe penalty due to the
EEPN which makes the system phase noise requirements more stringent as the spread of the impulse
response increases. The onset of the OSNR penalty in model B starts for a DMD impulse response
spread of about 100 symbols for all modulation formats investigated. Furthermore, it is confirmed that
to mitigate the EEPN penalty it is imperative that the LO has a very low phase noise compared with
the transmitter laser phase noise.

The remainder of this paper is organized as follows. Section 2 describes the EEPN in the context
of FMF transmission systems and the numerical model used in this study. Then, the numerical results
are presented and discussed in Section 3. Finally, Section 4 summarizes and concludes the paper.

2. Problem Description, Simulation Model and Methodology

2.1. Few-Mode Fiber Transmission Systems Description

Figure 1 shows a diagram of the 3-mode FMF transmission system used as a model in this work.
The transmitter consists of one laser used as light source that is split into three optical signals which
are input to a set of three independent dual-polarization dual-parallel Mach-Zehnder modulators
(DP-DPMZMs). Each DP-DPMZM generates a polarization-division multiplexing (PDM) M-QAM
signal or stream to be carried on an orthogonal spatial channel. After modulation, a spatial multiplexer
with three SMF inputs generates a linear combination of the three orthogonal modes in the FMF for
each input stream. At the receiver, a demultiplexer couples three linear combinations of orthogonal
modes present in the FMF into a set of three SMFs. We consider the multiplexer (MUX), the FMF
and the demultiplexer (DEMUX) as a black box MIMO linear system with 3 single-mode inputs and
3 single-mode outputs, as remarked in Figure 1. Each SMF carries 2 polarizations that correspond to
degenerate modes so the dimensions of the MIMO system are actually 6× 6 over a complex space.
The receiver consists of three polarization-diverse optical hybrids with four balanced photodiodes
and digitizers each. The signal from a free-running laser used as LO is split into three equal parts and
input to the optical hybrids and hence the phase noise in the three streams is equal and correlated.
The receiver DSP first normalizes the signal and recovers the clock. Note that in this simulation
it is not necessary to compensate for receiver imperfections like quadrature-skew or differential
photodiode responsivities. After the clock recovery, the 6 complex signals are input to a complex
6× 6 MIMO time-domain equalizer and CPR loop [25]. After CPR, the samples are hard-detected,
used to compute the equalizer error-signal, and to update the taps with this error-signal. The equalizer
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loop initially uses a known training sequence to achieve convergence and then switches into blind
decision-directed mode.
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Figure 1. Schematic diagram of a typical optical transmission system consisting of a few-mode fiber
supporting 6 spatial channels (2 mode-groups and 6 orthogonal modes). X polarization in-phase
component (XI), X polarization quadrature component (XQ), Y polarization in-phase component
(YI), Y polarization quadrature component (YQ), dual-parallel Mach-Zehnder modulator (DPMZM),
transmitter (TX), multiplexer (MUX), demultiplexer (DEMUX), balanced photodiode (BPD), analog to
digital converted (ADC), local oscillator (LO), digital signal processing (DSP), normalization (NORM),
clock recovery (CR), multiple-input multiple-output (MIMO), time-domain equalizer (TDE), blind
phase search (BPS), hard-detection (HD).

The response of the black-box in Figure 1 can be modeled as a matrix M(ω), which includes the
response of the MUX, the DEMUX and any linear impairments in the FMF transmission channel [17,26].
In general, M(ω) is a time-varying matrix, due to external perturbations like fiber movement and
temperature changes, but we will consider it as a time-invariant matrix through the rest of the paper
for simplicity. In a 3-mode FMF system, M(ω) is a complex square matrix with rank 6. If there are
no losses or gains in the system, i.e., the energy at the input is the same as the energy at the output,
then det M(ω) = ±1 and M(ω) is unitary. Unitary matrices can be interpreted as rotational matrices
with a possible reflection in a complex functional space. We can factorize the black-box response as,

