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Abstract: In this paper, vibration of axially moving nanobeams is studied using Eringen’s two-phase
nonlocal integral model. Geometric nonlinearity is taken into account for the integral model for
the first time. Equations of motion for the beam with simply supported and fixed–fixed boundary
conditions are obtained by Hamilton’s Principle, which turns out to be nonlinear integro-differential
equations. For the free vibration of the nanobeam, the critical velocity and the natural frequencies
are obtained numerically. Furthermore, the effects of parameters on critical velocity and natural
frequency are analyzed. We have found that, for the two-phase nonlocal integral model, regardless of
the boundary conditions considered, both the critical velocity and the natural frequency increase
with the nonlocal parameter and the geometric parameter.

Keywords: nonlocal integral model; axially moving; Hamilton principle; critical velocity; natural
frequency

1. Introduction

Axially moving nanoscale beams can be used in high velocity vehicles, spacecraft antennas,
flexible nanorobotic manipulators, which has been shown to exhibit outstanding mechanical and
physical properties. For such nanoscale structures, as their dimensions become comparable to the
microstructural characteristic lengths, experimental results of their mechanical properties have shown
a significant size effect which are not present at macroscale. Thus, for the design of such engineering
structures, it would be very important to investigate the size effect in the dynamic behaviors of axially
moving nanoscale beams using some proper models.

At a macroscale, there are many related papers which deal with nonlinear vibrations of the axially
moving beams based on classical (local) elasticity theory such as in Refs. [1–5], etc. According to
these results, the initial excitation, external load and the axially moving velocity may lead to nonlinear
transverse dynamic behaviors of the beam. However, classical elasticity assumes that the stress state at
a given point depends only on the strain at the same point, which apparently does not take into account
the effect of the small scales of nanostructures. With the growing need in analyzing size-dependent
materials, nonlocal elasticity has received much attention. Nevertheless, there are some paradoxes
concerned with nonlocal differential models [6], while particular integral formulations have been
shown to be consistent. Nowadays, two integral models of pure nonlocal elasticity are available in
literature. The former one was proposed by Eringen in Ref. [7] by considering an integral convolution
whose input and output fields are elastic strain and stress fields, respectively. The attenuation

Appl. Sci. 2018, 8, 2552; doi:10.3390/app8122552 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/8/12/2552?type=check_update&version=1
http://dx.doi.org/10.3390/app8122552
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 2552 2 of 12

function of the convolution was selected to be the fundamental solution of a differential problem
in Rn, under the condition of vanishing at infinity. In this framework, the constitutive convolution
can be advantageously replaced with a equivalent differential law and successfully exploited in
nonlocal problems involving dislocations and wave propagation. Nevertheless, later on, Eringen’s
differential nonlocal law has been improperly applied to study scale phenomena in nanostructures
defined on bounded domains (see e.g., [8–10] with reference to free vibrations of beams (without axial
velocity)). More recent contributions on size-dependent dynamics of axially moving nanoscale beams
are described as follows.

In Ref. [11], the vibrational properties of an axially moving SWCNT (single-walled carbon
nanotube) with simply supported ends were studied using nonlocal Rayleigh beam theory. The roles
of velocity, small-scale parameter and aspect ratio on the characteristics of longitudinal, transverse
and torsional vibrations of axially moving SWCNTs were examined. Rezaee and Lotfan [12] studied
the nonlinear vibration of axially moving nanoscale beams with time-dependent velocity. Using the
multiple scales method, the small scale effect on frequency response was obtained. Lim et al. [13]
studied the free vibrations of axially moving nanobeams with a constant velocity. In particular,
the effects of nonlocal length scale on the critical velocity and the natural frequencies were studied.
Cheng [14] applied the nonlocal theory and Euler beam model to study the thermo-electro-mechanical
coupling transverse vibrations of axially moving piezoelastic nanobeams. The effects of nonlocal
parameter and axial moving on the vibration of naonbeams were discussed. Cheng et al. [15]
investigated the nonlinear vibration of axially moving nanobeams. The resonance vibration frequencies
and nonlocal effect on the vibration were obtained. In Ref. [16], Wang et al. studied the free vibration
of axially moving nanobeams based on nonlocal theory, and the size effect on the natural frequency
was determined.

