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Featured Application: As the materials for fast low-voltage displays and light modulators.

Abstract: This is a review of results from studying ferroelectric liquid crystals (FLCs) of a new type
developed for fast low-voltage displays and light modulators. These materials are helix-free FLCs,
which are characterized by spatially periodic deformation of smectic layers and a small value of
spontaneous polarization (less than 50 nC/cm2). The FLC director is reoriented due to the motion of
solitons at the transition to the Maxwellian mechanism of energy dissipation. A theoretical model
is proposed for describing the FLC deformation and director reorientation. The frequency and
field dependences of the optical response time are studied experimentally for modulation of light
transmission, scattering, and phase delay with a high rate. The hysteresis-free nature and smooth
dependence of the optical response on the external electric field in the frequency range up to 6 kHz is
demonstrated, as well as bistable light scattering with memorization of an optical state for a time
exceeding the switching time by up to 6 orders of magnitude. Due to the spatially inhomogeneous
light phase delay, the ability of a laser beam to cause interference is effectively suppressed. The fastest
FLCs under study are compatible with 3D, FLC on Silicon (FLCoS), and Field Sequential Colors
(FSC) technologies.

Keywords: liquid crystal; ferroelectric; helix-free; soliton; transparent mode; light scattering;
speckle suppression

1. Introduction

It is known that the minimum-time optical response is achieved in some smectic liquid crystals,
called smectics C*, which possess ferroelectric properties and high sensitivity to electric fields [1–3].
The principle of electro-optical modulation in ferroelectric liquid crystals (FLCs), like in widely used
nematic liquid crystals (NLCs), is the electrically controlled birefringence or light scattering.

A distinctive feature of smectic crystals is the layered structure formed as a result of ordering
the centers of mass of FLC molecules along the direction of orientation of their long axis (director),
with a pitch of the order of the molecules’ length. Among the smectic crystals, the helix FLCs are the
most well known, in which the polar axes of various smectic layers are rotated relative to each other,
forming a helix (spiral) twist of the FLC director in the absence of an external electric field (Figure 1).
In each layer, the position of the director n is determined by the polar angle Θ0 and the azimuth angle
ϕ, which varies from 0 to 2π at a distance equal to the pitch p0 of the helix. Under the action of the
electric field E, which is parallel to smectic layers (along the coordinate x), the vector PS of spontaneous
polarization is oriented in all layers along the field direction. As a result, the director acquires one
direction in the entire volume of the FLC layer—the direction of the FLC main optical axis.
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Figure 1. The helix ferroelectric liquid crystal (FLC)-based electro-optical cell with planar orientation
of a layer (a) and mutual location of the spontaneous polarization vector PS, a smectic layer, and FLC
director n (b). I0 and I are the intensities of the incident light and the light passing through an FLC
cell, correspondingly. 1—glass substrates with conductive covers 2; 3—smectic layers; 4—generator of
bipolar pulses; 5 and 6—polarizers; p0—helix pitch; Θ0—angle of molecule tilt in smectic layers.

When a sign of the field E changes, the orientation of the vector PS changes by 180◦, and the long
axes of molecules unfold along the cone with the generatrix 2Θ0, resulting in a change of the angle
ϕ by 180◦. The reorientation of the director determining the main optical axis of the ellipsoid of the
FLC refractive indices results in a change in the angle between the polarization plane of the incident
light (I0) and the main optical axis of the ellipsoid. This leads to the modulation of the phase delay
between the ordinary and extraordinary rays, or to light intensity modulation, if the electro-optic
cell is placed between crossed polarizers [1–3]. Under certain conditions, electrically controlled light
scattering on so-called transient domains is observed in the helix FLC due to the formation of a spatially
inhomogeneous structure of refractive index gradients in the FLC layer [4,5].

Helix-free (no spiral) FLCs are also known [6]. In them, the helicoidal twist of the director in
the FLC volume is compensated or suppressed by the interaction of chiral optically active additives
with opposite signs of optical activity. The coincidence of the same signs of spontaneous polarization
in chiral additives makes it possible to obtain a value of spontaneous polarization of 100 nC/cm2 or
higher for FLCs with a compensated helicoid.

In contrast to NLC, the electro-optical effect in FLC is linear relative to the field [7,8], and since
FLC reacts to the sign of the applied electric voltage, the values of the on and off times of the optical
response are the same and are proportional to

τR ~ γϕ/PS × E, (1)

if the dissipative coefficient is the rotational viscosity γϕ. The FLC is returned to its original state
by a reverse-polarity pulse, i.e., forcedly, not as a result of relaxation due to elastic forces (like in the
NLC). Therefore, the optical response at switching on and off is symmetrical and very short (in the
sub-millisecond region), especially for FLC with low viscosity and large spontaneous polarization.
However, it is impossible to significantly reduce τR by increasing the spontaneous polarization, since
this usually leads to an increase in the FLC rotational viscosity. This circumstance limits the frequency
of light modulation if the applied voltage does not exceed several volts.
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In the research carried out at the Lebedev Physical Institute (LPI), it was shown that the nature of
the FLC director reorientation in an electric field depends essentially on the coefficient responsible
for the energy dissipation in an FLC layer: the rotational or shear viscosity [9]. If the alternating
electric field of the frequency f acts on the FLC, and the period of its variation is large (τm·f << 1)
in comparison with the Maxwellian relaxation time τm [10], then the FLC behaves as a liquid with
the viscosity γϕ. On the contrary, at sufficiently high frequencies (τm·f >> 1), the FLC behaves as an
amorphous solid, and the dissipative coefficient is the shear viscosity (denoted γψ).

