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Abstract: Heterodyne interferometry based on an optical frequency comb (OFC) is a powerful tool
for distance measurement. In this paper, a method to calculate the effective center wavelength of
wide spectrum heterodyne interference signal was explored though both simulation and experiment.
Results showed that the effective center wavelength is a function of the spectra of the two interfered
beams and time-delay of the two overlapped pulses. If the product of the spectra from two arms
is symmetric, the effective center wavelength does not change with time-delay of the two pulses.
The relative difference between the simulation and experiment was less than 0.06%.
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1. Introduction

An optical frequency comb (OFC) emits an evenly spaced ultra-short pulse train with a broad
spectrum consisting of discrete, narrow lines with uniform mode-spacing [1,2]. The absolute frequency
of each mode can be expressed as:

fm = m frep + fceo, (1)

where f rep is the repetition rate, f ceo stands for the carrier-envelope-offset frequency, and m is the
mode order. When f rep and f ceo are stabilized referencing a frequency standard, OFC becomes an
ultra-precise ruler in the space, time, and frequency domain [3–5]. Therefore, it is useful for absolute
distance measurement.

In the past decade, numerous methods based on OFC have been proposed to measure absolute
distance with high precision. These methods can be categorized into several groups according
to the measurement principle and include: using the inter-mode beat signals of the comb [6,7],
applying dispersive interferometry [8–13], using the pulse separation distance as a ruler [14–19],
and the dual-comb method [20–25]. In order to suppress the effect of intensity noise, heterodyne
interferometry has been introduced into the OFC distance measurement system [26]. The OFC
heterodyne interferometry displays excellent results in temporal coherence interferometry, two-color
correction of the refractive index of air [27,28], and pulse-to-pulse alignment [29]. Therefore, it is a
powerful tool for distance measurement.

In a traditional laser heterodyne interferometer, the accuracy of the wavelength is very important
for the distance measurement. However, in an OFC heterodyne interferometer, the light source has a
wide optical spectrum; the spectral width of an optical frequency comb is normally tens of nanometers.
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Additionally, the optical spectra of the beams in the two arms of the interferometer can be different, and
thus, it is ambiguous to determine the center wavelength. Determining the effective center wavelength
of the interference signal is a basic but essential question for the OFC heterodyne interferometry which
has not yet been investigated in detail.

In order to resolve this problem, this paper introduced a method for calculating the effective
center wavelength of the OFC heterodyne interference signal in an equal-arm interferometer included
in a commercial interferometer. The method was then verified by simulation and experimental results.

2. Methods and Experiments

A schematic of the OFC heterodyne interferometer used in this study is provided in Figure 1.
The light source (OFC) was a homemade mode-locked erbium-doped fiber femtosecond laser.
The central wavelength of the OFC was 1560 nm, the full width at half maximum (FWHM) of the
spectrum was 55 nm, the output power was approximately 8 mW, and the repetition frequency was
stabilized to a frequency synthesizer (78 MHz, 33250A, Agilent, Santa Clara, CA, USA), which was
referenced to an atomic clock (5071A, Symmetricom, San Jose, CA, USA).
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Figure 1. Schematic of the optical frequency comb (OFC) heterodyne interference system. Gray lines:
optical fibers; red and green lines: optical paths in free space; black lines: electrical connections. OFC:
optical frequency comb; CL: collimating lens; M: mirror; AOM: acoustic optical modulator; BS: beam
splitter; DM: dichroic mirror; PZT: piezo-electric transducer; OSA: optical spectrum analyzer; PD:
photodetector; BPF: bandpass filter; He-Ne: commercial interferometer; PC: computer.

