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Abstract: In the Korean construction industry, legal and institutional safety management
improvements are continually being pursued. However, there was a 4.5% increase in the number
of workers’ deaths at construction sites in 2017 compared to the previous year. Failure to wear
safety helmets seems to be one of the major causes of the increase in accidents, and so it is
necessary to develop technology to monitor whether or not safety helmets are being used. However,
the approaches employed in existing technical studies on this issue have mainly involved the use
of chinstrap sensors and have been limited to the problem of whether or not safety helmets are
being worn. Meanwhile, improper wearing, such as when the chinstrap and harness fixing of the
safety helmet are not properly tightened, has not been monitored. To remedy this shortcoming,
a sensing safety helmet with a three-axis accelerometer sensor attached was developed in this study.
Experiments were performed in which the sensing data were classified whether the safety helmet
was being worn properly, not worn, or worn improperly during construction workers’ activities.
The results verified that it is possible to differentiate among wearing status of the proposed safety
helmet with a high accuracy of 97.0%.
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1. Introduction

1.1. Research Background and Objectives

Recently, the importance of worker safety in the construction industry has become a prominent
issue, and the Ministry of Employment and Labor in Korea has set a goal of reducing deaths due to
industrial accidents by half before the end of 2022. Institutional and legal improvements are being
pursued, and the need for safety is being emphasized [1].

Despite this progress, the most deaths occurred in construction industry accidents (579 people,
29.6%) among all industrial accidents in 2017; furthermore, the number of deaths has risen, as there
was a 4.5% increase in the number of worker deaths compared to the same period in the previous
year [2]. An analysis of construction accidents by body part showed that the head (161 people, 41.2%)
and multiple body parts (123 people, 31.5%) were the most frequently injured, and among the fatal
construction accidents, falls were the most common type (8699 people, 32.7%) [3].
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These results indicate that it is very important to manage the wearing of safety helmets, which
can protect the heads of workers, as there is a high possibility that the head will be the body part that
first impacts the ground in a fall accident [3,4]. When safety helmets are properly worn, they provide
shock absorption, which reduces the force transmitted to the head of the wearer upon object impact to
less than 10%, thus enhancing worker safety. Aside from falls, helmets also reduce the danger from
accidents involving falling objects, flying objects, impacts, electrical shocks, and so on. Therefore,
numerous institutional and technical studies have been conducted on increasing validity and accuracy
when determining whether or not safety helmets are being worn properly [5–11].

In terms of technology, the read sensors have been attached to chinstraps in previous studies to
detect emergencies based on such information such as whether or not the helmet is being worn and
its position. In those studies, it was determined whether or not the helmet was being worn by using
sensors attached to chinstraps or additional sensing data such as altitude and position information.
For example, chinstrap sensors and altitude sensing data have been used to confirm that the helmet
was being worn [9–11].

However, the previous studies in which sensors were attached to chinstraps were limited in that
it is difficult to determine whether or not a helmet is being worn when looking at the movements of
a worker in a work environment who fastens the chin strap but does not wear the helmet, carries or
wears the helmet on his or her body, or performs other similar activities. The previous studies suggest
that additional sensing data such as altitude and position information are necessary since using only
the sensors attached to chinstrap is not enough to classify whether or not a safety helmet is being
worn [9–11].

The objective of this research was to resolve the shortcomings of previous studies by developing
a system using a three-axis accelerometer sensor to identify the activities of workers in the work area
of a current construction site based on their movement data and to determine not only whether or not
safety helmets are being worn, but also whether they are being worn improperly. The development
of the system included developing a sensing safety helmet using a three-axis accelerometer sensor,
a worker smartphone app to transmit the data acquired by the safety helmet, and a web platform for
an on-site PC to store the data. It is expected that managing construction workers who do not wear
their helmets or wear them improperly will help prevent construction site accidents.