The predominance of shear viscosity leads to a change in the character of the motion of the
helix FLC director in weak electric fields: the reorientation occurs due to the motion of 180◦-domain
walls [9,11,12]. Such a reorientation process made it possible to obtain a modulation frequency of
light radiation of the order of 3 kHz with an electric field strength of about 1 V/µm. The time of the
electro-optical response was 50÷ 70 µs. As a disadvantage, some distortion of the spectral composition
of the modulated radiation and the residual light scattering caused by the presence of a helix was noted.

The character of the electric field action is practically the same for known helix-free FLCs. In them,
the azimuth angle ϕ of the director’s orientation in the volume of a layer is a value that is practically
constant in all smectic layers; i.e., there is a so-called spatially homogeneous structure. The magnitude
of the spontaneous polarization is much higher than 50 nC/cm2. The dissipative coefficient is the
rotational viscosity γϕ, and the director reorientation time, as for the helix FLC, does not depend on
the frequency of the electric field change [8].

A new type of helix-free FLC specially developed at the LPI has a different character of interaction
with the electric field. This material is a spatially inhomogeneous structure with periodic deformation
of smectic layers (with a pitch from 1.5 to 5 µm) in the absence of an electric field and a relatively small
value of spontaneous polarization (less than 50 nC/cm2). In such an FLC, the director reorientation in
the alternating electric field is due to the motion of structurally stable localized waves of a stationary
profile—dynamic solitons that arise upon the transition to the Maxwellian mechanism of energy
dissipation—and the electro-optical response depends essentially on the frequency of the electric field
change [13–16]. Note that a director reorientation through solitons was proposed for the first time
in [17].

The new materials provided unique parameters of radiation modulation unattainable for LC
analogs. For example, in a transparent mode, in an electric field of the order of 1 V/µm (at a control
voltage of ±1.5 V), experimental samples of electro-optical cells with the novel helix-free FLC show a
modulation characteristic with the fastest optical response (about 25 microseconds) and the highest
modulation frequency (up to 7 kHz), including hysteresis-free characteristics with a continuous gray
scale up to 6 kHz. In a bistable light-scattering mode, a state with intensive scattering can be turned on
and off for a few tens of microseconds and be memorized for several tens of seconds or until a pulse of
opposite polarity appears [16].

We will now consider in more detail the physical properties, light modulation characteristics, and
possible applications of the new helix-free FLC based on the results attained from our research during
the last few years.

2. Ferroelectric Liquid Crystals Compositions Used and Their Basic Properties

The basis of the new FLCs is the same optically active additives used in known FLC and based on
derivatives of terphenyl-dicarboxylic acid. The difference is only in the specific compositions of FLCs,
which is the object of know-how. In spite of the great difference in the rotational viscosity coefficient
γϕ, which in various compositions changes by practically an order of magnitude (from 0.15 to 1.5 P),
and in spite of the manifestation of essentially different optical properties (to be discussed below), the
values of the spontaneous polarization PS, the initial tilt angle of molecules in smectic layers Θ0, and
the sequence of phase transitions for all new FLCs differ insignificantly (see Table 1).

The sequence of phase transitions for these compositions is the following:
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HF-32B: Cr 2 ◦C→ Sm C* 70 ◦C→ Sm A* 101 ◦C→ I,
HF-32C: Cr 1 ◦C→ Sm C* 75 ◦C→ Sm A* 102 ◦C→ I,
HF-32D: Cr 0 ◦C→ Sm C* 68 ◦C→ Sm A* 98 ◦C→ I,
HF-32E: Cr 2 ◦C→ Sm C* 75 ◦C→ Sm A* 103 ◦C→ I,
HF-32F: Cr 1 ◦C→ Sm C* 73 ◦C→ Sm A* 90 ◦C→ I.

Here, Cr is the crystalline phase, Sm C* is the chiral smectic C phase (ferroelectric), Sm A* is the
chiral smectic A phase (paraelectric), and I is the isotropic (liquid) phase.

Table 1. Investigated helix-free ferroelectric liquid crystals (FLC) compositions.

Compositions Θ0, grad. PS, nC/cm2 γϕ, P

HF-32B 21.7 40 0.7

HF-32C 22 40 1.0

HF-32D 23 42 0.15

HF-32E 22 45 1.5

HF-32F 21 42 0.75

The new helix-free FLC materials exhibit the following basic properties in electro-optical cells,
first discovered and investigated at the LPI:

• A periodic spatial deformation of FLC smectic layers with a pitch of 1.5÷6 µm is observed in the
absence of an electric field;

• The FLC director is reoriented as a result of the soliton waves motion;
• Certain FLC compositions show the fastest (among all LCs) optical response in a transparent

mode with continuous gray scale;
• Certain FLC compositions show the fastest (among all LCs) optical response in the light-scattering

mode with data storage;
• Certain FLC compositions provide a rapid change in the phase delay of the modulated radiation

initiated by light scattering.