The output laser beam from the OFC passed through an acousto-optic modulator (AOM,
MGAS80-A1, AA Opto Electronic, Orsay, France) driven by a sinusoidal signal at a constant frequency
f AOM = 80 MHz. After the AOM, the zero-order beam travels along the original direction with the
original frequency, while the first-order beam spreads in another direction due to optical diffraction,
and its frequency is shifted by f AOM. The zero-order beam travels through a beam splitter (BS) and
arrives at mirror M3, then reflects back to BS and overlaps with the first-order beam which is adjusted
by mirror M2. Two beams were coupled into an optical fiber together by a collimating lens (CL2).
The optical lengths of the two beams were set to be equal. The optical spectra of the two beams were
then individually measured by an optical spectrum analyzer (OSA, AQ6370C, Yokogawa Electric,
Musashino, Tokyo, Japan). The first-order beam is referred to as the reference arm, while the zero-order
beam is called the measurement arm. Figure 2a illustrates the optical spectrum of the two arms. Note
that the optical spectra of the two beams are different, due to the diffraction of the AOM.
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Figure 2. (a) Optical spectrum of two beams; (b) Product of electric amplitude of two arms.

Because the frequency of the first-order beam was shifted by f AOM, a heterodyne interference
signal was detected by the photodetector (PD, Model 1811, New Focus, CA, USA), and the frequency of
the heterodyne interference signal was f beat = f AOM − f rep = 2 MHz. The beat signal was extracted by
a bandpass filter and then sent into a lock-in amplifier (SR844, Stanford Research System, Sunnyvale,
CA, USA) to measure the phase compared with the reference signal.

The beam of the commercial interferometer overlapped with the beam of OFC at the dichroic
mirror (DM). The target mirror M3 was driven by a piezo-electric transducer (PZT). The OFC
heterodyne interferometer and the commercial interferometer were both used to measure the
displacement of M3 simultaneously, see Section 3 for details. According to the comparison results, the
effective center wavelength of the OFC heterodyne interference signal can then be estimated.

In the following section, a theoretical method to calculate the effective center wavelength of the
OFC heterodyne interferometer was introduced. The complex amplitude of the electric field of two
beams can be expressed as:

E1(t) = ∑
m

A1ei[2π fm(t−t1)+βm ], (2)

E2(t) = ∑
m

A2ei[2π( fm+ fbeat)(t−t2)+βm ], (3)

where A1( fm) ∝
√

P1( fm), A2( fm) ∝
√

P2( fm), P1, and P2 are the optical spectral intensity of the two
beams as shown in Figure 2a. The imaginary unit is i, t1, and t2 are the time delay of the two beams,
and βm is the initial phase of the mth mode. The interference signal intensity is:

I = |E1 + E2|2 = (E1 + E2) · (E1 + E2)
∗. (4)

After a bandpass filter, the beat signal of OFC heterodyne interferometry is:

Ibeat = ∑
m

2A1 A2 cos[2π fbeat(t− t2) + 2π fm(t1 − t2)]. (5)

Equation (5) is equivalent to this form:

Ibeat = 2a cos[2π fbeat(t− t2) + ϕbeat], (6)

where ϕbeat is the phase measured by the lock-in amplifier, and:

a cos ϕbeat = ∑
m

A1( fm)A2( fm) cos 2π fmτ, (7)

a sin ϕbeat = ∑
m

A1( fm)A2( fm) sin 2π fmτ, (8)
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where τ = t1 − t2 is the relative time delay of the two beams. According to Equations (7) and (8):

tan ϕbeat =
∑
m

A1( fm)A2( fm) sin 2π fmτ

∑
m

A1( fm)A2( fm) cos 2π fmτ
, (9)

then ϕbeat is a function of relative time delay τ:

ϕbeat = ϕ(τ). (10)

For the continuous-wave laser heterodyne interferometer, ϕ(τ) = 2π fcτ, thus, the effective center
frequency for OFC heterodyne interferometry is:

fc =
1

2π
ϕ′(τ). (11)

The effective center wavelength can then be calculated using λc = c/f c, where c is the velocity of
light in the vacuum.

