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Abstract: In most visual tracking tasks, the target is tracked by a bounding box given in the first
frame. The complexity and redundancy of background information in the bounding box inevitably
exist and affect tracking performance. To alleviate the influence of background, we propose a robust
object descriptor for visual tracking in this paper. First, we decompose the bounding box into
non-overlapping patches and extract the color and gradient histograms features for each patch.
Second, we adopt the minimum barrier distance (MBD) to calculate patch weights. Specifically,
we consider the boundary patches as the background seeds and calculate the MBD from each patch
to the seed set as the weight of each patch since the weight calculated by MBD can represent the
difference between each patch and the background more effectively. Finally, we impose the weight
on the extracted feature to get the descriptor of each patch and then incorporate our MBD-based
descriptor into the structured support vector machine algorithm for tracking. Experiments on two
benchmark datasets demonstrate the effectiveness of the proposed approach.
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1. Introduction

Object tracking is an important issue for video analysis in the field of computer vision,
with wide-ranging applications including surveillance, human-computer interaction and medical
imaging. Given the first frame including the target location and the size of the bounding box, the
object tracking task is to estimate the location of the target in the current frame without the target
motion information in advance [1]. In recent years, along with many new tracking algorithms emerging,
the performance of visual tracking has been greatly promoted. However, object tracking is still
a challenging issue due to many problems existing in the tracking process such as illumination
variation, occlusion, large deformations and background clutters, which are not solved well. Therefore,
object tracking still needs to be investigated. In this paper, we tackle the complex background
challenges in the bounding box caused by target occlusion, large deformations or background clutters
in visual tracking.

As an important branch in visual tracking, many tracking-by-detection algorithms [2–9] have
attracted much attention. The idea of tracking-by-detection algorithms is regarded as finding target
localization as a classification problem. The classifier is trained with positive and negative samples
corresponding to foreground and background areas, respectively. During the tracking process,
the object always has occlusion, deformation or size variation, leading to the bounding box containing
too much background area, which brings a negative influence to the classifier updating. To reduce
the effect of an enlarged background, a new representation for the target was proposed, called the
spatially-ordered and weighted patch descriptor (SOWP) [10], which conveys structural information
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of the object within the bounding box. However, SOWP uses a calculation method similar to
Euclidean distance to calculate the similarity between two patches, as well as many current tracking
algorithms [6,11–13], which makes it difficult to distinguish the target from the background when
there are some appearance similarities brought by background blur, occlusion or fast motion in the
bounding box.

In order to improve the above problem and considering that the minimum barrier distance
(MBD) [14] is more robust to pixel value fluctuation caused by motion or noise, we construct
a robust object representation by applying MBD to calculate the weights of patches. Given the
bounding box of a target in the search area, we divide it into non-overlapping patches and describe
them with a combination of an RGB (Red-Green-Blue) color histogram and a histogram of oriented
gradients (HOG) feature. Then, we expand the bounding box outwards, and the boundary patches
in the extended bounding box are regarded as the seed patches according to the appearance-based
backgroundness cue [15,16]. The image boundary prior assumes that most of the image boundary area
is background [15], so we set the boundary patches as the background seed set. Instead of generating
an affinity matrix by calculating the similarity between patches, we construct the MBD-based descriptor
through a distance transform map for visual tracking. Specifically speaking, we use each patch as
a node and two adjacent nodes to form an edge and obtain a distance transform map by iteratively
calculating the MBD from each patch to the seed set. The weight of each node represented by the value
of the MBD describes how likely this patch belongs to the target. The larger the value of the MBD,
the smaller the similarity of the current patch to the boundary patch and the greater the probability
that the current patch belongs to the target.

Figure 1. The illustration of background information redundancy in the bounding box caused by
fast motion and background clutter, “Skating2-1” and “Bolt2” are from the OTB-100 (object tracking
benchmark) dataset [17]. The compared visual tracking algorithms including the spatially-ordered
and weighted patch descriptor (SOWP) [10], ACFN (Attentional Correlation Filter Network) [18],
MEEM (Multiple Experts Using Entropy Minimization) [19], MUSTer (MUlti-Store Tracker) [20],
TLD (Tracking-Learning-Detection) [21] and ours.

As shown in Figure 1, the target in the sequence “Skating2-1” is a female skater, and it is
obvious that the video includes fast motion and deformation due to the rapid movement of the skater.
The bounding box in the result of SOWP [10] and contains a large number of background regions (male
skaters) in Frame 136, resulting in false tracking and the loss of real targets at Frame 396. The athletes
in the sequence “Bolt2” are almost similar to each other in appearance, and their appearance changes
significantly due to background clutter and deformation, which leads to SOWP [10], ACFN (Attentional
Correlation Filter Network) [18] and MEEM (Multiple Experts Using Entropy Minimization) [19]
mistakenly tracking other athletes; meanwhile, the trackers MUSTer (MUlti-Store Tracker) [20] and
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TLD (Tracking-Learning-Detection) [21] drift. It is easy to see that our algorithm achieves accurate
tracking under these challenges because MBD is used for calculating the similarity between the target
and the background.

