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Abstract: The electrocardiogram (ECG) was the first biomedical signal for which digital signal
processing techniques were extensively applied. By its own nature, the ECG is typically a sparse
signal, composed of regular activations (QRS complexes and other waveforms, such as the P and
T waves) and periods of inactivity (corresponding to isoelectric intervals, such as the PQ or ST
segments), plus noise and interferences. In this work, we describe an efficient method to construct an
overcomplete and multi-scale dictionary for sparse ECG representation using waveforms recorded
from real-world patients. Unlike most existing methods (which require multiple alternative iterations
of the dictionary learning and sparse representation stages), the proposed approach learns the
dictionary first, and then applies a fast sparse inference algorithm to model the signal using the
constructed dictionary. As a result, our method is much more efficient from a computational point
of view than other existing algorithms, thus becoming amenable to dealing with long recordings
from multiple patients. Regarding the dictionary construction, we located first all the QRS complexes
in the training database, then we computed a single average waveform per patient, and finally we
selected the most representative waveforms (using a correlation-based approach) as the basic atoms
that were resampled to construct the multi-scale dictionary. Simulations on real-world records from
Physionet’s PTB database show the good performance of the proposed approach.

Keywords: electrocardiogram (ECG); Least Absolute Shrinkage and Selection Operator (LASSO);
overcomplete multi-scale dictionary construction; signal representation; sparse inference

1. Introduction

Since the development of the first practical apparatus for the recoding of the electrocardiogram
(ECG) by Willem Einthoven in 1903, ECGs have been widely used by physicians to diagnose and
monitor many cardiac disorders. Indeed, the use of the ECG has become so widespread that it is
nowadays routinely used in both clinical and ambulatory settings to obtain a series of indicators
related to the health status of patients [1]. This ubiquitous presence of ECGs in the medical field has
been greatly enabled by digital signal processing (DSP) techniques: ECGs were the first biomedical
signals where DSP algorithms were extensively applied to remove noise and interferences, detect and
characterize the different waveforms contained in the ECG, extract the signals of interest (e.g., the fetal
ECG) from the composite ECG, etc. [1,2].

By its own nature, the ECG is typically a sparse signal, composed of regular activations (the QRS
complexes and other waveforms, such as the P and T waves) and periods of inactivity (corresponding to
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isoelectric intervals, such as the PQ or ST segments), as well as noise and interferences (baseline wander,
powerline interference, electromyographic noise, motion artifacts, etc.) [1]. Since the introduction of
the Least Absolute Shrinkage and Selection Operator (LASSO) regularizer by Tibshirani in 1996 [3],
many sparse inference and representation techniques have been developed and successfully applied
for all kinds of signals [4]: images, sound/audio recordings, biomedical waveforms, etc. However,
to obtain a good sparse model for a given signal, it is essential to have an adequate dictionary
composed of atoms that properly represent the significant waveforms contained in the observed
signals. This has led to the development of many families of dictionaries (based on wavelets and
wavelet packets, curvelets, contourlets, etc.) for different applications, as well as several on-line
dictionary learning algorithms (e.g., see [5–7] for reviews of different dictionary learning methods for
sparse inference) that typically require multiple alternative iterations of the dictionary learning and
sparse representation stages.

In electrocardiographic signal processing, many approaches have been proposed for the sparse
representation of single-channel and multi-channel ECGs using different types of simple analytical
waveforms: Gaussians [8–10], generalized Gaussians and Gabor dictionaries [11], several families of
wavelets (e.g., the Mexican hat or the coiflet4) [12,13], etc. Although these approaches can lead to
good practical results, the resulting models usually contain many spurious activations that must be
removed to obtain physiologically interpretable signals, for instance by means of a post-processing
stage [9,13] or through the minimization of a complex non-convex cost function [14]. Conversely,
a customized dictionary, built from real-world signals, will provide a better performance in terms of
the reconstruction error obtained for a given level of sparsity. Consequently, several on-line dictionary
learning approaches have also been applied, both in the context of sparse inference and compressed
sensing (CS), to ECG signals: the K-SVD algorithm in [15], the shift-invariant K-SVD in [16], and the
method of optimal directions in [17]. Unfortunately, all these methods have a high computational
cost (due to their need to iterate between the dictionary learning and sparse approximation stages)
and lead to dictionaries whose atoms do not correspond to real-world signals (thus reducing the
interpretability of the sparse model, as well as the ability to easily locate the relevant waveforms).
Alternatively, an off-line dictionary construction methodology (where a dictionary with real-world
waveforms is initially built and then directly used for CS and sparse modeling without any further
modification) was recently proposed by Fira et al. [12,18–20]. However, the atoms of the dictionary are
either selected randomly from segments of the signal or taken directly from the first half of the ECG
without any attempt to determine the most relevant waveforms.