3. Periodic Deformation of Smectic Layers

The periodic deformation of smectic layers in new helix-free FLCs in the absence of an external
electric field is the result of compensation of the space charge of the spontaneous polarization.
In the case of homeotropic orientation of FLC molecules, where smectic layers are parallel to the
electro-optical cell substrates, the periodic deformations are clearly observed (Figure 2) and look
behind crossed polarizers like alternating bands with a pitch of 1.5÷6 µm, depending on the FLC
molecular structure [15,16].
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A deformation occurs at a certain ratio between the values of FLC essential parameters, as follows:

• The rotational viscosity is in the range of 0.3 < γϕ < 1.0 P. If it is less, the transition to the shear
viscosity γψ is not achieved, and the soliton mechanism of reorientation of the FLC director is
not realized; if it is more than 1 P, the optical response time increases significantly at higher
frequencies, and the transition to the soliton mode is not observed;

• The magnitude of the spontaneous polarization PS is less than 50 nC/cm2. If it is greater, the
saturation voltage increases, the ferroelectric domains begin to form, and residual light scattering
takes place after the electric field is turned off.

The periodical deformation of smectic layers is responsible for the properties of the novel FLCs
indicated above. In fact, the fast electro-optical response with continuous gray scale in a transparent
mode, which could be used in display devices, is observed in the FLC compositions with a rather
long deformation pitch of more than 3 µm. For example, for the composition HF32F, the deformation
pitch is of 4 µm. Intensive light scattering in FLC, which could be used in polarization-free devices,
manifests in compositions with rather short deformation pitch of 1.5 ÷ 2.0 µm (this value for HF32 is
about 1.5 µm). A fast-changing phase delay (initiated by light scattering switching on), which could be
used for suppressing speckles in laser images, is realized more preferably in FLC compositions with a
deformation period of about 3 µm. Although the periods of spatial deformation for HF32F and HF32B
are different, other essential parameters of these compositions are almost the same (see Table 1).

4. Ferroelectric Liquid Crystals Director Reorientation by an Electric Field in the Soliton Mode

As shown in [15,16], the periodic deformation of smectic layers means that for FLC molecules
initially inclined at the angle Θ0 with respect to the normal to the FLC layer at a given point, it is
energetically preferable to additionally deflect by some angle ±Ψ with respect to the direction z of
substrate rubbing (Figure 3). Because of this, the position of the FLC main optical axis along the smectic
layers changes, and the birefringence depends on the electric field frequency.
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Figure 3. An electro-optical cell with helix-free FLC (a) and a fragment of a deformed smectic layer
(b) 1—glass substrates with conductive covers; 2—smectic layers; Θ0—the angle of molecule tilt in
smectic layers; ψ—angle of tilt of a smectic layer; PS—vector of spontaneous polarization; d—FLC cell
thickness; l—smectic layer thickness.

The electric field E applied along the coordinate y interacts with the spontaneous polarization
and changes the director distribution (the angle Ψ) in each smectic layer. The reorientation of the FLC
director can occur both with the change of the azimuthal angle ϕ of the director orientation by 180◦,
when the director is reoriented along the cone generatrix with its 2Θ0 turn, and with the change in
the distribution of the angle ψ characterizing the deformation of smectic layers. In the first case, the
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dissipative coefficient is the rotational viscosity γϕ, and in the second case, it is the viscosity for the
shear deformation γψ.

When after the electric field is turned off the director relaxation time begins to depend on the
electric field frequency, the transition to the Maxwellian mechanism of energy dissipation takes
place—that is, the transition from the rotation viscosity γϕ to the shear viscosity γψ.

To describe the nonlinear dynamic process of FLC director reorientation in an external electric
field, we used the soliton approach [15–18] by which many nonlinear effects and processes have been
described before, including those in ferroelectric liquid crystals [17,19–21].

The soliton mode manifests in the new FLC compositions possessing coefficients of rotational
viscosity in the range from 0.15 to 1 P, when the electric field frequency or, simultaneously, the frequency
and the strength increase. At frequencies corresponding to the transition to the Maxwellian mechanism
of energy dissipation, the viscosity γψ for the shear strain becomes a dissipative coefficient, and the
dynamic solitons move along the smectic layers. The director of the FLC is reoriented by the motion of
soliton waves.

The appearance of the soliton waves is due to the joint influence of the medium nonlinearity
and the presence of a dispersion of velocities of deformation waves (or displacements). They sharply
increase the steepness of the wave front and cause the growth of gradients of the field variables. This
leads to a spatial redistribution of the excitation energy and its localization (the wave period tends
to infinity). The shape of dynamic solitons is uniquely related to the independent parameters—in
particular, to the velocity of the soliton center [18]:

V =
Θ0

γψ

(
2K(PSE cos ϕ0 + M)−

(
2K

dΘ0

)2
)1/2

, (2)

where K is the FLC elastic modulus describing the deformation of the director with respect to the angle
Ψ; γψ is the shear viscosity; M is the bending energy of smectic layers; and ϕ0 is the initial azimuth
angle of the director orientation.