The main contribution of this paper is that we present a novel MBD-based descriptor for visual
tracking. Specifically, we propose to apply the MBD to calculate the weights of patches to construct the
object descriptor for visual tracking, since MBD is more robust to pixel value fluctuation caused
by motion or noise. Then, we adopt the boundary patches on each side in the bounding box
as labeled background queries and calculate the MBD between the image patches and the seed
patches; thus, the foreground target can be highlighted, and the background noise can be suppressed.
Extensive experiments demonstrate that our proposed MBD-based descriptors can achieve more robust
performances against other recent visual trackers when confronting fast motion and background clutter,
as well as reduce drift effectively.

The rest of this paper is organized as follows: Section 2 reviews the background and some
state-of-the-art or classic methods related to our method. We will give a detailed introduction of our
proposed algorithm in Section 3. Section 4 discusses experimental results including qualitative analysis
and quantitative analysis. We draw the conclusion of this paper in Section 5.

2. Related Work

Visual tracking is an important issue in computer vision, as it is the foundation of a high
level visual task. The current tracking algorithms can be divided into two major categories:
generative models [22–25] and discriminative models [26–31]. By describing the target appearances
using generative models such as subspace models, generative methods search for regions most
similar to the target object and updating the appearance model dynamically to solve object tracking.
In general, the generative models focus on the characterization of the target and ignore the background
information; hence, they are prone to drift when the target changes dramatically and often fail in
a cluttered background [21]. In contrast, discriminative trackers build a binary classifier, which
focuses on differentiating the target from the background [32]. Belonging to discriminative trackers,
adaptive tracking-by-detection approaches build a classifier during tracking and update the classifier
using generated binary labeled training samples around the current object location [21]. To avoid the
label errors during the classification step, the kernelized structured output support vector machine
(SVM) has been used in [33] for adaptive visual object tracking. However, this method uses simple
low-level features and has low efficiency at handling occlusion. Therefore, generating correct labeled
training samples is very important for the classifier updating, and designing a good sample descriptor
is crucial for distinguishing positive or negative samples clearly.

As we mentioned above, tracking-by-detection approaches almost perform not well when there is
complex background information in the bounding box, which inevitably exists, caused by occlusion,
deformation, size variation and background clutters. Many works have been proposed to improve the
robustness of trackers to handle the influence of these challenging problems. Lu et al. [34] proposed a
pixel-wise appearance model called pixel-wise spatial pyramid, which employs the pixel feature vector
to combine several features. This pixel-wise spatial pyramid contributes to the accurate location of the
tracked object, especially for drastic appearance change. Wei et al. [35] proposed a locality sensitive
histogram, taking into account the contributions from each pixel and facilitating robust multi-region
tracking. However, these pixel-based trackers failed to handle occlusion and cluttered background
due to pixel-wise appearance models lacking structural information.

For improving some pixel-based trackers, superpixel-based trackers [36–38] then came out to
handle non-rigid and deformable targets, by segmenting images into superpixels and providing the
semantic structure of the target. Wang and Yang et al. [36,39] built the superpixel-based appearance
models, with some effects on object occlusion and deformation. However, trackers based on superpixels
are complex and have difficulty dealing with cluttered backgrounds, which often lead to unstable
results. In recent years, patch-based tracking methods have received more attention, because
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patch-based trackers can describe the structure information of the object better, and they often use
different descriptors to represent the object [10,12,40]. As a new and effective method, SOWP [10]
decomposed the object bounding box into multiple patches, and the patch weights were calculated by
performing random walk with restart simulations. The weighted patch descriptor [10] is more flexible
for partial occlusion and appearance changes of the object. Similar to SOWP, some methods [41,42]
weight the sample with patch likelihoods in particle filters, and [43] used adaptive weighting in
patch-based correlation filters to mitigate the effect of occlusion. However, when the object is occluded
for a long time, SOWP still has drift, and it is difficult to distinguish target and background when there
are some appearance similarities brought by background blur or target occlusion in the bounding box.
In this paper, we propose a novel approach to solve the appearance similarity measure problem by
minimum barrier distance weighting. Experiments have shown that the performance of our method
has a better robustness than many other visual trackers.

3. The Proposed Algorithm

3.1. Overview

We propose a novel tracking algorithm named the MBD-based descriptor for tracking. Given a
candidate bounding box of a target in a search region at the current frame, we first divide it into n ∗ n
patches and expand the bounding box to (n + 2) ∗ (n + 2) patches, as shown in Figure 2b. Each patch is
described with a combination of RGB color histogram and HOG feature. Then, in each frame, an MBD
map is constructed for each bounding box, and we calculate the MBD from each patch to the seed
set, which is represented as S, and generate an MBD transform map by performing the raster scan, as
well as the MBD of each patch corresponding to the weight of the patch, which reflects the difference
between target and background. Finally, we combine MBD with corresponding patch features to
construct a robust object descriptor and evaluate the descriptor on structured SVM to carry out the
tracking. The pipeline of our algorithm is shown in Figure 2.