M(ω) = O(ω)F(ω)I(ω) (1)

where F(ω) is the response of the FMF, I(ω) is the response of the MUX and O(ω) is the response of
the DEMUX. The singular value decomposition (SVD) of a unitary matrix is not unique. However,
imposing the condition that U(ω) must be independent of frequency to the first order, dU(ω)/dω = 0,
then the columns of U(ω) are the input principal modes [26], which is a generalization into higher
dimensions of the principal states of polarization in an SMF [27]. Taking into account this constraint,
we can further factorize the response of the FMF into the unique principal modes,

M(ω) = O(ω)V(ω)Λ(ω)U∗(ω)I(ω) (2)

where V(ω) and U(ω) are unitary matrices, ∗ denotes conjugate transposition and
Λ(ω) = diag[a1(ω), a2(ω), . . . , a6(ω)] is a diagonal matrix with elements,

an(ω) = exp
{ gn

2
− jωτn − jω2 Dnλ2L

4πc

}
(3)

where gn ∈ R represents the mode losses or gains, τn ∈ R the mode group delay and Dn the mode CD,
all of them with respect to the principal modes of the FMF. For simplicity, in this work we consider an
unamplified system with no mode-dependant loss (MDL) and CD and hence gn = Dn = 0. The DMD
is defined as the maximum temporal spread between the principal modes
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DMD = |max(τn)−min(τn)| (4)

which corresponds to the temporal spread of the system impulse response. The complexity of the
MIMO equalizer is directly proportional to this quantity. Step-index FMFs typically have large values
of DMD, which produce clearly separated peaks in the impulse response [2]. Graded-index FMFs may
be designed in such a way that the differential group delay of the principal modes is small [28,29] and
hence the impulse response for these fibers may have peaks that totally overlap and result in a lower
DMD spread.

A three mode FMF supports two mode-groups, LP01 and LP11, with effective refractive indices
n01

e f f and n11
e f f , respectively. The two modes belonging to the LP01 group and the four modes of

the LP11 group are degenerated or quasi-degenerated and hence will always couple as the signal
propagates through the FMF due to birefringence and other imperfections of the fiber [30], similarly to
the polarization-mode dispersion (PMD) in single mode systems [27]. Depending on the properties
of the matrix F(ω) with respect to the coupling between the two mode-groups, we can distinguish
between the weakly-coupled FMF regime or the strongly-coupled FMF regime. The weakly-coupled
regime, in its ideal case, is defined as,

F(ω) =



a11(ω) a12(ω) 0 0 0 0
a21(ω) a22(ω) 0 0 0 0

0 0 b11(ω) b12(ω) b13(ω) b14(ω)

0 0 b21(ω) b22(ω) b23(ω) b24(ω)

0 0 b31(ω) b32(ω) b33(ω) b34(ω)

0 0 b41(ω) b42(ω) b43(ω) b44(ω)


(5)

where the sub-matrices A(ω) and B(ω), with elements aij(ω) and bij(ω) and dimensions 2× 2 and
4× 4, respectively, are RCU matrices. In the ideal weakly-coupled regime there is no exchange of
energy between the LP01 and the LP11 mode-groups. The FMF strongly-coupled regime is defined as

F(ω) = X(ω) (6)

where X(ω) is a RCU matrix with the energy of one input mode distributed equally among all the
output modes and hence there is an energy exchange between the mode-groups. In an ideal FMF,
with a perfectly circular core, no bending and no scattering, and whether is step-index or graded-index,
there is no coupling between the mode-groups because of the different effective refractive indices of
each mode-group. However, in a real FMF, coupling between the mode-groups may happen due to
fiber bending [31], Rayleigh scattering, and core misalignments at splicing points [32,33]. Both the
weakly- and strongly-coupled regimes describe ideal situations not found in real fibers. Real FMF
transmission systems can be attributed to the intermediate-coupled regime [34], which depends on
the total length L of the system and on the perturbations that introduce the mode coupling [31].
Real FMF systems with a relatively short L behave in the weakly-coupled regime but as the system
length increases the behavior resembles the strongly-coupled regime. In spite of this, both the
weakly- and strongly-coupled models are useful to investigate system behavioral boundaries as
they are mathematically tractable and easy to simulate. For example, it has been shown that in the
weakly-coupled regime, the DMD spread grows proportionally to the system distance L whereas in
the strongly-coupled regime the DMD spread grows proportionally to