The transition to the Maxwellian mechanism of energy dissipation and the soliton mechanism of
director reorientation is accompanied by a strong frequency dependence of the electro-optical response
time τ0.1–0.9. It can be seen from Figure 4 that in the frequency range from 100 to 200 Hz, this time for
the composition HF-32B with γϕ = 0.7 P decreases by almost half.
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reason for this weakening is that the relaxation time of the FLC director to the unperturbed state after 

the voltage turning off is practically independent of the frequency of the electric field change (Figure 

Figure 4. Frequency dependence of the optical response time for the HF-32B composition at V = ±1.5 V.
The bipolar voltage is of the rectangular shape (meander). The thickness of the electro-optical cell is 1.7 µm.

For more viscous FLC compositions, for example, for HF-32E with γϕ = 1.5 Poise, the frequency
dependence of the electro-optical response time τ0.1–0.9 is significantly weakened (Figure 5a).
The reason for this weakening is that the relaxation time of the FLC director to the unperturbed
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state after the voltage turning off is practically independent of the frequency of the electric field change
(Figure 5b). Consequently, the transition to the Maxwellian mechanism of energy dissipation does not
occur, and the soliton mode does not manifest.
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Figure 5. Frequency dependences (a) of the optical response time at ±1.5 V (curve 1) and ±12 V
(curve 2) pulses acting and (b) of the director relaxation time after ±1.5 V pulses turning off. The FLC
composition is HF32E (γϕ = 1.5 P). A bipolar voltage of rectangular shape (meander) was applied. The
thickness of the electro-optical cell is 1.7 µm.

A decrease in the rotational viscosity coefficient to 0.15 Poise (for the composition HF-32D with
practically the same spontaneous polarization value) leads to the soliton mode not being observed at
the control voltage amplitude ±1.5 V (Figure 6, curve 1). The soliton mode appears when the electric
field strength exceeds 5 V/µm (Figure 6, curve 2). This is especially seen in the frequency range of a
few hundred Hz, when the transition to the mechanism of energy dissipation takes place.
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5. Theoretical Model of the Ferroelectric Liquid Crystal Deformation and Director Reorientation

5.1. Deformation of Ferroelectric Liquid Crystal Smectic Layers

The bulk density of free energy associated with the periodic deformation of smectic layers can be
written as [16,18,22]
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F =
1
2

K
(

dψ

dy

)2
+

1
2

M
(

l − l0
l0

)2
. (3)

Here, K is the elasticity coefficient describing the director’s deformation over the angle ψ (Figure 3)
and M is the bending energy of smectic layers. We also take into account the smallness of the
angles ψ and Θ0 (ψ, Θ0 << 1), and the relative change of the smectic layer thickness (l − l0)/l0 ∼=
(ψ2 − Θ0

2)/2 [23].
If to minimize Equation (3) we can find the distribution of the angle ψ along the coordinate y

(0 ≤ y ≤ d, where d is the thickness of the electro-optical cell), then

d2ψ

dy′2
+

MΘ2
0d2

2K
ψ− Md2

2K
ψ3 = 0, (4)

where y’ = y/d and 0 ≤ y’ ≤ 1.
The exact solution of Equation (4) is written in terms of the Jacobi elliptic sine:

ψ =
√

2Θ0
k√

1 + k2
sn

(
Θ0d

√
M
2K

(y′ + C1)√
1 + k2

, k

)
(5)

where k =

√
MΘ4

0d2

8KC2
−
√

MΘ4
0d2

8KC2
− 1, 0 < C2 <

MΘ4
0d2

8K , and 0 < k < 1 is the modulus of Jacobi elliptic sine.

Using the Van der Pol method [24] and substituting the boundary conditions ψ(y = 0) = 0 and
dψ/dy = 0 at ψ = Θ0, we obtain an approximate solution to Equation (4):

ψ = Θ0 sin

(
5
8

Θ0

√
M
2K

y

)
. (6)

This analytical solution given by Equation (6) describes the structure of smectic layers deformed
periodically in the direction y. Maxima and minima in the dependence ψ(y) correspond to light and
dark stripes in Figure 2a for a cell with FLC layer thickness of 5 µm, Θ0 = 23◦, M = 4 × 103 erg/cm3,
and K = 5 × 10−12 N.

Reorientation of the FLC director due to the interaction of the alternating electric field E applied
along the coordinate y (Figure 2b) with the spontaneous polarization PS can occur both by changing
the azimuth angle ϕ of the director orientation by 180◦ (if the director is reoriented along the generating
lines of a cone with \ apex angle 2Θ0) and by changing the distribution of ψ (deformation of smectic
layers). In the first case, the dissipative coefficient is the rotational viscosity γφ, and in the second one,
the viscosity γψ of the shear deformation predominates [16,18].

5.2. Ferroelectric Liquid Crystal Director Reorientation

The bulk density of the free energy for the electrostatic interaction of the electric field and
spontaneous polarization can be written as

1
2

PSE cos ϕ0

(
l − l0

l0

)2
, (7)

where ϕ0 is the initial azimuth angle of the director orientation. Now we minimize the expression in
Equation (3) and record the equation of a balance of moments, describing the change ψ in the electric
field E:

− γψ
∂ψ

∂t
= K

∂2ψ

∂y2 +
(PSE cos ϕ0 + M)

2
ψ(Θ2

0 − ψ2) (8)
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where K∂2ψ/∂y2 and γψ∂ψ/∂t are the elastic and viscous moments defining the director reorientation
by the angle ψ; K and γψ are elasticity and viscosity coefficients; t is the time; and the electric field
switches on at t = 0.