Figure 2. The pipeline of our proposed algorithm. (a) A frame with some candidate bounding boxes in
a search region around the position from the previous frame. (b) An extended bounding box and the
bounding box shown in red. (c) The minimum barrier distance (MBD) map of the bounding box in
the current frame. The MBD of boundary patches in the extended bounding box is set to 0 (the dark
blue area) because they are seeds. (d) The MBD map of the bounding box in the first frame. (e) The
bounding box obtained by our tracker. Structured support vector machine (SVM) is learned online to
provide adaptive tracking.
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3.2. Patch-Based Representation

First, we divide the bounding box into n ∗ n patches, and different gridding sizes from 7 ∗ 7 to
10 ∗ 10 are tried in the proposed method. We decided to divide the bounding box into 64 patches as
a trade-off between accuracy and efficiency, i.e., the parameter n is 8. Since the results will become
worse if adopting other gridding sizes bigger or smaller than 8 * 8, a patch should have the proper
size to make the tracker more robust. Each patch is characterized with a d-dimensional feature vector
through a combination of the RGB color histogram and HOG feature. Then, the feature descriptor [10]
for a bounding box in the t-th frame is given by:

ψ(zt, r) = [fT
1 , fT

2 ..., fT
64]

T (1)

where r represents a bounding box in the t-th frame zt and fT
i is the feature vector of each patch.

ψ(zt, r) is a simple feature descriptor for r. To assign a weight for each patch, we adopt the MBD to
calculate it. By considering these patches as nodes V and the 4-neighbor links between patches as
edges E, the bounding box in the current frame can be represented by a graph G(V, E). The MBD from
a patch to seed set S reflects the difference between the patch with background. Therefore, our next
step is to calculate the MBD between each patch and the boundary patches, while the MBD of each
boundary patch is set to 0. Then, the distance is regarded as the weight of each patch, which describes
how likely it belongs to the target object.

3.3. MBD-Based Patch Weighting

The MBD is defined by the path cost function. It is the minimum value of the barrier strength of
the path between two nodes in the path [14]. The difference between MBD and a common distance
function is that the length of the path may remain constant during the growth of the path, until a new,
stronger barrier is encountered on the path. The MBD calculates the distance value in a digital image
effectively. MBD has many interesting theoretical properties. It has proven to be a potentially useful
tool in image processing [44]. When considering the variation of the seed position and the introduction
of noise, it is advantageous compared to fuzzy and geodesic distance [45].

In the graph G(V, E), we set a = π(0), c = π(k) where π(i) represents patch i. Then, a path
π =< π(0), π(1), ..., π(k) > on the graph refers to a sequence of patches along a to c, and this sequence
contains any path < π(i− 1), π(i) >, where π(i) and π(i− 1) are adjacent < π(i− 1), π(i) >∈ E,
i ∈ {1, ..., k}. We use Πs,c to denote all the paths connecting the seeds to c, and f (π) indicates the path
cost on the path π. Then, we calculate the distance D(c) for node c to the seeds and update the distance
map with the following formula:

D(b) = min
π∈Πs,c

f (π). (2)

The definition of the function f depends on the image intensity and differs for different methods.
In our work, to calculate the barrier distance, we use G(π(i)) to denote the path cost connecting S to
node i on graph G, and the cost function of distance transform [46] is defined as:

βG(π) =
k

max
i=0

G(π(i))−
k

min
i=0

G(π(i)) (3)

where βG(π) returns the MBD of path π, which is the formula for the MBD transform. Similar to the
raster scan algorithm used for the geodesic distance transform [46], we need to access each patch in the
raster scan or reverse raster scan in order. In the raster scan method, the distance values are propagated
by sequentially scanning the image in a predefined sequence. That is, each line is scanned, first from
the upper left to the lower right, and then from the lower right to the upper left until convergence (see
the illustration in Figure 3). For example, when visiting a node x in a raster scan order, for each node b
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in the mask area of the current node x as shown in Figure 3b, we compute the MBD βG(πx ∪ b) of x
according to Equation (4).

βG(πx ∪ b) = max{H(b), G(x)} −min{L(b), G(x)} (4)

where H(b) and L(b) represent the highest and lowest values on b, respectively, which are used to
ensure the highest and lowest values of the cost on the current path, and H and L are auxiliary maps.
Given the image G, the seed set S is set to 0, and D(x) is initialized to ∞. D(x) refers to the path cost
of MBD for each path from the node x to S. Then, the distance map D and the auxiliary maps are
updated in a raster scan pass and an inverse raster scan pass, until the number of iterations is k. The
MBD is updated when the value of path costs is greater than the current maximum or less than the
current minimum in the path [46,47].