Recently, Eringen’s strain-driven integral law was resorted to in applications to nanobeams [17,18],
without paying attention to the fact that constitutive boundary conditions on the stress field naturally
appear in dealing with bounded domains [19]. As acknowledged by the scientific community,
when properly formulated by adding the constitutive boundary conditions on the stress field,
the resulting problem becomes ill-posed, due to conflicting constitutive and equilibrium conditions.
As a consequence, no solution of the nonlocal structural problem does exist and this is the motivation
why paradoxical results were reported in literature (see, e.g., [20,21]).

As shown in Refs. [22,23], a partial remedy to these difficulties has consisted in adopting Eringens
two-phase integral model. Applications of this approach to bending, buckling and vibration problems
of nanobeams can be found in Refs. [24–26]. All drawbacks of strain-driven nonlocal methodologies
can be overcome, according to the proposal in Ref. [27], by exploring the stress-driven integral model,
where the roles of stress and elastic strain fields are interchanged. However, both strain-driven and
stress-driven models are not invertible constitutive laws. Even when they are invertible, they are
definitely not one the inverse of the other [28]. Structural applications of the stress-driven model have
been successfully carried out in several recent papers (see e.g., [29–31] and references therein).

Though there exists a lot of work which explores nonlocal integral models, the nonlinear
effects (say, geometric nonlinearity) in such integral models have not been adequately examined,
especially for Eringen’s nonlocal integral models. Therefore, nonlinear vibrations of axially moving
nanobeams using Eringen’s nonlocal integral models will be investigated in the present paper. The
arrangement of this paper is arranged as follows. In Section 2, using Eringen’s two-phase integral
model, the integro-differential model equations are obtained for the axially moving nanobeam by
Hamilton’s Principle. In Section 3, the critical velocity and the natural frequencies are determined
for free vibrations, the small scales effect on natural frequency is also studied. Finally, we make
conclusions in Section 4.
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2. Model Equations

We consider an axially moving nanobeam under an applied longitudinal tension P, with a
transport velocity γ(t) between two boundaries where the distance is L. The beam has density ρ and
cross-section A. Here, we consider only the in-plane behavior of the beam, and the out-of-plane motion
are not taken into account. The distance to the left boundary is measured by x. The transverse
displacement (in y direction) is denoted by w(x, t), while the longitudinal displacement is not
considered for simplicity.

By Euler beam theory, the kinetic energy T for the axially moving nanoscale beam can be
expressed as

T =
1
2

∫ L

0
ρV ·Vdx

(1)
=

1
2

Aρ
∫ L

0
γ(t)2 + (

∂w
∂t

+ γ(t)
∂w
∂x

)2dx.

We consider the Lagrange strain εx for the nanoscale beam, which is used in calculations where
large shape changes are expected. The expression of Lagrange strain which incorporates geometric
non-linearity is given by

εx =
1
2
(

∂w
∂x

)2 − y
∂2w
∂x2 . (2)

For homogenous isotropic materials, the nonlocal stress can be expressed as

σx(x) = E(ξ1εx +
ξ2

τ

∫ L

0
e−
|x−s|

τ εxds), (3)

where ξ1 > 0, ξ2 > 0 and ξ1 + ξ2 = 1. σx(x) denotes the nonlocal stress, τ is a size-dependent
parameter and E is Young’s modulus. Equation (3) is the so-called two-phase nonlocal integral model:
phase 1 (with volume fraction ξ1) complies with classical (local) elasticity, while phase 2 (with volume
fraction ξ2) obeys nonlocal elasticity. It should be pointed out that the solution to two-phase model
can not be reduced to the pure nonlocal model when the volume fraction tends to zero, and the
pure nonlocal model has been proved to be ill-posed [19]. Thus, the model adopted herein has
the advantages of well-posedness (as compared to the pure nonlocal model) and self-consistency
(as compared to nonlocal differential model) [25].