If we introduce variables

α =
d2(PSE cos ϕ0 + M)

2K
, y′ =

y
d

, t′ =
t
t0

, and t0 =
γψd2

K
, (9)

then Equation (8) will be transformed to

∂ψ

∂t′
+

∂2ψ

∂y′2
+ αΘ0

2ψ− αψ3 = 0. (10)

Since ψ in a general case can depend not only on the coordinates but also on the time, we have
ψ = ψ (y′,t′) = ψ0 exp (−iξt′), where ξ > 0 is a constant, and ψ0 is the amplitude, which is a slow function
of time [24]. Thus, Equation (8) is converted to the following:

∂ψ0

∂t′
+

∂2ψ0

∂y′2
+ ψ0

(
αΘ0

2 + iξ
)
− αψ0

3 = 0. (11)

After substitution of ψ0 = Φexp(−iη), where Φ = Φ(y’) and η = η(t’), Equation (11) is transformed
to a system of two equations: {

∂2Φ/∂y′2 + ΦαΘ0
2 − α Φ3 = 0,

Φ(∂η/∂t′)−Φξ = 0.
(12)

Using the hyperbolic function sn, one can describe Φ as follows:

Φ =

√
2Θ0k√
1 + k2

sn
[

Θ0
√

α(y′ + C1)√
1 + k2

, k
]

, and η = ξt′ + C2. (13)

Now the function ψ = ψ0 exp(−iξt’) using sn can be written as follows:

ψ =

√
2Θ0k√
1 + k2

sn
[

Θ0
√

α(y′ + C1)√
1 + k2

, k
]

exp
(
−2iξt′ − iC2

)
. (14)

For the extremely nonlinear situation at k→1 when the wave period tends to infinity,
this relation (using the hyperbolic function th) results in the spatially localized waves of a
stationary profile—solitons.

ψ = Θ0 th
(

Θ0
√

α (y′ + S1)

2

)
exp(−2iξt′ − iC2) (15)

From the boundary and initial conditions, we take C1 = C2 = 0 and η = const. Then,

ψ = Θ0 th
(

Θ0
√

αy′

2

)
exp(−2iξt′). (16)

This equation defines the width of the soliton localization region and its amplitude. However, it
does not describe the soliton movement along the coordinate y, namely, its velocity V. This is defined
through the transformation

ψ0 = Φ
(
y′ −Vt′

)
exp[i(V/2)(y′ − (V/2)t′)]. (17)
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Then, the function ψ is

ψ =

√
2
α

√
αΘ2 −V2/4k√

1 + k2
sn

[√
αΘ2 −V2/4y′√

1 + k2
, k

]
exp

(
i
V
2
(y′ −Vt′)− iωt′

)
, (18)

where ω = ξ − V2/4 is the frequency in the system of reference moving with a soliton, and ξ is the
frequency at the fixed (laboratory) system of reference.

From Equation (18) at k→1, we finally obtain a spatially localized solution—the wave of the
stationary profile moving with velocity V along the coordinate y:

ψ =

√
αΘ2 −V2/4

α
th

[√
αΘ2 −V2/4

2
(y′ −Vt′)

]
exp

(
i
V
2
(y′ −Vt′)− iωt′

)
. (19)

So, the spatially localized solution of Equation (8) is a two-parameter soliton: the first parameter
is the velocity V of its center motion, and the second one is its eigenfrequency ω in the system of
reference moving with the soliton. Such a solution is presented in graphical form in Figure 7.
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Figure 7. Graphical presentation of the solution of Equation (18), which describes the change of the 

angle ψ in the electric field E (a) and motion of the orientation bend in the FLC layer (b). Е = 3 V/µm, 
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Figure 7. Graphical presentation of the solution of Equation (18), which describes the change of the
angle ψ in the electric field E (a) and motion of the orientation bend in the FLC layer (b). E = 3 V/µm,
PS = 50 nC/cm2, M = 4 × 103 erg/cm3, K = 5 × 10−12 N, γψ = 0.2 P, Θ0 = 23◦, and ϕ0 = 30◦.
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As seen from Figure 7, the transition to the Maxwellian mechanism of the energy dissipation
when the dissipative coefficient is the shear viscosity γψ results in the appearance of a soliton, which is
a wave packet with a periodic wave localized therein. The maximum speed of soliton motion found
from Equations (9) and (19) is

V = 2Θ0
√

αK/(γψd) = (Θ0/γψ)
√

2K(M + PSE cos ϕ0), (20)

and the time of director reorientation due to the movement of the orientation bend (Figure 7b) is

τC =
γψd2

Kξ
=

2γψ

Θ2
0(PSE cos ϕ0 + M)

. (21)

If ϕ0 = 30◦, PS = 50 nC/cm2, M = 4 × 103 erg/cm3, K = 5 × 10−12 N, E = 3 V/µm, Θ0 = 23◦, and
γψ = 0.2 P, then the speed of the soliton center motion is V = 0.65 cm/s, and the director reorientation
time τC is of about ≈150 µs.