1.2. Research Scope

In this study, the hardware and software necessary to develop a management system for proper
wearing of safety helmets based on three-axis accelerometer sensing were established. This work
resolves the shortcomings of existing studies in which sensors were employed and the focus was on
whether or not the safety helmet was being worn. This research was focused on developing a method
of using worker motion data captured by three-axis accelerometer sensing to determine whether safety
helmets are being worn improperly at construction sites. The specific steps performed in this study are
described as follows:

First, statistical data on Korean construction site safety accidents were analyzed to understand the
importance of not wearing safety helmets, and the necessity of developing a system for monitoring the
proper wearing of safety helmets was identified. Existing studies on monitoring the proper wearing of
safety helmets have been limited to determining when safety helmets are not being worn. As such,
it was observed that improper wearing, such as when the chinstrap and harness of the safety helmet
are not fastened correctly, have not been monitored adequately in previous studies.

Second, a sensing safety helmet measurement system was developed in which the safety helmet
has a three-axis accelerometer sensor that can identify user activities to monitor whether the safety
helmet is properly worn, not worn, or improperly worn.

Third, the raw data from the three-axis accelerometer sensor of the safety helmet were converted
into a signal vector magnitude (SVM). The recognition rate for each activity was found to be high,
but it was difficult to distinguish between proper and improper wearing.
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Fourth, to resolve this problem, the SVM was converted into a frequency by performing a fast
Fourier transformation (FFT), and specific features were found at certain frequencies. These frequency
features were used to classify the data by work activity and to analyze them.

Fifth, the Waikato Environment for Knowledge Analysis (WEKA) data mining program was used
to verify that it is possible to differentiate among proper wearing, not wearing, and improper wearing
of the safety helmet during work for each of the work activities.

2. Materials and Methods

2.1. Existing Research Trends

2.1.1. Korean Construction Site Accident Types

Figure 1 shows the industrial accidents in 2016 by cause of accident according to the Korea
Occupational Safety and Health Agency. Out of the total of 90,656 people involved in industrial
accidents, 26,570 (or 29.3%) were in construction accidents. Of those, falls (8,699 people, 32.7%) were
the most numerous, followed by slips (3995 people, 15.0%) and being struck with objects (3368 people,
12.7%) [3].
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Figure 1. Distribution of industrial accidents in the construction industry in Korea by cause of accident.

Figure 2 shows the industrial accidents by the injured body part. Out of the total of 826 people
with body parts injured in industrial accidents, 391 of them (47.3%) were in the construction industry.
Among those, the head (161 people, 41.2%) was the most frequently injured, followed by multiple
body parts (123 people, 31.5%) [3].
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Figure 2. Distribution of accidents in the construction industry in Korea by injured body part.

As shown in Figure 1, falls often occur at constructions sites (8699 people, 32.7%). In Figure 2,
injuries to the head (161 people, 41.2%) account for a high proportion of the injuries by body part.
Based on this information, it can be expected that there is a high possibility that the head will impact
the ground first during a fall accident. Because the head is the most vulnerable body part, wearing
a safety helmet to protect the head is very important. Thus, ensuring head protection is directly
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connected to promoting worker safety not only in falls, but also in many other types of safety accidents
that occur on construction sites, such as those involving dropped and flying objects [3,4,6].

2.1.2. Trends in Research on Improving Safety Helmet Wearing

The Rules for Industrial Safety and Health Standards in Korea stipulate that safety helmets must
be worn for protection when doing work that involves a risk of flying or falling objects or the worker
falling at construction sites [5]. Because safety helmets reduce the risk of accidents related to falling
objects, flying objects, impacts, and electrical shocks, safety helmets are among the important pieces of
protection equipment responsible for worker safety at construction sites [6].

As shown in Figure 3, the Occupational Safety and Health Agency recommends a method of
properly wearing a safety helmet that includes checking the helmet for abnormalities, adjusting the
harness so that the helmet is the right size for the head of the wearer, and ensuring that the chinstrap is
placed around both ears and fastening it securely so that the helmet does not come off [7].
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Properly wearing a safety helmet in this manner provides shock absorption, which reduces the
force transmitted to the head of the wearer upon object impact to less than 10%. However, there
are many cases in which workers avoid wearing safety helmets or do not fasten their chinstraps,
and safety accidents often occur as a result [8]. To resolve this issue, a case study was conducted
involving a system with a sensor attached to the chinstrap that turned on when the chinstrap was
fastened and determined whether or not the safety helmet was worn properly [9]. Aside from chinstrap
detection sensors, a safety control server was investigated that can determine worker locations through
relays by calculating the communication distance based on the communication range to provide
notifications about worker locations and emergencies via wireless electromagenetic compatibility
(EMC) techniques [10]. In another study, Zigbee communications and chinstrap sensor, intensity
of illumination, and altitude data were used to determine whether or not workers were properly
wearing helmets with their chinstraps fastened. This method was employed to determine the locations,
emergency situations, etc. of workers [11].