D(x) = min{D(x), βG(πx ∪ b)} (5)

where πx refers to the path from x to S, b is the adjacent node of x and πx ∪ b represents the path from
the node x to S and through the node b. For example, a path connects the node b to the seed set S,
and the edge < b, x > is appended to the path πb to form a new edge, which is denoted as πx ∪ b,
each adjacent node b of x is used to minimize x iteratively. If βG(πx ∪ b) < D(x), update D(x) to
βG(πx ∪ b). Meanwhile, update H(x) to max{H(b), G(x)}, L(x) to min{L(b), G(x)}, and then, visit the
next node. We summarize the MBD transform in Algorithm 1, and k is the number of iterations in the
raster scan.

Figure 3. Illustration of the raster scan pass and the inverse raster scan pass. The node x is the current
visited patch and its masked neighbor area for 4-adjacency is denoted as b.

As shown in Figure 3, one raster scan will only access the two neighbors of the current node since
graph G is a map of the 4-neighbor. πx1 indicated by the green arrow represents a path from current
node x to S and through its upper neighbor b1, and πx2 represents the path of the current node to S
and through its left neighbor b2; if βG(πx ∪ b2) < βG(πx ∪ b1), then D(x) = βG(πx ∪ b2).

Finally, we can obtain the enhanced object descriptor by multiplying the feature descriptor with
the corresponding patch weight as follows:

ψ(zt, r) = [Dt(1)fT
1 , ..., Dt(64)fT

64]
T . (6)
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Algorithm 1 Minimum Barrier Distance transform.

Input: image G, seed set S, number of passes k.
Output: MBD map D.

1: auxiliaries H, L.
2: Initialize: D(x)← 0 when x ∈ E, otherwise D(x)← ∞; set H ← G and L← G.
3: for i = 1:k do
4: if mod(i, 2) = 1 then
5: ScanOrder ← RasterScan;
6: else
7: ScanOrder ← InvRasterScan;
8: end if
9: for each node x in ScanOrder do

10: for each neighbor node b of x do
11: compute βG(πx ∪ b) according to Equation (4);
12: if βG(πx ∪ b) < D(x) then
13: update D(x) according to Equation (5);
14: H(x)←max{H(b), G(x)};
15: L(x)←min{L(b), G(x)};
16: end if
17: end for
18: end for
19: end for

3.4. Structured SVM Tracking

In this section, we incorporate our descriptor into the conventional tracking algorithm,
structured SVM [4], as Struck [4] excels in the recent benchmark according to [1,10]. Firstly, we set a
searching window around the bounding box obtained in the previous frame. Then, in the searching
window, our MBD-based descriptors for candidate bounding boxes are incorporated into structured
SVM to estimate the maximum classification score and select the current bounding box standing for
the object. Finally, we may need to update the classifier and proceed to the next frame. Specifically,
Struck estimates the object bounding box rt in the t-th frame zt by maximizing a classification score.
To avoid the model drift, we fuse the model of the first frame and the current frame in our algorithm.
The bounding box rt, which can maximize a classifier score, is the object, as follows:

rt = arg max
r

(γ〈w0, ψ(zt, r)〉+ (1− γ)〈w, ψ(zt, r)〉) (7)

where w is the normal vector of a decision plane and w0 is learned in the initial frame.
ψ(zt, r) represents the weighted feature descriptor for bounding box r in frame t, and γ is a tradeoff
parameter. Maximizing a classifier score by evaluating the samples represented with weighted features
can obtain the best classification.

We adopt the good strategy mentioned in SOWP [10] to detect abrupt changes of object appearance,
and we update the classifier when the confidence score ρ of the tracking result is greater than a threshold
θ. A confidence score ρ is given by:

ρ =
1
|St| ∑s∈St

〈s, ψ(zt, rt)〉 (8)

where s is a positive support vector and St is the set of s at time t. The confidence score ρ in the t-th
frame refers to the average similarity between the MBD descriptor of the tracked bounding box and
the positive support vectors. Therefore, the confidence score measures the reliability of the object in
the bounding box in the current frame.

We estimate the target scale by training a scale classifier on a scale pyramid [48]. This allows us to
estimate the target scale independently after the optimal position is found. p ∗ q stands for the object
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size in the current frame, and M is the size of the scale filter. Then, we extract an image patch with the
size Jm centered around the target as follows:

Jm = am p ∗ amq. (9)

In Formula (9), a denotes the scale factor between feature layers, m ∈ {−M−1
2 , ..., M−1

2 }. The value
of the training example at scale level m is set to the d-dimensional feature descriptor of Jm [48].
Finally, the new sample is used to update the scale filter.

4. Experimental Results

The proposed tracker with MBD-based descriptor was implemented in C++ on an Intel Core
i7-6700K (Intel Corporation, Santa Clara, CA, USA) 3.40 GHz CPU with 8 GB RAM and run at 4.7 FPS
(frames per second). We evaluated our tracker on the OTB-100 (object tracking benchmark) dataset [17]
and TColor-128 (Temple Color) dataset [49]. The experimental results demonstrate the effectiveness
of our algorithm through qualitative analysis and quantitative analysis. For a fair comparison, the
parameter γ was empirically set as 0.395, and a = 1.052, M = 33, θ = 0.3, k = 3 for all the sequences in
the experiment.