With the above constitutive relation, the bending moment can be expressed as

M(x, t) = −
∫

A
yσx(x)dA =

EI
2
(ξ1

∂2w
∂x2 +

ξ2

2τ

∫ L

0
e−
|x−s|

τ
∂2w
∂s2 ds), (4)

where

I =
∫

A
y2dA,

∫
A

ydA = 0 (5)

are used.
The potential energy as a result of the bending moment, deformation and the external tension P is

given by

φ(t) =
1
2

∫ L

0
M(x, t)

∂2w
∂x2 dx +

1
2

∫ L

0

∫
A
(P + σx)εxdAdx. (6)
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Substituting Equations (2) and (3) into Equation (6), after some manipulations, we have

φ(t) =
∫ L

0

(
EA
8

(
∂w
∂x

)2(
ξ2

2τ

∫ L

0
e−
|x−s|

τ (
∂w
∂s

)2ds + ξ1(
∂w
∂x

)2)

(7)

+ EI
∂2w
∂x2 (

ξ2

2τ

∫ L

0
e−
|x−s|

τ
∂2w
∂s2 ds + ξ1

∂2w
∂x2 )

)
dx +

1
2

∫ L

0
P

∂w
∂x

2
dx.

By Hamilton’s Principle, the governing equation for the nonlinear vibration can be obtained as

ρA(
∂2w
∂t2 + 2γ(t)

∂2w
∂t∂x

+
dγ(t)

dt
∂w
∂x

+ γ2(t)
∂2w
∂x2 )− P

∂2w
∂x2 + EIξ1ks

∂4w
∂x4

=
3
2

ξ1EA
∂2w
∂x2 (

∂w
∂x

)2 +
2EIξ2

τ2
∂2w
∂x2 +

ξ2

4τ
EA

∂

∂x

(
∂w
∂x

∫ L

0
e−
|x−s|

τ (
∂w
∂s

)2ds
)

(8)

−EI
ξ2

τ

∂2

∂x2

∫ L

0
e−
|x−s|

τ
∂2w
∂s2 ds.

If the following nondimensionlizations are introduced

x = Lx∗, s = Lθ, w = Lw∗, t =

√
E

ρL2 t∗, γ =

√
E
ρ

γ∗,

(9)
α =

L
τ

, p∗ =
P

AE
, ks =

I
AL2 ,

then model Equation (9) can be rewritten as

∂2w
∂t2 + 2γ(t)

∂2w
∂t∂x

+
dγ(t)

dt
∂w
∂x

+ (γ2(t)− p)
∂2w
∂x2 + ξ1ks

∂4w
∂x4

=
3
2

ξ1
∂2w
∂x2 (

∂w
∂x

)2 + 2ksα2ξ2
∂2w
∂x2 +

1
4

αξ2
∂2w
∂x2

∫ 1

0
e−|x−θ|α(

∂w
∂θ

)2dθ (10)

+
1
4

α2ξ2
∂w
∂x

∂

∂x

( ∫ 1

0
e−|x−θ|α(

∂w
∂θ

)2dθ

)
− ksξ2α3

∫ 1

0
e−|x−θ|α ∂2w

∂θ2 dθ.

In Equation (11), the superscript “∗” are all removed for convenience.
In this work, we consider the simply supported and fixed boundary conditions (for both ends) for

Equation (11). For the simply supported boundary condition, it means that the displacement w(x, t)
must be zero and the beam is free to rotate, which yields

w = 0, M(x, t) = 0, at x = 0, 1. (11)

The above equations can be rewritten as

w = 0, ξ1w,xx(x, t)− ξ2

2α

∫ 1

0
e−|x−θ|αw,ss(θ, t)dθ = 0, x = 0, 1. (12)

For the fixed boundary condition, it implies that the displacement w(x, t) and the slope of the
beam at the two ends must be zero. Then, the boundary condition is

w = 0, w,x = 0, at x = 0, 1, (13)

where the subscript, “x” denotes the derivative along x.
It is to be noted that, when ξ1 = 1 model, Equation (11) reduces to

∂2w
∂t2 + 2γ(t)

∂2w
∂t∂x

+
dγ(t)

dt
∂w
∂x

+ (γ2(t)− p)
∂2w
∂x2 + ks

∂4w
∂x4 −

3
2

∂2w
∂x2 (

∂w
∂x

)2 = 0, (14)
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which is the model equation for transverse vibration of beams in classical elasticity.