However, if a worker does not wear his or her safety helmet and instead places it at the
construction site with the chinstrap fastened, the monitoring system may consider the helmet to
be worn based on the node status. Even when the determination is made using data such as the
illumination and altitude of the worker, if he or she carries the safety helmet without wearing it and
creates movement data by performing activities involving motion in the work environment, or if the
worker fastens the chinstrap and keeps the safety helmet on his or her head and moves, it will be
determined that the safety helmet is being worn properly and work is being performed at the work
location. Thus, it is possible for the system to recognize that the safety helmet is being worn properly
even when it is not.
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To resolve this issue, it is necessary to develop ideas and technology that can determine whether
a worker is wearing his or her safety helmet properly while working by using data related to the
activities of the worker rather than simply attaching a sensor to the chinstrap of the helmet to determine
whether or not it is being worn properly.

2.2. Development of Three-Axis Accelerometer Sensing System for Safety Helmet Wearing Management

2.2.1. Platform for Saving and Analyzing Sensing Data

As shown in Figure 4, the proposed system consists of a three-axis accelerometer sensor module
attached to the safety helmet, a smartphone app for the worker wearing the helmet, and an on-site
PC-based database platform that stores the data.
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Figure 4. Data transmission in the three-axis accelerometer safety helmet sensing system.

The data collected by the three-axis accelerometer sensor attached to the safety helmet are first
transmitted to the smartphone of the worker who is wearing the helmet. The data are stored in the
developed smartphone app, and Bluetooth is used for communication, the proposed system performs
transmission by using Serial Port Profile (SPP) based on Bluetooth V 3.0.

These data are then sent to the on-site PC-based database platform via 3G/LTE and uploaded
as shown in Figure 5, where the X, Y, and Z outputs of the three-axis accelerometer sensor are listed
sequentially, and the data collection times and dates are entered.
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 Figure 5. On-site PC web platform for storing data (Acc X, Y, Z—Magnitude).

The worker data are transmitted to the on-site PC-based database platform and analyzed in
real time. The data transmission frequency was set up to 4 Hz between smart helmet and PC-based
database platform. If the helmet is not being worn or is being worn improperly, a warning is sent to
the smartphone app of a designated site manager, such as a task leader.
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2.2.2. Three-Axis Accelerometer Safety Helmet Sensing System Hardware

The safety helmet sensor module developed in this study includes a bluetooth low energy (BLE)
feature for communication with smartphones, a three-axis accelerometer sensor, and a real-time clock
(RTC) time-measuring sensor and is battery-operated.

As specified in Table 1, A JARDUINO-UNO_BTmini is used in the micro controller unit (MCU)
due to its small size. It transmits the three-axis accelerometer and RTC data through Arduino I2C
communication with each sensor. The data are transmitted via Bluetooth to the app on the personal
smartphone of the worker that is used for data transmission. The three-axis accelerometer sensor uses
MMA8452, and the RTC uses DS3231.

Table 1. Technical Specification of the Sensing Helmet.

Sensor Type Function

Micro Controller Unit (MCU) JARDUINO-UNO_BT mini Transmits data through Arduino I2C communication.
Three-Axis-Accelerometer MMA8452 Measures raw data of acceleration in the three axes.

Real Time Clock (RTC) DS3231 Measures real time.

Figure 6 shows the three-axis accelerometer sensing helmet employed in the tests in this study.
The sensor module is attached to an ABE-type safety helmet, which is the type that is typically used
on construction sites. The total weight of the sensing helmet is 0.491 kg including the increased weight
owing to the added sensors, i.e., 0.124 kg. This increased weight due to sensors is regarded as very low
in terms of subjective degree of inconvenience [12].
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Figure 6. Prototype of three-axis accelerometer sensing safety helmet: (a) Front side of the Safety
Helmet; (b) Back side of the Safety Helmet.