In this work, we describe an efficient method to construct an overcomplete and multi-scale
dictionary for sparse ECG representation using waveforms recorded from real-world patients. Unlike
on-line dictionary methods (which require multiple alternative iterations of the dictionary learning
and sparse representation stages), the proposed approach learns the dictionary first, and then applies a
fast sparse inference algorithm, Convolutional Sparse Approximation (CoSA) [21], to model the signal
using the constructed dictionary. As a result, our method is much more efficient from a computational
point of view than other existing algorithms, thus becoming amenable to deal with long recordings
from multiple patients. Regarding the dictionary construction, we locate all the QRS complexes in
the training database first, then we compute a single average waveform per patient, and finally we
select the most representative waveforms (using a correlation-based approach) as the basic atoms that
will be resampled to construct the multi-scale dictionary. With respect to the approach of Fira et al.,
our method selects the optimal atoms to construct the dictionary, thus resulting in a much more
compact solution. Numerical simulations demonstrate that the proposed approach is able to obtain
a very sparse representation without missing any QRS complex or introducing spurious activations.
Note that a preliminary version of this paper, where a single waveform was used to construct the
overcomplete and multi-scale dictionary, was published in [22]. From a theoretical point of view,
the main extension with respect to [22] is the proposal of a precise and novel procedure to incorporate
multiple waveforms in the construction of the dictionary. Additional improvements, such as the simple
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and effective approach to remove the edge effects that appear after each resampling stage, have also
been introduced in the pre-processing stages. Finally, a much more detailed literature review has been
performed and many more numerical simulations, including both patients and channels (leads) not
used to derive the dictionary, have been performed to characterize the behavior of the novel scheme.

The rest of the paper is organized as follows. Section 2 formulates the sparse representation
problem of ECGs, emphasizing the importance of an appropriate dictionary. Then, in Section 3,
we describe in detail the procedure followed to derive a multi-scale dictionary from real-world
signals: the database used, the pre-processing steps, and the actual dictionary construction. Finally,
Section 4 validates the proposed approach (focusing on the capability of the derived dictionary to
model different ECG leads from multiple patients), and the paper is closed by the conclusions and
future lines in Section 5. Throughout the paper, we concentrate on the description of the proposed
method without focusing on any particular application. However, note that the constructed dictionary
can be useful in many practical applications: lossy compression of ECG signals for their storage
and transmission [17,20], denoising of ECGs contaminated by different types of interferences using
sparse inference techniques [23], compressed sampling and sparse inference for heart rate variability
analysis [24], sparse coding for atrial fibrillation (AF) classification [25], etc.

2. Problem Formulation

Let us assume that we have a single discrete-time ECG, x[n], that has been obtained from
a properly filtered and amplified continuous-time ECG, xc(t), through uniform sampling with a
sampling period Ts = 1/ fs, i.e., x[n] = xc(nTs). An external ECG captures the electrical activity
occurring within the heart that triggers the mechanical cycle (systole and diastole) of the heart.
Consequently, it is composed of a set of waveforms that reflect the different stages of the electrical
cycle of the heart [1]: atrial depolarization (P waveform), ventricular depolarization (QRS complex)
and ventricular repolarization (T waveform). Note that atrial repolarization cannot be observed in
external ECGs, since it is masked by the ventricular depolarization, which happens simultaneously
and produces a much stronger signal.All of these waveforms repeat themselves regularly during the
heart’s electrical cycle (thus leading to the well-known P-QRS-T cycle), although important changes
in morphology, as well as fluctuations in amplitude, duration and interarrival times can be observed
both for intra-patient and inter-patient recordings. Figure 1 shows an example of a single cycle
from a clean synthetic ECG generated using the ECGSYN waveform generator [26] downloaded
from Physionet [27], where all the relevant P-QRS-T waveforms, as well as the QRS onset and offset
(also known as µ and j points [28]) can be clearly identified.