6. Light Modulation in an Electro-Optic Cell with Helix-Free Ferroelectric Liquid Crystal
(Experimental Results)

6.1. Modulation of Light Transmission

The modulation of light transmission was observed when an electro-optic cell of 1.7 µm thickness
(achromatic for visible light) was placed between crossed polarizers and bipolar voltage of the
rectangular shape (meander) was applied. The FLC director reorientation due to motion of solitons
made it possible to reduce the optical response time in weak fields to 25 µs and to reach the light
modulation frequency of 7 kHz at the control voltage of ±1.5 V [3] (Figure 8).
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Figure 8. Oscillogram of the bipolar control voltage (zero level—digit 3) and optical response (zero
level—digit 1) for an electro-optical cell with composition HF-32C at the voltage amplitude of ±1.5 V
and frequency of 7.0 kHz. The upper level of the optical response is the closed state; the lower one is
the light transmission state.

The transition to the soliton mode can occur not only with increasing frequency of the electric
field change, but also with increasing field strength at fixed frequency. This transition is accompanied
by a sharp decrease in the optical response time when a certain threshold value of the field strength is
reached (Figure 9). With increasing frequency, the threshold value of the field for the transition to the
soliton mode decreases, and the time of the optical response τ0.1–0.9 decreases (Figure 9, curve 2) at a
lower frequency.
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After the transition to the soliton mode, a section in the dependence τ0.1–0.9 (E) appears where the
optical response time is independent of the electric field strength (Figure 9). This means that the FLC
dissipative coefficient is the shear viscosity.
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Figure 9. Field dependences of the optical response time for a cell with the HF32F composition.
The thickness of the electro-optical cell is 1.7 µm. The voltage frequencies (meander) are 200 Hz
(curve 1) and 3 kHz (curve 2).

Constant change in the director position along the FLC smectic layers provides the substantially
hysteresis-free dependence of the light transmission of the electro-optical cell on the control voltage
amplitude when both increasing and decreasing in a wide frequency range. Experiments have shown
that the hysteresis-free modulation characteristic I (V) for both positive and negative voltage occurs
if the following two conditions are satisfied: First, the frequency control voltage corresponds to the
frequency interval of existence of the soliton mode (for the HF-32C composition, it extends from 100 Hz
to 7 kHz). Second, this frequency does not correspond to the static portions (Figure 10) of the frequency
dependence of the FLC birefringence ∆n (f). This means that the frequency of the hysteresis-free
modulation does not exceed 6 kHz (Figure 11). This maximum value was realized experimentally [25].
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Figure 10. Frequency dependence of the birefringence of the HF-32C composition. Inset: a low-frequency
part of this dependence. The thickness of the electro-optical cell is 1.7 µm. The amplitude of the bipolar
control voltage (meander) is ±1.5 V.
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Figure 11. Dependence of the light transmission on the electrical voltage for the frequency 6 kHz at
decreasing (1) and increasing (2) voltage. The thickness of the electro-optical cell with the HF-32C
composition is 1.7 µm.

Note that the halftone modulation characteristic in such a uniquely wide frequency range is
realized only on the basis of the physical properties of new FLC materials. In addition, unlike the
bistable (two-level) characteristic of the known FLCs, possible applications of novel helix-free FLC
do not require additional electronic modulation of a signal, which reduces the frame rate of color
image formation.

It is important that the predominance of shear viscosity in a soliton mode results in weakening the
temperature dependence of the electro-optical response time in a wide temperature interval (Figure 12).
The higher the frequency of light modulation (and the frequency of the control voltage), the wider
the temperature interval in which the time τ0.1–0.9 is almost constant. It shifts to both high and
low temperatures, and for the HF-32C composition, the time τ0.1–0.9 at the maximum possible light
modulation frequency of 7 kHz is from 10 to 52 ◦C.
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Figure 12. Temperature dependences of the electro-optical response time for the 1.7 µm thick FLC cell
with the composition HF-32B. The amplitude of the control voltage (meander) is ±1.5 V. The control
voltage frequencies are 50 Hz (curve 1), 140 Hz (curve 2), and 3.5 kHz (curve 3).

The experimental results show that new helix-free FLCs are very promising materials for the next
generation of LC displays, especially for fast displays using FLC on Silicon and 3D technologies, as well
as the progressive Field Sequential Colors (FSC) technique, which allows us to form brighter images
(because of the absence of RGB filters) by a display with a 3-times-smaller number of pixels [26,27].
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6.2. Modulation of Light Scattering

The deformation of a single-domain structure of the FLC caused by a pulse of the electric field
can be accompanied under certain conditions by a short “flash” of light scattering. Such scattering was
observed for the first time in 1984 and was called “transient” [4], but it was considered parasitic and
was not studied in detail. Intense transient scattering in the helix-free FLC was first studied in [30],
where it was also proposed to be used in high-speed modulators of a three-dimensional display with a
volumetric screen (volumetric display).

Transient light scattering in new helix-free FLCs, including bistable scattering, was studied in
detail in [5,16]. This scattering occurs on the boundaries of spontaneously ordered regions which are
formed in the process of the appearance of waves of a stationary profile, i.e., solitons. Scattering occurs
after changing the electric field sign and disappears when the motion of solitons reorients the director
in all smectic layers—that is, a new homogeneous structure of the FLC layer is no longer formed.
A change in the electric field direction induces transient domain formation again, and the process
is repeated.