2.2.3. Mobile App for Data Collection and Transmission

Figure 7 shows screenshots of the data transmission app for the sensing safety helmet, which
can be used on an Android mobile device. The app is designed so that when the mobile device is
connected to the sensing safety helmet via Bluetooth, the data from the three-axis accelerometer sensor
are automatically stored in the app database. If the data transmission tab is selected in the app, the data
that were first saved in the app are sent to the web page of the on-site PC via 3G/LTE. As shown in
Figure 7, the X, Y, and Z vector values generated by the three-axis accelerometer sensor according to
the real-time movements of the worker can be viewed in the app.
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3. Results

3.1. 1st Data (SVM) Analysis

The common method of recognizing activities using a three-axis accelerometer sensor involves
converting the signal values by applying Equation (1) or a statistical formula or using a mathematical
algorithm for activity classification [13,14]. Equation (1) can be applied to determine the SVM,
by extracting a single representative value from the X, Y, and Z accelerations output by the three-axis
accelerometer sensor. This quantity can be used to offset the directional component of the acceleration
along each axis that is caused by gravity and to collect fixed pattern information [15]. Equation (1)
can be applied to determine the SVM, by extracting a single representative value from the X, Y, and Z
accelerations output by the three-axis accelerometer sensor, where the SVM is an Euclidean Norm
and each ax, ay, and az are the vector magnitude values attained from the three-axis accelerometer
sensor [13–15].

SVM =
√

a2
x + a2

y + a2
z (1)

Figure 8 depicts results obtained by applying Equation (1) to the X, Y, and Z acceleration outputs
corresponding to standing, walking, and running when the safety helmet is worn properly with the
chinstrap fastened.
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The horizontal axis in Figure 8 is the number of data items listed sequentially, and 100 data items
were diagrammed. The vertical axis is an index that shows the SVM. Standing, walking, and running,
which are typical activities in activity recognition, clearly exhibit a variety of differences following
the application of Equation (1) [16]. Among the three activities, running, which involves relatively
large body movements, has the largest SVM. Standing, which entails relatively little body movement,
has the smallest SVM.

Although the data were classified well by activity, there was some uncertainty regarding whether
the helmet was worn properly with the chinstrap fastened or worn improperly with the chinstrap
incorrectly fastened during each activity, as shown in Table 2. Table 2 summarizes the results of tests
performed by dividing the three activities in [Figure 8] into states with the chinstrap fastened (On) and
not properly fastened (Off) and then using the RandomTree algorithm of WEKA to classify 100 data
samples. RandomTree is a Supervised Classifier; which is an ensemble learning algorithm that a large
number of individual learners [17]. It is a typical decision-making tree data mining algorithm and it
forms the basis of RandomForest [18].

Table 2. Accuracy of SVMs for standing, walking, and running according to whether or not the safety
helmet is worn properly.

Standing
(On)

Standing
(Off)

Walking
(On)

Walking
(Off)

Running
(On)

Running
(Off)

Accuracy
(%)

Standing (On) 47 39 6 6 2 0 47
Standing (Off) 43 44 5 5 1 2 44
Walking (On) 5 5 34 37 15 4 34
Walking (Off) 6 6 35 36 11 6 36
Running (On) 2 0 14 11 41 32 41
Running (Off) 0 1 5 9 33 52 52

Average 42.3

Table 2 shows that the mean accuracy of the decision regarding whether or not the safety helmet
is being worn properly during standing, walking, and running is 42.3%. The activity classification
accuracy is high, but the accuracy of the classification regarding whether or not the safety helmet was
worn properly during each activity is not as high. As an example, Figure 9 shows the walking activity,
for which the determination of whether or not the safety helmet was worn properly has a particularly
low accuracy among the activities in Table 2.
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As shown in Figure 9, the SVM of the walking activity when the safety helmet was worn properly
is larger than when the safety helmet was not worn properly. However, it is considered to be difficult
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to categorize the walking activity data according to whether the safety helmet was properly worn or
improperly simply through visual analysis. As such, an F-test was performed (at a significance level of
0.1) using the variance of the data, resulting in Table 3 below.