On top of the relevant electrical activity, the ECG also contains several types of noise and
interference signals [1]: additive white Gaussian noise introduced by the electronic equipment used to
acquire the ECGs (sensors, amplifiers and filters), baseline wander caused by the patient’s respiration,
powerline interference arising from the electrical network, electromyographic noise, motion artifacts,
electrode contact noise, etc. Mathematically, this situation can be modeled as the superposition of the
waveforms of interest (QRS complexes, P and T waveforms) as well as all the noise and interferences:

x[n] =
∞

∑
k=−∞

EkΦk(tn − Tk) + ε[n], n = 0, . . . , N − 1, (1)

where Tk denotes the arrival time of the kth electrical pulse; Ek its amplitude; Φk is the associated,
unknown pulse shape corresponding to QRS complexes, P and T waveforms; and ε[n] the noise
and interference term. Note that, in real-world applications, Φk, Tk, and Ek are not precisely known.
However, for the ECG, the typical shapes and durations of the Φk are known for all of the relevant
waveforms. Therefore, they can be approximated by a time-shifted, multi-scale dictionary of known
waveforms with finite support M� N that can then be used to infer the Ek and Tk.
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Figure 1. Example of a clean P-QRS-T cycle, with the peaks of all the relevant waveforms marked.
The signal has been generated in Matlab using the ECGSYN waveform generator [26] with the following
command: [s, ipeaks] = ecgsyn(1000,60,0,60,1,0.5,1000);.

More precisely, let us define a set of P candidate waveforms, Γp for p = 1, . . . , P, with a finite
support of Mp samples such that M1 < M2 < · · · < MP and M = maxp=1,...,P Mp = MP. If properly
chosen, these waveforms can provide a good approximation of the local behavior of the signal around
each sampling point, thus allowing us to approximate Equation (1) through the following model:

x[n] =
N−M−1

∑
k=0

P

∑
p=1

βk,pΓp[n− k] + ε[n], n = 0, . . . , N − 1, (2)

where the βk,p are coefficients that indicate the amplitude of the pth waveform shifted to the kth
time instant, tk = kTs; and ε[n] includes also the additional approximation error associated to
using Equation (2) instead of Equation (1), as well as all the noise and interferences already contained
in ε[n]. Let us now group all the candidate waveforms into a single matrix A = [A0 A1 · · · AN−M−1],
where the N × P matrices Ak (for k = 0, . . . , N −M− 1) have column entries equal to Γp[m− k] for
m = k, . . . , k + M − 1 and 0 otherwise. Then, the model of Equation (2) can be expressed more
compactly in matrix form as follows:

x = Aβ + ε, (3)

where x = [x[0], . . . , x[N − 1]]> is an N × 1 vector with all the ECG samples, β =

[β0,1, . . . , β0,P, β1,1, . . . , β1,P, . . . , βN−M−1,1, . . . , βN−M−1,P]
> is an (N − M)P × 1 coefficients vector,

and ε = [ε[0], . . . , ε[N − 1]]> is the N × 1 noise vector.
Note that the matrix A can be considered as a global dictionary composed of N − M

sub-dictionaries, Ak for k = 0, 1, . . . , N − M − 1, that contain replicas of the candidate waveforms
time shifted to t0 = 0, t1 = Ts, . . . , tN−M−1 = (N −M− 1)Ts. In practice, the usual approach is to
either use a single or several different waveforms with different time scales (atoms) to cope with the
uncertainty about the shape and duration of the pulses that can be found in x[n]. Hence, as a result,
we obtain an overcomplete dictionary (as the number of columns is larger than the number of rows,
i.e., (N −M)P > N) composed of time-shifted, multi-scale waveforms which resemble the relevant
electrical impulses that can be observed in the recorded ECGs. Now, two key questions arise:
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1. Which is the optimal dictionary to model external ECG signals and how can we construct it?
2. Given an overcomplete dictionary, how can we obtain the optimal set of coefficients that represent

only the relevant signal components?

Regarding the second question, let us remark that the only unknown term in Equation (3) is β

when the dictionary is fixed. A classical solution to obtain this set of coefficients β is then minimizing
the L2 norm of the error between the model and the observed signal, thus obtaining the least squares
(LS) solution:

β̂LS = arg minβ ‖x−Aβ‖2
2, (4)

with ‖ · ‖2 denoting the L2 norm of a vector. The solution of Equation (4) is not unique, as it requires
solving an overdetermined system of linear equations, but the standard solution (i.e., the solution
that minimizes the L2 norm of the obtained coefficients) is β̂LS = A]x, where A] = (A>A)−1A>

denotes the pseudoinverse of A. (Note that, even though β̂LS can be computed analytically from a
theoretical point of view, it requires inverting an (N −M)P× (N −M)P matrix. Hence, we can easily
encounter computational or numerical problems when (N −M)P is large and/or A is ill-conditioned.)
However, the LS approach leads to a solution where all the coefficients in β̂LS are likely to be non-zero.
This solution does not take into account the sparse nature of the relevant waveforms in x[n] and results
in overfitting, as part of the noise and interference terms are also implicitly modeled by the first term
in Equation (3). Hence, a better alternative in this case is explicitly enforcing sparsity in β by applying
the so-called LASSO approximation [3], which minimizes a cost function composed of the L2 norm of
the reconstruction error and the L1 norm of the coefficient vector:

β̂ = arg minβ ‖x−Aβ‖2
2 + λ‖β‖1, (5)

where ‖ · ‖1 denotes the L1 norm, and λ is a parameter defining the trade-off between the sparsity of β

and the precision of the estimation: the larger is the value of λ, the sparser is the solution obtained,
but also the larger is the mean squared error.