The frequency dependence of the optical response time for light scattering is similar to that
described in Section 4. The transition to the Maxwellian mechanism of energy dissipation is
accompanied by a strong frequency dependence of the response time τ0.1–0.9 similar to that shown
in Figure 4. Some increase in the time τ0.1–0.9 is due to the simultaneous presence of two dissipative
coefficients γϕ and γψ. After the transition to the soliton mode, the time τ0.1–0.9 is determined by the
velocity of soliton wave motion, so the frequency dependence of the response time is practically absent.

During operation in a light-scattering mode, the polarizers are not required, and this increases the
light transmission of the electro-optical cell by up to 80%. Basically, it is limited by the transparency of
conductive coatings on glass substrates. If the pulse duration is less than the minimum time required
for a complete disappearance of the transition domains, the light transmission of the cell decreases.

The maximum efficiency of light scattering corresponds to the regular structure of the scattering
centers in the form of circular domains that are fairly uniformly distributed throughout the volume
of the FLC layer. A decrease in the cell thickness shifts the maximum corresponding to a regular
scattering structure toward shorter pulse durations, but the contrast ratio also decreases.

For a certain experimentally chosen relationship between the amplitude and duration of the
alternating impulses of the control voltage, and also between the elastic deformation energy of smectic
layers and the FLC spontaneous polarization, the process of light scattering on the dynamic domain
structure at the transition to the Maxwellian energy dissipation becomes bistable with a maximum
light transmission above 80% and a contrast ratio of about 200:1 (Figure 13). Both optical states (with or
without scattering) could be turned off for a few tens of microseconds and be memorized for a few
tens of seconds, or until a pulse of opposite polarity was applied. The maximum light-scattering
modulation frequency was about 5 kHz [16].

A change in the duty cycle between the control voltage pulses (the duration is maintained) leads
to a change in the ratio between the lifetimes of both optical states. When an alternating pulse duration
is reversed (the duty cycle is maintained), and the duration of a pulse switching on the scattering
becomes equal to the duration of a pulse switching off the scattering (and vice versa), the ratio of
the lifetimes of states with the maximum light transmission and with the maximum light scattering
is reversed.

There is a limit on the minimum duration of voltage pulses which turn on and turn off the
scattering process. It should not exceed the characteristic reorientation time of the director caused by
the motion of the orientation inflection [16]. From Equation (21), this is about 150 µs for the parameters
indicated there.
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Figure 13. Oscillograms of the control voltage (zero level—digit 3) and optical response (zero
level—digit 1) for the bistable switching mode. The upper level of the optical response is the scattering
state, the lower level is the nonscattering state. The thickness of the FLC cell with the HF-32 composition
is 13 µm. Control voltage—bipolar pulses of ±35 V. The frequency of light modulation is 2 kHz.

There is an optimal relationship between the period of deformation of FLC smectic layers and the
electro-optical cell thickness when, at certain electric field strength, the velocity of the soliton wave
motion is maximal (the optical response time τ0.1–0.9 is minimal) and the light modulation frequency is
also maximal.

Depending on the time of the electric field action (duration of voltage pulses) and the cell thickness,
there may occur several maxima of light scattering that may be treated as the scattering efficiency
C (or contrast ratio) (Figure 14). The emergence of the second and third maxima of light scattering
efficiency occurs with increasing the cell thickness up to 16–20 µm [16].

The maximum efficiency of light scattering and the maximum light transmittance without
scattering are achieved at different durations of control voltage pulses. An increase in the pulse
duration results in increasing the domain wall length and leads to irregular scattering structures.
As a result, the density of scattering centers reduces; this is a reason for the light scattering efficiency
decrease (Figure 14).
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(curve 2) on the duration of bipolar voltage pulses with a fixed amplitude (±50 V). The thickness of an
FLC cell with the HF-32 composition is 18 µm.
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After switching off the electric field, the transmitted optical radiation does not change in spectral
composition, and there is no residual light scattering in the FLC layer (due to the absence of a helix).
Since the magnitude of the spontaneous polarization does not exceed 50 nC/cm2, ferroelectric domains
do not arise. Therefore, in the absence of an electric field, scattering and diffraction centers are absent.
The saturation voltage is rather low and, consequently, the control voltage of an electro-optical cell is
also quite small (less than 50 V).

The main possible applications of light-scattering FLC compositions are the following:
polarizer-free visible and infrared optical shutters, energetically effective screens of electronic books,
3D visualizers (volumetric screens) of volumetric displays, etc. [16,27].

6.3. Spatially Inhomogeneous Modulation of Light Phase Delay

When the duration of voltage pulses supplied simultaneously to the electro-optical cell
corresponds to different maxima of light scattering efficiency, the transitions between light-scattering
modes (which correspond to light scattering maxima) result in the most chaotic changes in the position
of a scattering indicatrix. As a result of a short-term switching on of light scattering (less than for
50 µs), structures with an almost random distribution of refractive index gradients are formed in the
entire volume of the FLC. They cause a spatially inhomogeneous phase modulation of the light beam
(over its cross section) passing through the electro-optical cell.

Spatially inhomogeneous modulation with a phase delay of the order of and more than π allows
one to destroy the phase relations in a laser beam passing through the electro-optical cell and, further,
to suppress the speckle noise in images formed due to the ability of laser rays to interfere.