√
L, whereas in real systems

the DMD spread lies in between these two boundaries [32].
The concept of weakly- and strongly-coupled regimes can be applied to other few-mode optical

components, such as the DE/MUXes. In the literature, spatial mode DE/MUXes are categorized
into non-mode-selective and mode-selective. A MUX belonging to the former group is the non-mode
selective photonic lantern [35], while the latter group is represented by mode-selective photonic
lanterns [36], phase plates [37], planar lightwave circuit (PLC) based couplers [38], and tapered
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velocity couplers [39]. Mode-selective DE/MUXes can be ideally modeled with identity matrices and
non-mode-selective DE/MUXes with RCU matrices.

The EEPN originates when the MIMO equalizer at the receiver has to pick signal components
from time-shifted copies of the signal that have uncorrelated phase noise, originating at the LO laser,
which translates into different rotations of the constellation that cannot be compensated by the CPR
algorithm. In other words, the time-varying phase of the LO will be distributed along the coefficients
of the linear equalizer [8]. In this work, we consider the system impulse response, consisting of the
combined MUX, fiber and DEMUX responses, as a black box where the coupling originates at discrete
points at the edges of the fiber and the only impairment caused by the fiber is a differential mode
group delay. With respect to the EEPN, the variables of interest are the total temporal length of the
system impulse response and the amount of phase noise of the LO, regardless of whether the actual
mode mixing originates in the fiber or in the DE/MUXes.

Taking into account the weakly- and strongly-coupled regimes of the FMF and the nature of the
DE/MUXes used, Figure 2a summarizes the most simple options to model a FMF transmission system.
In this work, we focus on short-span systems where the FMF can be modeled in the weakly-coupled
regime, as has been demonstrated experimentally many times in the literature [2,22,33], and investigate
the OSNR penalty caused by the EEPN. In this simulation, it is assumed that the group velocity of the
LP11 mode-group is lower compared to the LP01 mode-group and hence the LP11 mode-group arrives
later [40]. However, there are FMF designs where the LP11 mode may arrive earlier [41]. We consider
both mode-selective DE/MUXes and non-mode-selective DE/MUXes in two separate models named
model A and model B, respectively. The impulse response of model A, demonstrated experimentally
in [22], resembles Figure 2b where only the X-polarization constituents of the modes LP01 and LPa

11

are plotted for clarity. The temporal distance between the two peaks shown in Figure 2b corresponds
to the DMD spread. The impulse response of model B, demonstrated experimentally [2], resembles the
example in Figure 2c. We leave the investigation of the EEPN penalty on the FMF strongly-coupled
and intermediate-coupled regimes as a future work.
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DMD(b)
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LP11ax

DMD(c)

FMF system
transmission model

Non-mode
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coupler

Mode
selective
coupler

This
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Non-mode
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coupler

Mode
selective
coupler

Figure 2. (a) Diagram of the simple modeling cases in an FMF transmission system. (b) Simplified
weakly-coupled FMF impulse response when there is no mode mixing in the fiber and mode-selective
DE/MUXes are used (model A). Differential mode delay (DMD). (c) Weakly-coupled FMF frequency
response with non-mode-selective DE/MUXes (model B). On both examples (b,c), only the X
polarization for LP01 and LPa

11 modes is plotted for clarity.