4.1. Evaluation Method

We evaluated our tracker on the OTB-100 dataset [17] and TColor-128 dataset [49]. In these
datasets, precision rate (PR) and success rate (SR) were adopted to evaluate the quantitative
performances of trackers. The precision shows the ratio of frames that the distance between the
estimated bounding box and the given ground-truth is smaller than a threshold. OTB-100 uses the
score when the threshold is set to 20 pixels as the representative precision rate score for each tracker.
By measuring the overlap ratio between the estimated bounding box and ground-truth, success rate
counts the number of successful frames whose overlap ratio is larger than the given threshold 0.5. The
area under curve (AUC) of each success plot is adopted to rank the tracking algorithms.

4.2. Qualitative Evaluation

We will first perform the qualitative analysis. Comparing with SOWP [10], we found that
our algorithm can track the target accurately in many challenging sequences, while the SOWP failed.
As shown in Figure 4, the “Basketball”, “Car4”, “Freeman1”, “Girl2”, “Lemming”, “Suv” and “Human3”
sequences contain occlusion, background clutters, scale variation and deformation, for which many
trackers cannot track the given object accurately. In this work, we compare our tracker with SOWP
on OTB-100 and give some results in Figure 4. The illustration shows that the proposed approach
effectively handled scenes’ fast motion (“Basketball” and “Lemming”), background clutters (“Car4”
and “Basketball”), occlusion (“Freeman1”, “Suv” and “Human3”) and deformation (“Basketball”,
“Girl2” and “Human3”). For example, SOWP lost the object on the sequence “Basketball”, due to
sudden illumination variation and another athlete with a similar appearance. In contrast, our tracker
could track the target successfully. SOWP also did not perform well on the sequence “Lemming”.
When the object reappeared in frame 901, SOWP failed to find it, but our tracker could track it steadily.
The performance of SOWP was not satisfactory for sequence "Freeman1" due to background blur.
It considered some background as a part of the target and led to inaccurate tracking results. It is easy to
find that our algorithm could achieve better results on these challenging videos due to the utilization
of weighted patches with the MBD.
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Figure 4. The visualization of the results from our tracker and SOWP [10] on several challenging
sequences from OTB-100. The red bounding box is ours, and the green is SOWP.

4.3. Quantitative Evaluation

4.3.1. Evaluation on OTB-100

OTB-100 includes 100 video sequences with fully-annotated ground-truth and attributes. It groups
100 sequences into 11 different attributes, including illumination variation (IV), out-of-plane rotation
(OPR), scale variation (SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast motion (FM),
in-plane rotation (IPR), out-of-view (OV), background clutters (BC) and low resolution (LR). In addition
to the 29 trackers given by OTB-100, we also compared the proposed algorithm with some recent
proposed tracking methods, and Table 1 shows the results of a comparison between our tracker and
nine recent trackers, including SOWP [10], ACFN [18], MEEM [19], MUSTer [20], LCT (Long-term
correlation tracking) [50], DSST (Discriminative Scale Space Tracker) [48], KCF (Kernelized Correlation
Filters) [5], Struck [4] and TLD [21], among which ACFN [18] is a deep learning method. We used
the PR/SR scores proposed in OTB-100, and the results of the trackers were obtained by running the
published codes. We found that our tracker performed not well especially for the low resolution (LR)
sequences, as shown in Table 1, because our algorithm took boundary patches as seeds in the bounding
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box, and the low resolution or heavy background clutter would influence the initialization of seeds,
which led to unsatisfactory results in these cases. However, we observed that our tracker performed
favorably against the other state-of-the-art trackers, and it achieved the best overall performance and
performed well in most of the attributes.

In order to evaluate the effectiveness of the proposed MBD-based object descriptor, we
compared our algorithm with recent trackers and replaced the MBD with different distance
metrics in Table 2. The results in Table 2 indicate that our algorithm performed well compared
to several state-of-the-art algorithms including MemTrack (Dynamic Memory Networks) [51],
scaleDLSSVM (Dual Linear Structured SVM) [29], DCFNet (Discriminant Correlation Filters
Network) [52], CNN-SVM (Convolutional Neural Network) [8], SiamFC-3s (Fully-Convolutional
Siamese Networks) [53] and SINT++ (Siamese Network) [2]. Of these trackers, MemTrack [51]
and SINT++ [2] are neural network-based methods; scaleDLSSVM [29] and CNN-SVM [8] are
tracking-by-detection-based methods; DCFNet [52] and SiamFC-3s [53] are correlation filter-based
methods. In addition to the latest tracker MemTrack, which obtained comparable results to ours,
our method was better than other state-of-the-art algorithms. OURS-Eu, OURS-L1 and OURS-KL
are the results of replacing our MBD with Euclidean distance, L1 distance and KL divergence,
respectively. To verify the effectiveness of MBD-tuned weights, we also created a version of our
algorithm with random weights subjected to Gaussian distribution, named OURS-Ga. Our method also
gets better results than OURS-Eu, OURS-L1, OURS-KL and OURS-Ga, which verifies the effectiveness
of MBD-tuned weighting.