Table 3. F-test results for SVM during walking according to whether or not the chinstrap on the safety
helmet was fastened.

Walking (On) Walking (Off)

Average variation (Magnitude) 257.86 258.89
Dispersion (Magnitude) 1865.85 2511.79

Observed number 100 100
Degrees of freedom 99 99

F proportion 0.7428381
P (F ≤ f) one-sided test 0.0704417

F-rejection value one-sided test 0.7721233

Result F-rejection value > F proportion

In the F-test results in Table 3 for the walking activity when the safety helmet was worn properly
or improperly, the F-rejection value is greater than the F proportion. Therefore, the data could be
classified based on whether or not the chinstrap was fastened. However, the data mining results in
Table 2 exhibit markedly low accuracy. The three-axis accelerometer sensor is sensitive and therefore
has physical error, and the data obtained when the safety helmet was and was not worn properly
during each activity yielded different F-test results. Nevertheless, the data from the two cases were
recognized as the same area and could not be represented correctly [19].

3.2. 2nd Data (FFT) Analysis

To resolve this issue, the SVMs were converted into frequency bands via FFT to classify the data
obtained when the safety helmet was worn properly, not worn, and worn improperly. An FFT involves
the same formula as a discrete Fourier transformation (DFT) as expressed in Equation (2), but the data
size is made 2n to improve the calculation speed [20]. Here in, x[n] is the data of SVM values, e−

2πi
N kn

is a twiddle factor as a complex exponential function, and j is an imaginary unit. When an FFT is used
in analysis, the sizes of the frequency bands for each activity are distributed differently. Therefore,
the proper wearing, improper wearing, and not wearing data for each activity can be identified [21,22].

X[k] =
N−1

∑
n=0

x[n]e
− 2πi

N kn =
N−1

∑
n=0

x[n]

(
cos
(

2πkn
N

)
+ jsin

(
2πkn

N

))
(k = 0, . . . , N − 1) (2)

[Figure 10] shows the results of using Equation (2) on the data in Figure 9 and conversion via FFT.
To perform an FFT, 2n data are needed, so the walking activity data were separated into On and Off
states, and the number of data was set to be the same at 64. In Figure 10, there is a pattern in which
both the On and Off states of the walking activity are prominent in the 0.85–1 Hz range. Near 1 Hz,
the slope of the graph changes gradually for the On data but changes rapidly for the Off data.
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3.3. Test Scenario for using FFT Data

The focus of this study was the proper wearing of safety helmets at construction sites.
To distinguish between wearing and not wearing a helmet and then between properly and improperly
wearing the helmet, the test scenario depicted in Figure 11 was created.
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Figure 11. Safety helmet state classification chart.

First, a determination is made regarding whether or not the safety helmet is being worn. If the
helmet is being worn, it is determined whether the helmet is being worn properly or improperly.
For this purpose, it is necessary to classify the worker activities. In existing studies on sensor-based
activity recognition, activities such as walking, standing, running, riding a bicycle, going up stairs,
and going down stairs have been classified [23–26]. Since the focus of this study was on worker
activities at a construction site, the test scenarios were classified accordingly, as shown in Figure 12.
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In this study, 11 typical main activities of workers at a construction site were identified and were
divided into static, moderate, and dynamic activities. The static activities include sitting, standing,
and resting and generally involve minimal upper and lower body movements. Resting allows the
upper body to move more freely than sitting. The moderate activities include hammering and painting.
Here, the lower body is generally static, but the upper body is moving to perform a task. Finally,
the dynamic activities include walking, running, going up stairs, going down stairs, transporting
objects, and climbing ladders.

The data sampling period of the sensor was 8 Hz, and a data frame was created to allow data
sampling to occur 128 times every 32 s. Every 128 data items constituted a set, and 100 sets of raw
data were collected regarding the proper and improper wearing of safety helmets according to activity.
The tests were performed on three men and two women to consider a variety of body conditions. Each
subject performed each activity for 2–30 min, depending on whether the chinstrap was fastened or not.
When the safety helmet was properly worn (On), the harness was adequately tightened around the
head, and the chinstrap was 2 cm vertically from the tip of the chin of the subject. When the safety
helmet was improperly worn (Off), the harness was loose, and the chinstrap was not properly fastened.