2.2. Numerical Simulation Description and Measurement Methodology

Figure 3 depicts a diagram of the numerical model developed to study the OSNR penalties caused
by the EEPN for model A, corresponding to the system impulse response of Figure 2b, and model
B, corresponding to the system impulse response of Figure 2c. After generating the 3 modulated
and independent signals, the transmitter adds the same amount of multiplicative phase noise TXpn

to each mode. In model B, the MUX was modeled with a rank 6 RCU matrix [42]. Mode- and
polarization-independent additive white Gaussian noise (AWGN) was added to each polarization on
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each mode to set the desired OSNR. The fiber was modeled as a channel with ideal coupling within
the mode-groups, null coupling between mode-groups and no CD with a rank 2 RCU matrix for the
LP01 mode-group and a rank 4 RCU matrix for the LP11 mode-group. LPa

11 and LPb
11 modes were

delayed with respect to LP01 by τ2 symbols to account for the link differential mode group delay.
In model B, the DEMUX was modeled with a rank 6 RCU matrix. Finally, the receiver added the
same multiplicative phase noise RXpn to each mode due to the LO. In model A, the DE/MUXes
were assumed to be ideal mode-selective, i.e., no mode coupling at all, and were modeled with rank
6 identity matrices.

U6x6 U6x6

LP01 X

X

X

TXpn

LP11a

LP11b

TX

N1

Σ

Σ

Σ

AWGN

N2

N3

U2x2

τ2

τ2

U4x4

FMF

RX

X

X

X

RX

RXpn

MUX DEMUX

Model A

Model B

Figure 3. Simplified simulation diagram for model A and model B. In model A, the MUX and DEMUX
are modeled with rank 6 identity matrices whereas in model B the DE/MUXes are modeled with rank
6 random complex unitary matrices. Additive white Gaussian noise (AWGN), receiver (RX).

The simulated baud rate was 25 GBd and a pseudo-random binary sequence (PRBS) of order
15 was used with all the combinations of quadratures, polarizations and modes, decorrelated with
each other over at least 1111 symbols, which was longer than the maximum DMD spread under study
to avoid equalization artifacts. The receiver DSP chain, as depicted in Figure 1, consisted of signal
normalization, clock recovery, time-domain equalization-CPR loop, hard-detection and error counting.
Each synthetic data trace, shown in Figure 4a, consisted of 131,072 symbols. Before equalization,
8192 symbols were stripped at the beginning and at the end to discard erroneous data introduced by
circular convolutions. The equalizer was a complex 2 taps-per-symbol 6× 6 time-domain equalizer [25]
using the BPS CPR algorithm [18], where taps were updated on each symbol which enables high
tracking speed of the phase noise. The equalizer taps were initially updated with a training sequence
for the first 8192 symbols and then the equalizer was switched to decision-directed mode, where the
error signal was computed with the hard-detected symbols. In order to avoid any simulation bias
due to equalizer poor convergence or singularities, the equalizer initial taps were initialized with the
inverse of the channel response, which was random for each realization. Note that the frequency offset
was null. Before hard-detection, 16,384 and 8192 symbols were stripped at the beginning and at the
end, respectively, to avoid errors due to equalizer pre-convergence and CPR, respectively. Data traces
having carrier phase cycle slips were discarded. The cycle slip detector operated by first dividing the
received bit-stream into blocks and counting the number of errors per block. The cycle slip detector
was triggered if the number of errors in any block were greater than a threshold.
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Figure 4. (a) Diagram of a simulated data trace, showing the symbols stripped to avoid errors due
to circular convolutions and the traning sequence. (b) Configuration of the equalizer to optimize the
numbers of taps and hence reduce the simulation time.