3. Free Vibrations

3.1. Critical Velocity

In this subsection, we shall determine the critical velocity of the axially moving nanoscale beam.
To this end, we let

γ(t) = γ0, w(x, t) = w(x). (15)

After substituting Equation (15) into Equation (11) and dropping the nonlinear terms, we get

ksξ1
∂4w
∂x4 + (γ2

0 − p− 2α2ksξ2)
∂2w
∂x2 = 0. (16)

The general solution to w(x) can be written as

w(x) = c1 cos(λ1x) + c2 sin(λ1x) + c3x + c4, (17)

where

λ1 =

√
γ2

0 − p− 2α2ksξ2

ksξ1
, (18)

and ci are constants to be determined from the boundary conditions Equations (12) and (13).
For simply supported boundary, after substituting Equation (17) into the boundary condition

Equation (12), for nontrivial solutions of w(x), we have

tan(λ1)−
2αλ1(−1 + ξ1)(−α2 + (3α2 + 2λ2

1)ξ1)

α4 − α2λ2
1 − 2α2(3α2 + λ2

1)ξ1 + (9α4 + 11α2λ2
1 + 4λ4

1)ξ
2
1
= 0. (19)

The critical velocity γc can be determined by the numerical method.
It should be pointed out that the terms which have coefficients exp(−α), exp(−2α) have been

omitted, as the parameter α would be very large. Furthermore, we find that, when ξ1 = 1, the
corresponding critical velocity in classical elasticity can be recovered as

γc =
√

p + k2π2ks, k = 1, 2, 3 · · · . (20)

Now, we can analyze the effects of the system parameters ξ1, α and ks on the critical velocity.
In Figure 1, the effects of α on the γc have been plotted. It shows that the first three critical velocity are
almost identical when the parameter α is very large. In addition, it appears that the relation between
critical velocity γc and nonlocal parameter α is linear.

The effect of the volume fraction ξ1 on the first three critical velocity is plotted in Figure 2,
from which we find that the difference between the critical velocities for the first three modes decreases
with the decreasing of the volume fraction ξ1.
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Figure 1. The critical velocity versus nonlocal parameter α when p = 0.04, ks = 0.004 and ξ1 = 0.5.
Black dotted line, red dotted line and blue dotted line denote the results for k = 3, 2, 1 mode, respectively.
(a) full graph, (b) enlarger partial of full graph.
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Figure 2. The critical velocity versus volume fraction ξ1 when p = 0.04, α = 40, ks = 0.01. Black dotted
line, red dotted line and blue dotted line denote the results for k = 3, 2, 1 mode, respectively. (a) full
graph, (b) enlarger partial of full graph.

In Figure 3, the effect of the geometric parameter ks on the critical velocity of the axially moving
beam is plotted. We see that the critical velocity increases with the growth of the parameter ks for both
the nonlocal beam and the classical beam. From Figure 3, we find that the critical velocity is almost
identical for the first three modes. However, the critical velocity increases with the growth of the mode
number k. Furthermore, the critical velocity of the nonlocal beam is always much larger than that of
the classical beam (Figure 3a).
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(a) results of Nonlocal and local

0.041 0.044
ks
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8.5

Γc

(b) results of Nonlocal

Figure 3. The critical velocity versus geometric parameter ks when p = 0.04, α = 40, ξ1 = 0.5. Black
dotted line, red dotted line and blue dotted line denote the results for k = 3, 2, 1 mode, respectively.
In (a), the bottom of the three dotted lines denote the critical velocity of the classical results. (b) enlarger
partial of full graph for nonlocal model.