Figure 2b illustrates the product of the electric amplitude of the two beams, which is the function
of the optical frequency. If the product is symmetrical for the frequency at f m0, Equation (9) can be
simplified as:

tan ϕbeat =
sin 2π fm0τ

cos 2π fm0τ
= tan 2π fm0τ, (12)

therefore, ϕbeat = 2πfm0τ, meaning that the effective center wavelength does not change with the
relative time delay of two beams. In this study, however, the product was not symmetric, thus, the
effective center wavelength was calculated by simulation.

In this simulation, the parameters of the system were the same as the experimental setup, including
the electric amplitude of the two beams and repetition frequency of OFC. The carrier-envelope-offset
frequency was regarded as zero. The phase ϕbeat of the heterodyne interference signal was calculated
at different relative time delay according to Equation (9), and numerical differentiation methods from
Equations (10) and (11) were used to calculate the effective center wavelength at different relative
time delay.

3. Results

To calculate the effective center wavelength of the OFC heterodyne interferometer, a square wave
signal generated from a signal generator controlled the displacements of the PZT. The frequency
of the square wave signal is 10 Hz, with a peak-to-peak value of 0.4 V. The sensitivity of PZT to
light path variations was about 6.4 µm/V, and the positions of M3 were monitored precisely by the
commercial interferometer.

Figure 3a shows the phase change of OFC heterodyne interferometer and the commercial
interferometers while tuning the displacements of PZT.

The effective center wavelength at this position is calculated by:

λc =
2πn∆D

∆ϕ
, (13)

where n is the refractive index of air. Since the displacement was larger than the wavelength, it was
necessary to unwrap the phase when calculating the effective center wavelength. Environmental
parameters were recorded throughout the experiment in order to calculate the air refractive index for
both commercial interferometer and OFC heterodyne interferometer.

To evaluate the stability of the effective center wavelength while the relative position of two
overlapped pulses change, the bias voltage of the square wave was altered to shift the equilibrium
position of PZT. The bias voltage was changed by six steps at 1 V interval (corresponding to 6.4 µm).
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At each position, the effective center wavelength was measured 10 times. The average value and
standard deviation are presented in Figure 4. The simulation results are also provided for comparison.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 7 
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Figure 3. (a) ϕbeat change with time measured by lock-in amplifier; (b) displacement change with time
measured by commercial interferometer.
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Figure 4. Effective center wavelength λc with different pulse delay. The data was measured by scanning
the mirror M3 through modulating the voltage of PZT. Black line: results of simulation; red line: results
of experiments. Error bars represents +/− σ (standard deviation) for 10 measurements.

When the pulse delay changed from −80 fs to 80 fs, the effective center wavelength changed
approximately 1.02 nm according to the simulation results. This is because the product of the electric
amplitude of two beams was not symmetric, and the function of phase ϕbeat change over the relative
time delay was not a linear function. The biggest relative difference between the simulation and
experiment was approximate to 0.06%, which was predominantly caused by the random error of the
commercial interferometer and the phase drifting caused by the AOM. The optical frequency comb had
an especially wide spectrum; its coherence length was very short. When calculating the effective center
wavelength for heterodyne interferometry, the displacement was only about 2.5 µm. The repeatability
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of commercial interferometer was only about 15 nm for the short displacement measurement, which
was the main error source in the evaluation results shown in Figure 4. Note that the two beams in
this experiment come out of the same optical fiber, thus, the initial phase βm of two beams was equal.
However, if the beams would have come from different optical fiber, the initial phase βm of the two
beams would be different because of the chirp of optical fiber. This case requires further investigation
for calculating the effective center wavelength.

4. Conclusions

A method was proposed to calculate the effective center wavelength for an OFC heterodyne
interferometer based on the spectra of two interfered beams. An experimental setup was established to
verify the theoretical formula. The results show that the theoretical analysis corresponds well with the
experimental results, and illustrate that the proposed model is reasonable and effective. This method is
an important tool for OFC heterodyne interferometry that can be used for ranging or pulse alignment
and other applications.
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