To save simulation time, the equalizer length was optimized for each simulated DMD value to
Lsym = LDMD + 2Gl + 1 symbols, where LDMD is the DMD value in symbol units and Gl is a guard
band of 8 symbols. The number of taps of the equalizer is hence Ltaps = 2× Lsym. As shown in
Figure 4b, the training sequence was shifted forward by DMD/2 symbols and hence the equalizer
frequency response—the estimated inverse of the channel impulse response—did not overflow the
equalizer length. For any phase noise and DMD value under study, the OSNR was swept in 0.5 dB
intervals and the bit-error rate (BER) vs OSNR curves were linearly interpolated to compute the
penalties at a BER = 10−4 by averaging the results of 3 independent realizations. The maximum OSNR
penalty computed was 5 dB, corresponding to the cases where the impairments were so severe that the
BER vs OSNR curve was greater than 10−4 for all OSNR values and hence the intersection point did
not exist.

3. Numerical Results and Discussion

3.1. Simulator Calibration and Optimization of the BPS Number of Phases

In order to verify the correct operation of the simulator, initially a SMF transmission system
was simulated at 10 GBd using a trace format similar to the one shown in Figure 4a. Figure 5 shows
the OSNR penalty as a function of the phase noise, in units of linewidth times the symbol duration,
as a function of the number of test phases B ∈ {8, 16, 32, 64} of the BPS algorithm, for (left) QPSK and
16-QAM modulations and (right) for 32-QAM and 64-QAM modulation formats. Note that in this
simulation the phase noise between of transmitter laser and the LO was identical and corresponding
to the value in the X-axis. The OSNR penalties were calculated with respect to the theoretical
curves and hence the simulator implementation penalty was about 0.5 dB for QPSK and 16-QAM,
and approximately 1 dB for 32-QAM and 64-QAM.

10-7 10-6 10-5 10-4 10-3

Linewidth times symbol duration

0

1

2

3

4

5

Pe
n
a
lt

y
 [

d
B

]

B = 64 QPSK
B = 64 16QAM
B = 32 QPSK
B = 32 16QAM
B = 16 QPSK
B = 16 16QAM
B = 08 QPSK
B = 08 16QAM

10-7 10-6 10-5 10-4 10-3

Linewidth times symbol duration

0

1

2

3

4

5

Pe
n
a
lt

y
 [

d
B

]

B = 64 32QAM
B = 64 64QAM
B = 32 32QAM
B = 32 64QAM
B = 16 32QAM
B = 16 64QAM
B = 08 32QAM
B = 08 64QAM

QPSK

16QAM

64QAM32QAM

Figure 5. Phase noise penalties for a single-mode fiber (SMF) transmission system (1 mode) and the BPS
algorithm for (left) quadrature phase-shift keying (QPSK) and 16-quadrature amplitude modulation
(QAM) modulation formats and (right) 32-QAM and 64-QAM modulation formats.

For all modulation formats, the general trend is that increasing the number of test phases B
reduces the OSNR penalty regardless of the phase noise. However, for sufficiently large values of B the
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penalty does not reduce any further. In addition, constellations with fewer number of symbols require
less number of test phases B. These results approximately agree with the ones in Figure 7 of [18] and
confirm the correct operation of the simulator, and in particular of the equalizer-CPR loop which is the
most critical component. Furthermore, to reduce the complexity of the equalizer-CPR loop a value
of B as low as possible is desirable. B = 32 was chosen for all subsequent simulations in this work,
which introduces a small penalty for all the modulation formats investigated.