We rank the top 16 trackers by running the one-pass evaluation (OPE) on the OTB-100 as shown in
Figure 5. MemTrack [51] is the latest method based on a deep network and obtained comparable results
to ours. Our tracker (0.835/0.595) achieved performance gains of 5.4% in precision and 6.5% in success
rates over MEEM [19] (0.781/0.530), even if MEEM may have recovered from the corrupted classifier
by utilizing a multi-expert tracking framework. Our tracker outperformed the tracker SOWP [10]
(0.803/0.560) with 3.2%/3.5% in precision and success rates, respectively. That means that our method
had a more robust descriptor than SOWP, which also used patch descriptors.
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Figure 5. The evaluation results on OTB-100. The left shows precision plots, and the right is the success
plots of one-pass evaluation (OPE).

We present the precision plots and success plots with eight different attributes in Figure 6 such
as DEF, OPR, SV, OCC, OV, MB, FM and BC. We can see from the illustration that our algorithm
outperformed on deformation compared with other trackers; especially, our tracker was better than
the second tracker CNN-SVM [8] by 2% and 1.6% in precision and success rates on DEF, respectively.
At the same time, our tracker achieved performance gains of 5.7% in the PR score and 3.9% in the SR
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score over SOWP [10] on FM. Compared with SOWP adopting the weighted descriptor, it shows that
the MBD-based weighted patches performed more robustly with the fluctuation of node values.
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Precision plots of OPE - scale variation (64)
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Figure 6. Cont.
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Precision plots of OPE - fast motion (39)
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Precision plots of OPE - background clutter (31)
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Success plots of OPE - deformation (44)
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Success plots of OPE - out-of-plane rotation (63)
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Success plots of OPE - scale variation (64)
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Success plots of OPE - motion blur (29)
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Success plots of OPE - fast motion (39)
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Figure 6. The evaluation results of precision rate (PR) and success rate (SR) on eight attributes.

The results in Figure 6 show that the hard positive sample generated by training the hard positive
transformation network in SINT++ [2] was advantageous for OV, while our methods outperformed
SINT++ in the other seven attributes. The latest MemTrack [51] obtained the best results on most of
the attributes due to the superiority of deep networks. The MUSTer [20] tracker achieved better results
over ours for BC by exploiting both the short-term and long-term systems to process the image with
the target being tracked, but its overall performance was not so robust as ours. ACFN [18] achieved
better results for SV in the success plots than our method, but our algorithm outperformed against the
ACFN on the other attributes including OCC, FM and BC. This shows that our proposed MBD-based
weighted descriptor could locate the target object in a complex background even without strong
features. These experiments validate the effectiveness of the proposed algorithm.

We compared our tracker with real-time part-based visual tracking (RPVT) [43] with dynamic
weighting. RPVT tested its method on 16 selected challenging tracking sequences in OTB-50 [1] to
show its ability for handling occlusion, scale and appearance changes. We have also run our method on
the same sequences and adopted the average center location error and average overlap rate the same
as in that paper, and the results are shown in Tables 3 and 4. In general, RPVT obtained better results
than ours for these 16 tracking sequences. However, our tracker performed better on the most of the
other 34 sequences in Table 5. This evinces that RPVT was better for handling occlusion, scale and
appearance changes, while our tracker was good at the challenges including fast motion, background
clutter and deformation.
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Table 1. The PR/SR scores of our tracker and recent state-of-the-art trackers on the 11 challenging factors: illumination variation (IV), out-of-plane rotation (OPR), scale
variation (SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-view (OV), background clutters (BC) and low
resolution (LR). The red number is the best result.

MEEM [19] MUSTer [20] SOWP [10] LCT [50] DSST [48] KCF [5] Struck [4] TLD [21] ACFN [18] OURS

IV (36) 0.728/0.515 0.770/0.592 0.766/0.554 0.732/0.557 0.708/0.485 0.693/0.471 0.545/0.422 0.535/0.401 0.777/0.554 0.765/0.553
OPR (63) 0.794/0.525 0.744/0.537 0.787/0.547 0.746/0.538 0.670/0.448 0.670/0.450 0.593/0.424 0.570/0.390 0.777/0.543 0.816/0.573
SV (64) 0.736/0.470 0.710/0.512 0.746/0.475 0.681/0.488 0.662/0.409 0.636/0.396 0.600/0.404 0.565/0.388 0.764/0.551 0.779/0.526