3.4. Final Test Analysis Results

Table 4 below shows the results of applying the RandomTree algorithm from WEKA to the
proper wearing (On), improper wearing (Off), and non-wearing of the safety helmet proposed in
this study according to the activities of the workers. The accuracy is the highest when using the
RandomTree algorithm.

As shown in Table 4, the data derived from each activity have a high recognition rate. The good
activity recognition indicates high classification performance, i.e., several activities can be classified,
and the data can be categorized according to whether or not the safety helmet was worn during
each activity. When the safety helmet was not worn, in which case the highest accuracy was found,
12,577 data out of a total of 12,800 data were accurately recognized as having been obtained when the
helmet was not worn, yielding the best data verification performance (98.26%).

Table 5 shows the accuracy verification results for properly wearing, improperly wearing, and not
wearing the proposed safety helmet, based on the data in Table 4. The mean recognition rates for the
11 considered typical worker activities at construction sites are 96.89% for properly wearing the safety
helmet and 98.26% for not wearing the helmet, which indicate good classification performance. A high
accuracy of 96.90% was also achieved for the data obtained when improperly wearing the helmet.
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Table 4. Experimental classification results for properly wearing, improperly wearing, and not wearing the safety helmet according to worker activity.

Predicted Class (Cross-validation Folds 30)

Sitting Standing Resting Hammering Painting Walking Running Going Up Stairs Going Down
Stairs Transporting Climbing

Ladder
Not Wearing

Helmet
Accuracy

(%)

on off on off on off on off on off on off on off on off on off on off on off

Actual
Class

Sitting on 12,389 41 33 50 49 46 25 20 27 34 6 12 0 5 10 8 3 0 12 6 4 4 16 96.79
off 34 12,388 72 32 72 41 14 13 31 25 2 3 0 1 6 4 2 2 2 0 1 4 51 96.78

Standing on 42 52 12,380 38 62 48 24 15 36 34 0 2 0 2 2 2 5 1 0 0 2 2 51 96.72
off 25 44 48 12,423 54 62 18 18 25 20 6 2 2 6 3 2 0 0 0 14 2 2 24 96.79

Resting on 28 54 68 69 12,389 43 14 8 34 24 2 2 0 4 0 7 1 0 4 6 0 6 37 96.79
off 44 46 34 54 43 12,396 23 20 50 30 5 6 4 0 2 4 0 5 2 2 10 2 18 96.84

Hammering on 19 8 22 8 2 36 12,448 32 26 43 26 18 9 2 16 8 4 8 16 26 6 15 2 97.25
off 23 14 21 14 21 12 35 12,430 18 20 22 18 11 10 25 12 10 16 6 26 12 22 2 97.11

Painting on 35 17 29 34 38 27 30 23 12,412 38 15 16 8 7 6 6 6 4 16 14 10 4 5 96.97
off 32 32 26 32 19 39 26 28 46 12,392 14 25 0 0 14 11 0 8 20 16 10 4 6 96.81

Walking on 10 6 2 2 4 1 20 16 15 12 12,444 25 30 25 18 13 30 23 20 22 22 40 0 97.22
off 9 0 2 6 4 6 15 16 7 4 40 12,419 25 34 19 20 34 8 40 29 26 37 0 97.02

Running on 2 0 0 0 2 2 9 9 4 4 30 13 12,413 37 41 48 41 34 26 23 38 24 0 96.98
off 7 0 0 2 2 0 4 11 3 2 26 22 52 12,414 22 40 40 40 24 20 44 25 0 96.47

Going Up
Stairs

on 6 6 2 12 0 7 20 16 14 5 30 38 34 38 12,348 38 18 28 34 36 40 30 0 96.47
off 0 4 7 6 0 4 6 6 8 9 32 28 36 33 34 12,388 26 32 35 16 36 54 0 96.78

Going Down
Stairs

on 2 0 0 2 4 2 4 18 6 4 30 38 50 34 40 40 12,370 32 36 18 34 36 0 96.64
off 5 0 0 2 4 1 10 12 8 6 34 28 37 29 31 22 25 12,423 22 32 30 37 2 97.05