Regarding the first question, it is obvious that a good dictionary, tailored to the shapes of the
relevant waveforms in the ECG, will lead to a sparser representation and thus a better temporal
localization of those waveforms. In the particular case of ECG modeling, many families of waveforms
have been proposed within the related fields of sparse inference and compressed sensing, as discussed
in the Introduction. However, there is increasing evidence that the best dictionaries are those
constructed using atoms directly extracted from the signals to be modeled [15,17,20]. In the following,
we describe a novel approach to construct a single overcomplete and multi-scale dictionary by learning
the most representative waveforms from multiple patients. The goal of this paper is then investigating
whether the resulting dictionary is able to model the outputs from multiple patients with a single set
of representative waveforms.

3. Multi-Scale Dictionary Derivation

In this section, we describe the novel approach for off-line construction of a single overcomplete
and multi-scale dictionary using QRS complexes extracted from multiple ECGs recorded from healthy
patients. The database used to construct the dictionary is described first in Section 3.1, and the method
is described next: the pre-processing stage in Section 3.2 and the dictionary creation stage in Section 3.3.
Finally, the obtained dictionary was stored and applied to attain a sparse reconstruction of the desired
ECGs (which may be in the database or not) using the LASSO approach, as described in Section 4.

3.1. Database

To construct the dictionary, we used the Physikalisch-Technische Bundesanstalt (PTB) database,
compiled by the National Metrology Institute of Germany for research, algorithmic benchmarking
and teaching purposes [29]. The ECGs were collected from healthy volunteers and patients with
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different heart diseases by Prof. Michael Oeff, at the Dep. of Cardiology of Univ. Clinic Benjamin
Franklin in Berlin (Germany), and can be freely downloaded from Physionet [27]. (https://www.
physionet.org/physiobank/database/ptbdb/). The database contains 549 records from 290 subjects
(aged 17–87 years) composed of 15 simultaneously measured signals: the 12 standard leads plus the
3 Frank lead ECGs [1,2]. Each signal lasts approximately 2 min and is digitized using a sampling
frequency fs = 1000 Hz with a 16 bit resolution. Out of the 268 subjects for which the clinical summary
is available, we selected channel 10 (lead V4) of the first recording of the Q = 51 healthy patients
available in order to build the dictionary.

3.2. Pre-Processing

The block diagram of the pre-processing stage is shown in Figure 2. (Let us remark that we
focus here on the QRS complexes because they are the most relevant waveforms that can be found in
the ECGs. However, the proposed approach can also be applied to construct dictionaries of typical
P and T waveforms.) Firstly, all the QRS complexes were extracted separately from each of the Q
available ECGs, and those patients for which a significant number of QRS complexes cannot be reliably
obtained wree removed from subsequent stages. After resampling to the maximum length of all the
QRS complexes found for each of the remaining Q′ ≤ Q patients, an individual average QRS complex
was obtained per patient. Then, a second resampling stage was applied to the average QRS complexes
of all the Q′ valid patients to ensure that they have the same length, followed by a windowing stage to
obtain initial and final samples equal to zero, and a normalization to remove the mean and enforce unit
energy on all the signals. Finally, these Q′ waveforms were stored in a QRS complexes database and
used to construct the desired overcomplete dictionary. In the sequel, we provide a detailed description
of each of the blocks in Figure 2.

Signals

Database
x1[n] QRS

Extraction
y1,i[n]

Resampling

&
Averaging

z1[n]
Resampling,

Windowing &

Normalization

x2[n] QRS
Extraction

y2,i[n]
Resampling

&
Averaging

z2[n]
Resampling,

Windowing &

Normalization

xQ[n] QRS
Extraction

yQ,i[n]
Resampling

&
Averaging

zQ[n]
Resampling,

Windowing &

Normalization

z̄1[n]

z̄2[n]

z̄Q[n]

QRS
Complexes

Database

Figure 2. Block diagram of the pre-processing stage applied before the creation of the dictionary.

3.2.1. QRS Extraction

The first pre-processing step consists in extracting all the QRS complexes from each of the Q
ECGs, xq[n] for q = 1, . . . , Q. To attain this goal, we followed the approach described in [30]:

1. Apply a 4th order Butterworth bandpass filter with cut-off frequencies fc1 = 1 Hz and fc2 = 40 Hz
to remove noise and interferences. Forward–backward filtering, with an appropriate choice of the
initial state to remove transients [31], is used to avoid phase distortion.