OCC (49) 0.741/0.504 0.734/0.554 0.754/0.528 0.682/0.507 0.615/0.426 0.625/0.441 0.537/0.394 0.535/0.371 0.756/0.542 0.799/0.557
DEF (44) 0.754/0.489 0.689/0.524 0.741/0.527 0.689/0.499 0.568/0.412 0.617/0.436 0.527/0.383 0.484/0.341 0.772/0.535 0.813/0.563
MB (29) 0.731/0.556 0.678/0.544 0.702/0.567 0.669/0.533 0.611/0.467 0.606/0.463 0.594/0.468 0.542/0.435 0.731/0.568 0.757/0.592
FM (39) 0.752/0.542 0.683/0.533 0.723/0.556 0.681/0.534 0.584/0.442 0.625/0.463 0.626/0.470 0.563/0.434 0.758/0.566 0.780/0.595
IPR (51) 0.794/0.529 0.773/0.551 0.828/0.567 0.782/0.557 0.724/0.485 0.697/0.467 0.639/0.453 0.613/0.432 0.785/0.546 0.801/0.562
OV (14) 0.685/0.488 0.591/0.469 0.633/0.497 0.592/0.452 0.487/0.373 0.512/0.401 0.503/0.384 0.488/0.361 0.692/0.508 0.713/0.537
BC (31) 0.746/0.519 0.784/0.581 0.775/0.570 0.734/0.550 0.702/0.477 0.718/0.500 0.566/0.438 0.470/0.362 0.769/0.542 0.783/0.590
LR (9) 0.808/0.382 0.747/0.415 0.903/0.423 0.699/0.399 0.708/0.314 0.671/0.290 0.671/0.313 0.627/0.346 0.818/0.515 0.808/0.457

average (100) 0.781/0.530 0.774/0.577 0.803/0.560 0.762/0.562 0.695/0.475 0.693/0.476 0.640/0.463 0.597/0.427 0.802/0.575 0.835/0.595

Table 2. The precision rate (PR) and success rate (SR) of our tracker and recent state-of-the-art trackers on OTB-100. Eu, Euclidean distance; Ga, Gaussian distribution.
The red number is the best result and blue indicates the second.

MemTrack [51] Scale_DLSSVM [29] DCFNet [52] CNN-SVM [8] SiamFC-3s [53] SINT++ [2] OURS-Eu OURS-L1 OURS-KL OURS-Ga OURS

PR 0.822 0.803 0.751 0.814 0.772 0.768 0.751 0.797 0.762 0.604 0.835
SR 0.627 0.562 0.580 0.555 0.583 0.574 0.546 0.563 0.550 0.407 0.595

Table 3. Average center location error comparison with Real-time part-based visual tracking (RPVT) [43] on 16 sequences in OTB-50. The red number is the best result.

Car4 Girl Coke Deer Tiger1 Couple Singer1 Singer2 Shaking CarScale Football Football1 Walking2 Sylvester Freeman1 Freeman3

RPVT [43] 2.0 2.8 9.7 4.5 5.5 7.2 5.0 12.5 5.6 7.5 4.8 2.5 3.1 5.6 10.0 3.0
Ours 2.4 4.2 5.9 4.4 11.6 5.3 7.0 162.5 9.6 15.9 3.8 2.7 8.2 6.6 2.7 3.3

Table 4. Average overlap rate (%) comparison with RPVT [43] on 16 sequences in OTB-50. The red number is the best result.

Car4 Girl Coke Deer Tiger1 Couple Singer1 Singer2 Shaking CarScale Football Football1 Walking2 Sylvester Freeman1 Freeman3

RPVT [43] 90 80 72 76 65 68 75 82 72 70 72 78 82 71 47 82
Ours 84 59 55 79 69 60 38 7 69 55 71 79 60 68 47 64



Appl. Sci. 2018, 8, 2233 15 of 20

Table 5. Average center location error comparison with RPVT [43] on other sequences in OTB-50. The red number is the best result.

Basketball Bolt Boy CarDark Cross David1 David2 David3 Dog Doll Dudek Faceocc1 Faceocc2 Fish Fleetface Freeman4 Ironman

RPVT [43] 6.3 8.2 3.5 3.1 7.6 8.5 10.3 16.4 4.2 8.5 10.9 10.8 5 8.7 8.5 20.1 73
Ours 4.2 3.5 2.1 1.1 2.2 3.7 1.8 5.1 5.1 6.5 11.0 14.0 9.3 8.5 21.5 61.5 54.8

Jogging Jumping Lemming Liquor Matrix Mhyang Motor MountainBike Skating1 Skiing Soccer Subway Suv Tiger2 Trellis Walking Woman

RPVT [43] 14.6 7.0 22.4 15.6 26 17.3 67.8 6.5 7.9 86.2 55.6 4.3 9 12.3 10.6 5.3 4.1
Ours 4.4 3.0 7.0 6.1 86.0 4.7 148.7 8.6 21.6 4.7 61.4 3.5 11.8 11.3 12.7 3.4 4.0
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We also compared our tracker with the occlusion probability mask-based tracker (OPM) [41].
We ran our method on the same sequences and adopted the same average center location error for
comparing with this method, and the results are shown in Table 6. OPM selected eight sequences
from OTB-100 in its experiment. We can see from Table 6 that OPM performed better than ours on
these sequences, and this shows that OPM had advantages in dealing with some sequences with
occlusion; however, our tracker performed better for the sequences with illumination variation and
scale variation.