3.2. Optimization of the BPS Filter Length

After the optimization of the BPS number of phases B = 32, the next step was to investigate
the optimum length N of the BPS algorithm averaging filter. The model A simulator, at a baud rate
of 25 GBd, was used to compute the OSNR penalty by sweeping both the phase noise and the BPS
filter length N. Figure 6 shows the results for 16-QAM and 64-QAM modulation formats. QPSK and
32-QAM formats yielded similar results and are not plotted here to save space. For both modulation
formats shown, N < 6 produces a high penalty because of the inability of the BPS algorithm to produce
good phase estimates due to large estimation noise. Larger values of N produce good phase estimates
and hence lower penalties. However, for a fixed value of the phase noise, large values of N yield larger
penalties due to the inability of the filter to track quick changes of the phase noise. The larger the phase
noise, the lower the filter length N should be to produce optimum phase estimates. As a compromise,
we choose the optimum value of N = 10 for all subsequent simulations.
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Figure 6. Optimization of the BPS algorithm filter length N using model A simulator for (left) 16-QAM
and (right) 64-QAM modulation formats. Both plots show the optical signal to noise ratio (OSNR)
penalty in dB computed at a bit-error rate (BER) of 10−4.

3.3. EEPN Penalty for M-QAM Formats and Equal Phase Noise in the Transmitter and Receiver Lasers

The numerical results for the OSNR penalty for model A are shown on Figure 7 for QPSK,
16-QAM, 32-QAM and 64-QAM modulation formats. The number of the BPS test phases was B = 32,
the length of the averaging filter was N = 10, and the baud rate was 25 GBd. For a constant value
of the DMD spread, all formats exhibit almost no degradation as the phase noise per laser increases.
Note that for all modulation formats, the maximum linewidth of 4 MHz, 800 kHz, 400 kHz and
190 kHz per laser, respectively, is within the range that the BPS algorithm can compensate with the
chosen parameters B and N. However, a small degradation in performance is observed as the DMD
value increases and the cause for this may be due to the use of longer equalizers. A sparse MIMO
equalizer [2,43] may help to alleviate this penalty but such analysis is beyond the scope of this work.
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QPSK 16QAM

32QAM 64QAM

Figure 7. OSNR penalties in dB, computed at a BER of 10−4, for model A and QPSK, 16-QAM, 32-QAM
and 64-QAM modulation formats.

Figure 8 shows the results for model B and the aforementioned modulation formats. In contrast
to model A, all modulation formats are severely degraded as the phase noise increases due to EEPN.
Interestingly, for all modulation formats the onset of the penalty degradation corresponds to a DMD
threshold value of about 100 symbols.

QPSK 16QAM

32QAM 64QAM

Figure 8. OSNR penalties in dB, computed at a BER of 10−4, for model B and QPSK, 16-QAM, 32-QAM
and 64-QAM modulation formats.



Appl. Sci. 2018, 8, 2182 11 of 15

3.4. Distribution of the Phase Noise Between the Transmitter and Receiver Lasers

The results presented in Sections 3.1–3.3 had the same amount of phase noise in the transmitter
and LO, which corresponds to the value of the X-axis in the plots and it is the typical case in FMF
transmission experimental demonstrations. In this section we investigate the effect of varying the
amount of phase noise between the transmitter and the LO when using model B for QPSK and 16-QAM
modulation formats and the results are shown in Figures 9 and 10, respectively. Both figures are plotted
for ratios ρ ∈ {0, 0.25, 0.6̂, 1.5, 4, ∞} where ρ stands for the ratio ρ = TXpn/RXpn, where TXpn is the
phase noise of the transmitter and RXpn is the phase noise of the receiver, and ρ = ∞ means all the
phase noise in the system is contributed by the transmitter and the receiver is an ideal noiseless laser.

The analysis of both figures reveals that as ρ increases, i.e., the transmitter becomes noisier
compared to the receiver, the behavior of the systems tends to the model A behavior even in the
presence of strong coupling at the DE/MUXes. Conversely, as ρ decreases, the system tends to the
model B behavior of the previous section. The conclusion is that the EEPN originates due to the phase
noise contribution of the LO and hence it is important to keep the noise of the LO laser as low as
possible in order to optimize the system performance.
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Figure 9. OSNR penalties in dB, computed at a BER of 10−4, for QPSK modulation and model B for
several distributions of the phase noise between the transmitter and receiver lasers.
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Figure 10. OSNR penalties in dB, computed at a BER of 10−4, for 16-QAM modulation and model B
for several distributions of the phase noise between the transmitter and receiver lasers.
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4. Conclusions