2. Locate the positions of the R waveforms using the Pan–Tompkins QRS detector [32].
3. Determine the fiducial points that mark the beginning and end of the QRS complexes by tracking

backwards and forward from the R peaks, estimating the QRS onset and offset points using the
minimum radius of curvature technique, as described in Section 4.2 of [30].

https://www.physionet.org/physiobank/database/ptbdb/
https://www.physionet.org/physiobank/database/ptbdb/
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This approach resulted in Q′ = 44 valid subjects (i.e., ≈84.6% out of the Q = 51 available
individuals), for which a significant and variable number of QRS complexes (yq,i[n] for 1 ≤ q ≤ Q′,
1 ≤ i ≤ Pq and 0 ≤ n ≤ Lq,i − 1), with a variable length of samples for each of them, were extracted for
the database used. A total of 6266 QRS complexes were extracted, implying an average of 142.4 QRS
complexes per patient (with a maximum of 194 QRS complexes obtained from a single subject) with
lengths from 90 to 124 samples (i.e., from 90 to 124 ms).

3.2.2. Resampling and Averaging

To compute an average QRS complex for each individual, we need to work with QRS complexes
that have a fixed length. (Note that extracting a single waveform per patient can be a limitation.
However, since the recordings used in this work correspond to healthy patients and are rather
short (less than 2 min), a single waveform is often enough to represent the average QRS complex
for each patient. Developing an efficient method to extract multiple waveforms from each patient
is a challenging issue that will be considered in future works.) The easiest solution to achieve
this goal is resampling the extracted QRS complexes to the maximum length for each patient,
Lq

max = max1≤i≤Pq Lq,i ≤ Lmax = max1≤q≤Q′ Lq
max = 124 samples. A change in the sampling rate of

discrete time signals can be accomplished by means of interpolation and decimation [33]. If the ith
QRS complex (i = 1, . . . , Pq) has a length Lq,i ≤ Lq

max samples and Mq,i = GCD(Lq,i, Lq
max), with the

Greatest Common Divisor (GCD) being the largest positive integer that divides each of the two integer
numbers, then we need first to interpolate by a factor Lq

max/Mq,i and then to decimate by a factor
Lq,i/Mq,i (i.e., the fractional resampling rate is Lq

max/Lq,i ≥ 1).
The aforementioned approach includes a digital lowpass antialiasing filter between the

interpolator and the decimator, with a cut-off frequency ω
q,i
c = πMq,i/Lq

max rad, which assumes
that the sequence to process starts and ends with sequences of zeroes. Although the recorded ECGs
have been initially bandpass filtered to remove baseline wander and other artifacts, the QRS complexes
cannot be assumed to start and end with the required zero samples. In fact, the set of available
QRS complexes (from the QRS onset to the QRS offset) always contain negative starting and ending
values: from −0.0219 to −0.2349 mV for the initial sample, and from −0.0318 to −0.1796 mV for
the final sample. As the starting and ending samples of all the QRS complexes are not equal to
zero, resampling produces an undesired effect (edge effect), which consists on deviations from the
expected values in the starting and ending values of the resampled signals. To remove the edge effect,
we propose the following simple and effective approach:

1. From the ith QRS complex signal, yq,i[n] for n = 0, 1, . . . , Lq,i− 1, we first constructed the following
two sequences:

y(q,i)
` [n] = yq,i[n]− yq,i[0],

y(q,i)
r [n] = yq,i[n]− yq,i[Lq,i − 1],

which are not likely to be affected by the edge effect on their leftmost and rightmost
samples, respectively.

2. We performed the resampling by the factor Lq,i/Li
max separately on y(q,i)

` [n] and y(q,i)
r [n],

obtaining two resampled sequences ỹ(q,i)
` [n] and ỹ(q,i)

r [n].
3. The desired resampled sequence is finally given by

ỹq,i[n] =

ỹ(q,i)
` [n], 0 ≤ n ≤

⌊
N
2

Lq
max
Lq,i

⌋
− 1;

ỹ(q,i)
r [n],

⌊
N
2

Lq
max
Lq,i

⌋
≤ n ≤

⌊
N Lq

max
Lq,i

⌋
− 1.