We can determine the critical velocity for the fixed boundary by a similar procedure. The critical
velocity in this case can be determined by the following equation:

2 cos(λ1) + λ1 sin(λ1)− 2 = 0. (21)

The effects of parameters α, ξ1 and ks on the critical velocity are obtained by the numerical method.
The results are plotted in the following Figures 4–6. From these figures, we find that the difference of
critical velocity between the results of simply supported boundary condition and the fixed boundary
condition is very small. In other words, it implies that the critical velocity is almost independent of the
boundary conditions for the axially moving beam.

40 60 80 100
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4

6

8

10

γ

(a)
51 52 53 54 55

α

5.1

5.2

5.3

5.4

5.5

(b)

Figure 4. The critical velocity versus geometric parameter α when p = 0.04, ks = 0.01, ξ1 = 0.5 under
fixed boundary condition. Black dotted line, red dotted line and blue dotted line denote the results for
k = 3, 2, 1 mode, respectively. (a) full graph, (b) enlarger partial of full graph.
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Figure 5. The critical velocity versus geometric parameter ξ when p = 0.04, α = 40, ks = 0.01. Black
dotted line, red dotted line and blue dotted line denote the results for k = 3, 2, 1 mode, respectively.
(a) full graph, (b) enlarger partial of full graph.
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Figure 6. The critical velocity versus geometric parameter ks when p = 0.04, α = 40, ξ1 = 0.5. Black
dotted line, red dotted line and blue dotted line denote the results for k = 3, 2, 1 mode, respectively.
(a) full graph, (b) enlarger partial of full graph.

3.2. Natural Frequencies

The mode functions and natural frequencies of axially moving nanobeam can be determined
from the corresponding linear equation of the governing Equation (9). After linearizing Equation (9),
mode functions and natural frequencies can be determined by the following equation

∂2w
∂t2 + 2γ(t)

∂2w
∂t∂x

+ (γ2(t)− p)
∂2w
∂x2 + ξ1

∂4w
∂x4 − ksα2ξ2

∂2w
∂x2 = 0. (22)

The general solutions to Equation (22) can be written as

w(x, t) = φn(x)eiωnt + φ∗n(x)e−iωnt, (23)

where ωn is the n-th natural frequency and φn(x) is the mode function.
Substituting Equation (23) into Equation (22), we obtain

ksξ1
∂4φn

∂x4 − (p + 2α2ks(1− ξ1)− γ2)
∂2φn

∂x2 + 2iωn
∂φn

∂x
−ω2

nφn = 0. (24)

It is easy to know that the solution of Equation (24) can be written as

φn(x) = Cn1eiβn1x + Cn2eiβn2x + Cn3eiβn3x + Cn4eiβn4x, (25)
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where Cni are constants to be determined and βnj(j = 1, 2, 3, 4) are the roots of the following equation

(xγ + ωn)
2 − x2(p + ks(x2ξ1 + 2α2(1− ξ1))) = 0. (26)

Firstly, we consider the natural frequencies of beam under simply supported boundary condition.
To this end, after substituting Equation (25) into boundary condition Equation (12), a linear algebraic
system for Cnj can be obtained as

Cn1 + Cn2 + Cn3 + Cn4 = 0,

Cn1eβn1 + Cn2eβn2 + Cn3eβn3 + Cn4eβn4 = 0,

Cn1
e−α β2

n1(αξ2(eα−eβn1)−2eαξ1(α−βn1))
2(α−βn1)

+ Cn2
e−α β2

n2(αξ2(eα−eβn2)−2eαξ1(α−βn2))
2(α−βn2)

+Cn3
e−α β2

n3(αξ2(eα−eβn3)−2eαξ1(α−βn3))
2(α−βn3)

+ Cn4
e−α β2

n4(αξ2(eα−eβn4)−2eαξ1(α−βn4))
2(α−βn4)

= 0,

Cn1
(e−α β2

n1(2ξ1eα+βn1 (α+βn1)−αξ2(eα+βn1−1)))
2(α+βn1)

+ Cn2
(e−α β2

n2(2ξ1eα+βn2 (α+βn2)−αξ2(eα+βn2−1)))
2(α+βn2)

+Cn3
(e−α β2

n3(2ξ1eα+βn3 (α+βn3)−αξ2(eα+βn3−1)))
2(α+βn3)

+ Cn4
(e−α β2

n4(2ξ1eα+βn4 (α+βn4)−αξ2(eα+βn4−1)))
2(α+βn4)

= 0.