We have numerically investigated the impact of the EEPN, in terms of the OSNR penalty, in a
25 GBd 3-mode short-span FMF transmission system where the FMF is modeled in the weakly-coupled
regime, for QPSK, 16-QAM, 32-QAM and 64-QAM modulation formats as a function of the link DMD
spread and the transmitter and receiver lasers phase noise. The fundamental receiver subsystem was a
time-domain equalizer and carrier phase recovery loop with optimized number of test phases B = 32
and filter length N = 10. In our study, we have considered the models A and B, corresponding to
the case of ideal, full mode-selective couplers and ideal, non-mode-selective couplers, respectively.
Furthermore, we have also investigated the effect of the distribution of the phase noise between the
transmitter and receiver for QPSK and 16-QAM modulations and model B. The parameters of the
BPS CPR algorithm were carefully optimized to avoid any biasing of the results, i.e., a sub-optimal
operation of the CPR algorithm may be mistaken as a EEPN-caused penalty.

The results reveal that the EEPN has a negligible penalty for model A—mode-selective couplers
and weakly-coupled FMF. However, in model B, which assumes non-mode-selective couplers and
weakly-coupled FMF, the EEPN penalty quickly grows as the DMD spread of the optical link increases
for a given per-laser phase noise value, which may limit the maximum transmission distance of FMF
transmission systems. Furthermore, we note that if the impulse response of the non-mode-selective
MUX in model B, I(ω), is characterized a priori then a compensation by using I−1(ω) in the digital
domain may be performed at the transmitter to mitigate the effect of the EEPN. However, such a
characterization is complex and time-consuming, requires the isolation of the non-mode-selective MUX
during the characterization process [33], and on top of that, the frequency response may change over
time due to environmental effects like temperature changes, which altogether renders this solution
rather impractical in a real transmission system. For all M-QAM modulation formats analyzed,
the onset of the penalty degradation is for a DMD of approximately 100 symbols. Furthermore, the
results indicate that the EEPN penalty has a strong dependence on the amount of phase noise of the LO
and hence noisier LOs have a larger impact on the system performance. The analysis of the combined
effects of both the CD and the DMD in terms of the EEPN OSNR penalty, the modeling of the FMF in
the strongly-coupled and intermediate-coupled regimes, and the impact of frequency-domain MIMO
equalization—which is more computationally efficient but less able to track the phase noise compared
with time-domain equalization—are left as future work.
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Abbreviations

The following abbreviations are used in this manuscript:

AWGN additive white Gaussian noise
BER bit-error rate
BPS blind phase search
CD chromatic dispersion
CPR carrier phase recovery
DEMUX demultiplexer
DE/MUX demultiplexer and multiplexer
DMD differential mode delay
DMT discrete multi-tone
DP-DPMZM dual-polarization dual-parallel Mach-Zehnder modulator
DSP digital signal processing
EEPN equalization enhanced phase noise
FMF few-mode fiber
LO local oscillator
MDL mode-dependant loss



Appl. Sci. 2018, 8, 2182 13 of 15

MIMO multiple-input multiple-output
ML maximum-likelihood
MLSD maximum likelihood sequence detection
MMF multi-mode fiber
MUX multiplexer
OOK ON-OFF keying
OSNR optical signal to noise ratio
PAM4 4-way pulse amplitude modulation
PDM polarization-division multiplexing
PMD polarization-mode dispersion
PhP phase plate
PL photonic lantern
PLC planar lightwave circuit
PRBS pseudo-random binary sequence
PSK phase shift keying
QAM quadrature amplitude modulation
QPSK quadrature phase-shift keying
RCU random complex unitary
SMF single-mode fiber
SNR signal to noise ratio
SVD singular value decomposition
SV-DD Stokes-vector direct-detection
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