(6)
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Figure 3 shows the leftmost and rightmost samples corresponding to one of the resampled QRS
complexes (from patient 214 in the PTB database) when resampling is performed directly on yq,i[n].
The edge effect on the left and right parts of the signals (i.e., the deviation of the red line with respect
to the desired values indicated by the black dots) is evident in this case. On the other hand, when the
proposed approach was applied, the resampled sequence (ỹq,i[n]) is not affected by the edge effect on
either its left or its right side, as also seen in Figure 3.
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Figure 3. Leftmost and rightmost samples of an original QRS complex (from patient 214 in the PTB
database) and its resampled version with and without edge effects.

Finally, the averaged QRS complex for each patient was obtained simply by computing the sample
mean for each time instant:

zq[n] =
1
Pq

Pq

∑
i=1

ỹq,i[n], (7)

with Pq denoting the number of QRS complexes found in the qth ECG.

3.2.3. Windowing and Normalization

After averaging, all the averaged QRS complexes were resampled again to obtain Q′ signals with
the same number of samples, Lmax = max1≤q≤Q′ Lq

max = 124, using a resampling factor Lmax/Lq
max.

Then, the resulting signals were windowed to ensure a smooth decay of the QRS complexes towards
zero, and normalized by removing their mean and dividing by their standard deviation. The signals
that were finally stored in the QRS complex database are

z̄q[n] =
z̃q[n]w[n]− µq

σq
, (8)

where z̃q[n] are the averaged QRS complexes after the second resampling stage (i.e., after ensuring
that their sample length is equal to Lmax), µq and σq are their sample mean and standard
deviations, respectively,
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µq =
1

Lmax

Lmax−1

∑
n=0

z̃q[n]w[n], (9)

σq =

√√√√ 1
Lmax − 1

Lmax−1

∑
n=0

(z̃q[n]w[n]− µq)2, (10)

and w[n] is the window used in this case, a window that follows the spectral shape of the raised
cosine filter, widely used in digital communications [34], in the time domain: w[n] = wc(nTs) for
n = −(Lmax − 1)/2, . . . ,−1, 0, 1, . . . , (Lmax − 1)/2, with

wc(t) =

1, |t| ≤ (1− α)T0;
1
2

[
1 + cos

(
π

2αT0
|t− (1− α)T0|

)]
, (1− α)T0 < |t| < (1 + α)T0,

(11)

T0 = Lmax−1
1+α

Ts
2 , and α denoting the roll-off factor that controls the decay of wc(t) towards zero: for α = 0,

we have a rectangular window that abruptly goes to zero at ±T0, whereas for α = 1 the window
is bell-shaped and starts decaying smoothly towards zero immediately after |t| > 0. This window,
whose time-domain shape is shown in Figure 4 for several values of α, ensures that the central samples
of the QRS complexes remain undistorted, while their amplitudes quickly decay towards zero at the
borders. Throughout the paper, we have always used α = 0.25.
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Figure 4. Several examples of the raised cosine window of Equation (11) for Ts = 1 ms, Lmax = 201,
and different values of the parameter α.

3.3. Dictionary Construction

After the pre-processing described in the previous section, we have Q′ ≤ Q waveforms from
different patients stored in the QRS complexes database. These waveforms (z̄q[n] for 1 ≤ q ≤ Q′

and 0 ≤ n ≤ Lmax − 1) could be directly used to build the sub-dictionaries. However, they are
highly correlated and thus the resulting dictionary would provide a poor performance and lead to
a high computation time. Therefore, to obtain a reduced dictionary composed of distinct shapes,
we performed the procedure described in the following sections.
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3.3.1. Selection of the First Atom

For the first atom of the dictionary, we sought the most representative waveform in the QRS
complexes database. Indeed, if we intend to construct a sparse model for all the ECGs of all the patients
using a single basis signal, then we should choose a waveform which resembles as closely as possible
the set of QRS complexes (the most relevant part of the ECGs) in the different patients. To achieve this
goal, using the average signals stored in the QRS complexes database, we followed two steps:

1. Compute a Q′ × Q′ correlation matrix C, whose (Q′)2 elements correspond to Pearson’s
correlation coefficient among each pair of waveforms in the QRS complexes database (in practice,
only Q′(Q′ − 1)/2 coefficients have to be computed, since ρii = 1 and ρij = ρji ∀i, j ∈ {1, . . . , Q′}).

ρij =
Cij√
CiiCjj

= Cij, (12)

where Cij denotes the cross-covariance between the ith and jth waveforms at lag 0 (i.e., without
any time shift), and the last expression (ρij = Cij) is due to the energy normalization described in
Section 3.2.3, which implies that Cii = 0 ∀i.

2. Select the waveform with the highest average correlation (in absolute value) with respect to all
the other candidate waveforms, i.e.,

`0 = arg maxi=1,...,Q′

Q′

∑
j=1
|ρij|, (13)

which corresponds to the most representative waveform of all the candidate waveforms.