This approach was used to develop the first electro-optical despeckler, the device that reduces the
contrast of speckles and, due to this, suppresses the speckle noise in laser images. In [28,29], helix FLCs
were used for this aim, and an alternating electric field was applied across the cell simultaneously at low
and high frequencies, which caused spatial deformations of the helicoid in an FLC layer. Unfortunately,
such a despeckler had serious drawbacks. First, the deformed helix structure of molecules changed the
spectral composition of the laser radiation. Besides this, after the electric field was switched off, the
residual scattering caused by the helices remained. Also, the light modulation frequency at the electric
field strength of ~2 V/µm was limited by the value of 500 Hz, which hampers possible applications of
this despeckler.

These drawbacks were eliminated after using new helix-free FLC in the experimental samples of a
despeckler. Figure 15 illustrates the operation of one of the best samples. Signals of the control voltage
and the modulated optical response are shown in Figure 15a. To create the different nonrepeating
distributions of refractive index gradients in the volume of the FLC layer, two-frequency voltage
pulses (meander) were supplied to the electro-optical cell, and pulses of low frequency (2 kHz) were
modulated by pulses of high frequency (10 kHz).

In Figure 15b,c, the speckle intensity distributions in the cross section of the laser beam behind
the FLC electro-optical cell are presented for when the control voltage on the cell electrodes is not
applied and is applied, respectively. The optical data were recorded using a CCD (charge-coupled
device) camera and were processed using a special software product. The reduction in the contrast of
the speckle pattern was calculated from the data in Figure 15b,c as the ratio R between the contrast C0

of a speckle pattern measured without the despeckler sample and the contrast C1 of a speckle pattern
measured with the despeckler sample: R = 10 log10 (C0/C1) = 10 log10 (0.82/0.07) = 10.2 dB [30,31].

The experiments confirmed the simplicity and high efficiency of the electro-optical despeckler
prototype based on an electro-optical cell with the helix-free FLC. Such a device can be widely used in
holography and in laser projection displays.
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Figure 15. Illustration of the operation of an experimental sample of a despeckler using the novel
helix-free FLC: (a) Oscillograms of the control voltage (zero level—digit 3) and phase delay modulation
(zero level—digit 1); value of a low-frequency signal (meander) 2 kHz and amplitude ±50 V; frequency
of the modulating signal is 7 kHz and amplitude ±15 V; electric field strength is 3.25 V/µm;
(b) Radiation intensity distribution in the cross section of a laser beam transmitted through the
electro-optical despeckler sample when the control voltage is zero; contrast of the speckle pattern
C0 = 0.82; (c) Radiation intensity distribution in the cross section of a laser beam in the presence of
the control voltage; contrast of the speckle pattern C1 = 0.07. The thickness of the FLC cell is 20 µm.
The wavelength of the laser radiation is 0.65 µm.

7. Conclusions

Based on our research results, we considered in detail the physical properties, light modulation
characteristics, and possible applications of novel helix-free FLC developed and fabricated at the
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Lebedev Physical Institute, Moscow. They are distinguished by the spatially periodic deformation
of smectic layers, a small value of spontaneous polarization, rather high viscosity, and the
soliton mechanism of FLC director reorientation upon transition to the Maxwellian mechanism of
energy dissipation.

For FLC with a viscosity in the range from 0.15 to 1.0 P, the frequency and field dependences of
the electro-optical response time were studied under modulation of light transmission, light scattering,
and light phase delay.

When modulating the light transmission in an electric field of the order of 1 V/µm (at the control
voltage of ±1.5 V), the smallest response time (25 µs) and the largest modulation frequency interval
(7 kHz, including 6 kHz for hysteretic-free modulation with continuous grayscale) were realized
experimentally for the first time.

A theoretical model was proposed that described satisfactorily the deformation of smectic layers
in the absence of the external electric field and the soliton mechanism of FLC director reorientation
under an alternating electric field.

In certain compositions of the new FLC, intensive light scattering on transient domains was
realized, including the discovery for the first time of bistable scattering with a memory time that
can exceed the optical switching time (tens of microseconds) by 6 orders of magnitude (up to tens
of seconds).

Initiated by the short-time switching on of light scattering, the spatially inhomogeneous phase
light modulation due to random small-scale gradients of the FLC refractive index was studied.
This modulation is capable of destroying the phase relations in a laser beam and of suppressing
the speckle noise in images formed by the beam. Based on this, experimental samples of simple and
effective electro-optical despecklers were studied for the first time.

Possible applications of the novel helix-free FLC are the fastest display devices (including
displays using FLCoS, 3D, and FSC technologies), spatial light modulators, light-scattering
polarizer-free modulators (including infrared devices and optical-state-memorizing ones), energetically
effective screens of electronics books, 3D visualizers (volumetric screens) of volumetric displays,
coding–decoding devices, etc.

8. Patents

Two U.S. patents were issued based on results of the research described above, namely

• Patent No. US 9,532,037 B2: Fast-Acting Low Voltage Liquid Crystal Stereo Glasses. Inventors:
Kompanets I.N., Andreev A.L., Ezhov V.A., Sobolev A.G. Date of Patent: 27 December 2016 (PCT
Pub. Date: 22 May 2014).

• Patent No. US 9,709,877 B2: Video Projector Employing Ferroelectric Liquid Crystal Display. Inventors:
Kompanets I.N., Andreev A.L. Date of Patent: 18 July 2017 (PCT Pub. Date: 5 December 2013).
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