Transporting on 4 2 4 4 2 3 22 30 10 14 47 36 28 20 22 12 20 34 12,416 30 20 20 0 97.0
off 0 4 2 2 2 6 16 22 10 4 35 24 41 30 22 22 24 18 44 12,397 34 40 1 96.85

Climbing
Ladder

on 3 2 6 2 4 1 16 6 4 6 29 32 38 28 26 48 42 34 18 32 12,405 16 1 96.92
off 11 4 2 4 4 2 13 20 6 6 28 32 24 30 28 38 41 34 27 20 20 12,406 0 96.92

Not Wearing
Helmet 22 50 47 37 36 17 2 0 6 2 0 2 0 0 1 1 0 0 0 0 0 0 12,577 98.26

Average 96.95
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Table 5. Results of analysis of the recognition accuracy and number of data for properly wearing, not
wearing, and improperly wearing the safety helmet for each worker activity.

No. of Data Accuracy (%)

Normally Wearing Helmet 140,800 96.89
Abnormally Wearing Helmet 140,800 96.90

Not Wearing Helmet 12,800 98.26

4. Discussion

In previous studies in which three-axis accelerometer sensors were used to recognize activities,
the sensors were attached to smartphones, wearable devices, body parts, etc. and the data were
analyzed [27–32].

In the existing studies on user activity recognition via three-axis accelerometer sensors,
the determinations were made using only the size of the data of the three-axis accelerometer sensor;
however, it is necessary to classify data by using several statistical methods regarding the sizes of the
vertical and horizontal components and the directionality of the smartphone [27].

However, when activities cannot be accurately identified using only the size of the data of the
three-axis accelerometer sensor, the FFT can be used to differentiate clearly between static activities
for which the data are confusing such as “sit” and “stand” [28]. The data acquired in dynamic
environments such as vehicles were simultaneously combined with the activity data as they were
obtained. The chaotic data with overlapping pattern ranges were reanalyzed by performing an FFT,
and the common patterns of specific unique frequencies were used as features to classify activities
posture [29]. FFT analysis, in which points in time with sudden irregular patterns are recognized as
state changes, is seen as a very suitable method for analyzing three-axis accelerometer sensor data [30].

In this study, a safety helmet with a three-axis accelerometer sensor attached was developed for
worker activity analysis. The mean recognition rate for properly wearing, improperly wearing, and not
wearing the proposed safety helmet is increased from 17.09% to 96.95% between before applying FFT
and after applying FFT, when the data classification is made by the RandomTree algorithm of Weka.
In the proposed method, data obtained when the helmet is worn properly with the chinstrap correctly
fastened, worn improperly with the chinstrap not correctly fastened, and not worn are employed to
differentiate among properly wearing, improperly wearing, and not wearing the helmet.

5. Conclusions

Most existing technological approaches for promoting the proper wearing of safety helmets
involve attaching a sensor to the chinstrap of the helmet to determine whether or not it is being worn
properly using data pertaining to whether or not the chinstrap is fastened, as well as additional sensing
data. However, it is not possible to determine whether a safety helmet is being worn improperly solely
by using a sensor attached to the chinstrap.

To resolve this problem, a system in which a three-axis accelerometer sensor is attached to the
safety helmet was developed in this study. This system can be used to identify not only when the
helmet is being properly worn or not worn, but also when it is improperly worn by employing the
sensing data generated during work according to the activity of the worker at the construction site.
The developed system was verified by performing tests using the RandomTree algorithm from WEKA.
The results confirmed that the system can classify when a safety helmet is being worn properly, being
worn improperly, and not being worn with mean accuracies of 96.89%, 96.90%, and 98.26%, respectively.

This study is expected to contribute to the prevention of construction accidents by monitoring
whether or not construction workers properly wear safety helmets. It is also expected to serve as a first
step toward identifying worker activities and whether or not work is occurring by using three-axis
accelerometer sensing.
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Because a high recognition rate can be achieved when classifying worker activities using a
three-axis accelerometer sensor, it is believed that the applications of this method will be expanded in
the future through studies on construction work process improvement and productivity management.
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