3.3.2. Selection of Additional Atoms

Additional atoms can be incorporated to the dictionary in order to increase its flexibility in
representing different ECGs. These atoms should be constructed using highly correlated waveforms
with respect to the remaining candidates (to obtain representative dictionary atoms), as well as with
low absolute correlation with respect to already selected waveforms (to avoid similar atoms). Here,
we propose to use the following procedure to select a total of K representative waveforms:

1. Set the number of accepted atoms equal to one (k = 1), the pool of candidate waveforms as
C = {1, . . . , `0 − 1, `0 + 1, . . . , Q′} (i.e., all the waveforms except for the one selected for the first
atom), the pool of accepted waveforms asA = {`0}, and construct a reduced correlation matrix by
removing the row and column corresponding to the first atom selected from the global correlation
matrix C:

Cr =

[
C1:`0−1,1:`0−1 C1:`0−1,`0+1:Q′

C`0+1:Q′ ,1:`0−1 C`0+1:Q′ ,`0+1:Q′

]
. (14)

2. WHILE k < K:

(a) Select, from the remaining waveforms in the pool of candidates, the one with the highest
average correlation (in absolute value) with respect to all the other candidate waveforms
in the pool, i.e.,

˜̀k = arg maxi=1,...,Q′−k

Q′−k

∑
j=1
|Cr(i, j)|, (15)

and obtain the associated index, `k, in the original set of candidate waveforms.
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(b) Compute the maximum correlation (in absolute value) between the selected candidate and
all the already accepted atoms,

ρmax = max
i=0,...,k−1

|C(`k, `i)|. (16)

(c) Remove the `kth waveform from the pool of candidates (i.e., set C = C \ {`k}), and construct
a new reduced matrix (Cr) by removing the ˜̀kth row and column from the current Cr.

(d) IF ρmax < γ (with 0 ≤ γ ≤ 1 denoting a pre-defined maximum correlation threshold),
THEN add the selected waveform to the pool of accepted atoms (i.e., A = A∪ {`k}), and set
k = k + 1.

END

Note that the value of γ sets an upper bound on the number of waveforms that can be accepted
for a given set of candidate waveforms. Therefore, K is the maximum number of waveforms that can
be accepted in the previous algorithm, but the number of waveforms selected can actually be smaller
than K. See Section 4.1 for a detailed description of the values of γ and K used in this work.

3.3.3. Construction of the Multi-Scale Dictionary

Finally, the K selected waveforms were resampled to obtain an overcomplete and multi-scale
sub-dictionary composed of R different time scales. Note that the total number of atoms is thus
P = KR, corresponding to K different waveforms with R distinct time scales for each one. In this
case, we used R = 11 different time scales spanning a time frame slightly wider than the typical
durations of QRS complexes: 60, 70, . . . , 160 ms. Note also that the global dictionary is simply obtained
by performing N −M different time shifts of the resulting sub-dictionary [13].

4. Numerical Results

In this section, we first detail the construction of the dictionary and then present the application
of the resulting dictionary to perform the sparse reconstruction of the signals from different patients.

4.1. Dictionary Construction

As mentioned earlier, to construct the dictionary, we used channel 10 (lead V4) from the first
register of the Q = 51 healthy patients in the PTB database: Patients 104, 105, 116, 117, 121, 122,
131, 150, 155, 156, 166, 169, 170, 172–174, 180, 182, 184, 185, 198, 214, 229, 233–248, 251, 252, 255, 260,
263, 264, 266, 267, 276, 277, 279, and 284. From this whole set of patients, we were able to obtain
reliable average QRS complexes for Q′ = 44 Patients: 104, 105, 117, 121, 122, 131, 150, 155, 156, 169,
170, 174, 180, 182, 184, 185, 198, 214, 229, 234–248, 251, 252, 260, 263, 264, 267, 276, 277, 279, and 284.
The remaining Q− Q′ = 7 patients (116, 166, 172, 173, 233, 255, and 266), where the extraction of
the QRS complexes fails, were used as the test set. The average waveforms for the Q′ = 44 patients,
after resampling to L = 124 samples (i.e., 124 ms), windowing and normalization, can be seen in
Figure 5. Note that, as expected, there is a large degree of similarity among all the waveforms, since they
all correspond to regular heartbeats from healthy patients. This similarity is illustrated also by the
color plot of the absolute value of the correlation coefficient in Figure 6. Note the large correlation
(corresponding to dark red points) among most waveforms. For this reason, in [22], we decided to
extract a single waveform in order to construct the multi-scale and overcomplete dictionary. However,
in Figure 6, we also notice that some waveforms exhibit low correlation values (as shown by blue
points). This motivates us to explore here the performance as more than one waveform is extracted
from the pool of average QRS complexes shown in Figure 5 in order to construct the dictionary.
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Figure 5. Q′ = 44 reliable average QRS complexes extracted from the Q = 51 healthy patients in the
PTB database [29] after resampling, windowing and normalization.
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Figure 6. Color map showing the absolute value of the correlation coefficient, |ρij|, for the Q′ = 44
average QRS waveforms. Dark red colors indicate values close to 1, whereas dark blue colors indicate
values closer to 0.