Table 6. Average center location error comparison with occlusion probability mask-based tracker
(OPM) [41] on some sequences in OTB-100. The red number is the best result.

Jumping Car4 Singer1 Walking1 Walking2 Sylvester Deer FaceOcc2

OPM [41] 2.7 4.1 3.9 2.6 0.5 2.4 0.9 4.7
Ours 3.0 2.4 7.0 3.4 8.2 6.6 4.4 9.3

4.3.2. Evaluation on TColor-128

TColor-128 [49] contains a large set of 129 color sequences with ground truth and challenge
factor annotations. Compared with OTB-100, TColor-128 contains more challenging sequences and is
more difficult to track. We evaluated our tracker on the TColor-128 dataset and show the evaluation
results between our tracker and recent trackers including Staple [54], DGT (Dynamic Graph for Visual
Tracking) [9], MEEM [19], Struck [4], KCF [5], ALSA ( Adaptive Structural Local Sparse Appearance
Model) [55] and LCT [50] in Figure 7.
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Figure 7. The evaluation results on TColor-128 (Temple Color). The left shows the precision plots, and the
right is the success plots.

4.3.3. Evaluation on Challenges

Occlusion is a difficult issue as the object might be occluded by other objects or disappear from the
scene. Inspired by [56,57], we evaluated the proposed algorithm on motion blur and different levels
of occlusion and background clutter, as shown in Table 7. We divided these challenges into partial
occlusion (PO) [57], heavy occlusion (HO) [57], slight background clutter (SBC), heavy background
clutter (HBC), motion blur (MB) and deformation (DEF). We have found 84 sequences in total with
occlusion in OTB-100 and TColor-128 datasets, including 41 partial occlusion and 43 heavy occlusion
sequences. Almost all the targets in these sequences with heavy occlusion were completely occluded
and disappeared. We also found 31 sequences with slight background clutter, 27 sequences with heavy
background clutter, 53 sequences with motion blur and 63 sequences with deformation in OTB-100
and TColor-128.
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Table 7. The PR/SR score comparison of our tracker with recent state-of-the-art trackers on some
challenges of motion blur and different levels of occlusion and background clutter: partial occlusion
(PO), heavy occlusion (HO), slight background clutter (SBC), heavy background clutter (HBC), motion
blur (MB) and deformation (DEF). The red number is the best result.

ACFN [18] Staple [54] MEEM [19] Struck [4] KCF [5] LCT [50] SOWP [10] DGT [9] OURS

PO (41) 0.724/0.547 0.763/0.553 0.730/0.514 0.635/0.475 0.647/0.484 0.682/0.537 0.781/0.555 0.778/0.557 0.806/0.567
HO (43) 0.567/0.382 0.458/0.360 0.583/0.413 0.337/0.265 0.418/0.302 0.453/0.335 0.541/0.403 0.568/0.427 0.567/0.419
SBC (31) 0.830/0.587 0.858/0.620 0.816/0.562 0.684/0.500 0.777/0.533 0.770/0.565 0.838/0.593 0.819/0.566 0.868/0.620
HBC (27) 0.669/0.481 0.576/0.409 0.655/0.442 0.458/0.331 0.529/0.347 0.569/0.392 0.626/0.445 0.630/0.443 0.629/0.436
MB (53) 0.638/0.484 0.599/0.463 0.639/0.490 0.575/0.442 0.547/0.408 0.586/0.438 0.647/0.498 0.670/0.490 0.653/0.493
DEF (63) 0.744/0.537 0.686/0.500 0.743/0.497 0.616/0.440 0.611/0.435 0.686/0.508 0.741/0.531 0.768/0.523 0.795/0.555

Our proposed method was more robust to PO, SBC and DEF, as shown in Table 7. This shows that
the MBD-based object descriptor could effectively alleviate the influence of background information in
the bounding box. ACFN [18] performed best for handling HBC due to its powerful deep features.
As mentioned in Section 3.1, we regard boundary patches of bounding box as seeds. If the boundary
patches have heavy blur, they will affect the initialization of the seeds and lead to our algorithm not
performing best on MB. In our future work, we will improve on this shortcoming to make our tracker
more robust to these challenges.

5. Conclusions

In this paper, we propose an effective descriptor named the minimum barrier distance-based
object descriptor to obtain more accurate target object representation for visual tracking. We adopt
MBD to calculate the reliable patch weights iteratively to highlight the foreground target and suppress
the background noise. Finally, we incorporate the feature descriptor constructed by combining patch
weights with patch features into the structured SVM framework and achieve an accurate visual
tracking result. Experiments on two benchmark datasets demonstrate the effectiveness of the proposed
approach against many other visual trackers.
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