(27)

For non-trivial solutions, the determinant D of the coefficient matrix of Equation (27) must be
zero. Here, the long expression of D have been omitted for brevity. The natural frequencies ωn and βni
can be solved numerically from Equation (26) and Det[D] = 0.

Effects of the nonlocal parameter α, volume fraction ξ1 and geometrical parameter ks on the
natural frequency are shown in Figures 7 and 8. The size effect on the first model of natural frequency
of the axially moving nonlocal beam is shown in Figure 7a. It shows that the natural frequency
increases with the increase of nonlocal parameter α.
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(a) Effects of parameter α for ks = 0.01

æææææææææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

àà à à à à
à
à
à
à
à
à
à
à

à

à

à

à

à

à

à

ìì ì ì ì ì
ì
ì
ì
ì
ì
ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

0 1 2 3 4 5 6 7
0

5

10

15

20

Γ

Ω
n

(b) Effects of parameter ks for α = 50

Figure 7. The natural frequency for different α and ks, with ξ1 = 0.5, p = 0.04 fixed. (a) from top to
bottom α = 80, 50, 30; (b) from top to bottom ks = 0.02, 0.01, 0.005.

In Figure 7b, the effect of parameter ks on the natural frequency of the first mode is shown.
It shows that the natural frequency also increases with the increase of ks.

In Figure 8, the effect of parameter ξ1 on the natural frequency of the first mode is shown. It can
be seen that the natural frequency decreases with the increase of ξ1. It indicates that the integral model
will cause larger natural frequency for nanobeams.
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Figure 8. The natural frequency for different ξ1 with α = 50, p = 0.04, ks = 0.01 fixed, from top to
bottom ξ1 = 0.1, 0.5, 0.8.

Now, we consider the natural frequency for the case of fixed boundary condition. In this case,
the linear Equation (27) can be rewritten as

Cn1 + Cn2 + Cn3 + Cn4 = 0,

Cn1eβn1 + Cn2eβn2 + Cn3eβn3 + Cn4eβn4 = 0,

Cn1βn1 + Cn2βn2 + Cn3βn3 + Cn4βn4 = 0,

Cn1eβn1 βn1 + Cn2eβn2 βn2 + Cn3eβn3 βn3 + Cn4eβn4 βn4 = 0.

(28)

Similarly, the effects of the parameters α, ξ and ks on the natural frequencies can be obtained by
numerical method and the results are plotted in the Figures 9 and 10.
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Figure 9. The natural frequency for different α and ks, with ξ1 = 0.5, p = 0.04 fixed. (a) from top to
bottom α = 80, 50, 30; (b) from top to bottom ks = 0.02, 0.01, 0.005.

æ æ æ æ
æ
æ
æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

àà à à à à
à
à
à
à
à
à
à
à

à

à

à

à

à

à

à

ìììììììììì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

0 1 2 3 4 5 6
0

5

10

15

20

Γ

Ω
n

Figure 10. The natural frequency for different ξ with α = 50, p = 0.04, ks = 0.01 fixed, from top to
bottom ξ1 = 0.1, 0.5, 0.8.
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From these two figures, we find that the parameters have similar effects on the natural frequencies
as those of simply supported boundary condition. However, the natural frequencies of the beam under
fixed boundary condition is larger than that of a simply supported boundary condition.

4. Conclusions

In this paper, for the axially moving nanobeams, Eringen’s two-phase nonlocal model is adopted.
The integral governing equations for the corresponding nonlinear vibration with simple supported
and fixed boundary conditions are obtained by Hamilton’s Principle. The dispersion relation and a
characteristic equation are obtained for the free vibration. The critical velocity of the nanobeams are also
obtained. The results show that the nonlocal parameter α plays a very important role in determining the
critical velocity. As for natural frequency, we find that it increases with the increasing of the nonlocal
parameter α. However, an increase in the volume fraction ξ1 will reduce the natural frequency.
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