To build dictionaries composed of different waveforms, we tested several threshold levels: γ =

0.1, 0.2, . . . , 0.9. Note that the larger is the value of γ the less restrictive is the condition to incorporate
a new atom to the dictionary, and thus the larger is the number of final atoms (K) used: for γ = 0,
we would always obtain K = 1 atoms (since no new atoms can be incorporated after the first one),
whereas, for γ = 1, we would obtain K = Q′ (as all waveforms would be considered valid). Following
this approach, we obtained K = 1 atoms for γ ≤ 0.2, K = 2 atoms for 0.3 ≤ γ ≤ 0.6, K = 3 atoms
when γ = 0.7, K = 4 atoms when γ = 0.8, and K = 6 atoms when γ = 0.9. Figure 7 shows the six
atoms selected for γ = 0.9. Note that, since we followed a deterministic procedure, the first atom was
the one obtained for K = 1 (i.e., when γ ≤ 0.2), the first and second ones were those obtained for
K = 2 (i.e., for 0.3 ≤ γ ≤ 0.6), and so on.
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Figure 7. K = 6 atoms selected from the Q′ = 44 reliable average QRS complexes obtained from the
Q = 51 healthy patients in the PTB database, using a threshold γ = 0.9.

Finally, the selected waveforms for K = 1, . . . , 6 were resampled in such a way that their duration
ranged from 60 ms to 160 ms (with a time step of 10 ms). The resulting base dictionary, composed of
P = 11 × K = 11, 22, . . . , 66 atoms, is shown in Figure 8 for K = 6. The final multi-scale and
overcomplete dictionary consists of these P waveforms time shifted to the N −M locations of the
sampled ECGs, implying that its size is N × P(N − M). For instance, for N = 115, 200 samples
(a typical signal size in the PTB database) and M = 160 samples (the maximum support of the selected
waveforms), the size of the matrix dictionary ranges from N × 11(N −M) = 115,200× 1,265,440 for
K = 1 up to N × 66(N −M) = 115,200× 7,592,640 for K = 6.

150
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)

Figure 8. Multi-scale dictionary constructed using the K = 6 most representative waveforms shown in
Figure 7.

4.2. Sparse ECG Representation

We next tested the constructed dictionary on 21 recordings corresponding to 17 healthy patients
from the PTB database. Our main goal was determining whether the constructed dictionary (which
is not patient-specific) can be effectively used to perform a sparse representation of ECG signals
from multiple patients. To solve Equation (5), we used the CoSA algorithm recently proposed in [21],
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which allows us to process the N ≈ 115,200 samples (almost 2 min of recorded time) of the whole signal
at once (i.e., without having to partition it into several segments that have to be processed separately)
in a reasonable amount of time. Since several signals showed a significant degree of baseline wander,
before applying CoSA all signals were filtered using a third-order high-pass IIR (infinite impulse
response) Butterworth filter designed using Matlab’s filterDesigner tool: stop-band frequency
fstop = 0.1 Hz; pass-band frequency fpass = 1 Hz; minimum stop-band attenuation Astop = 40 dB;
and maximun pass-band attenuation Apass = 1 dB. Forward–backward filtering was applied again
to avoid phase distortion. An example of the reconstructed signal using K = 1 and λ = 20 is shown
in Figure 9. Note that all the QRS complexes (our main goal here) are properly represented by the
sparse model. By increasing the number of signals (K), and especially by decreasing the sparsity
factor (λ), a better model that also includes the P and T waveforms can be obtained. However, let us
remark that this is not our main goal. Indeed, a better option to model the P and T waveforms
would be constructing specific dictionaries of P and T waveforms: either using synthetic waveforms
(e.g., Gaussians) or applying the proposed approach to construct real-world dictionaries of P and T
waveforms. We intend to explore this issue in future works, constructing mega-dictionaries of P-QRS-T
waveforms which are able to model all the relevant activations in the ECGs.

t (s)
40 41 42 43 44 45

A
 (

m
V

)

-1

-0.5

0

0.5

1

1.5

Figure 9. Example of sparse ECG representation with the derived dictionary for a segment of signal
121 from the PTB database. Real signal in blue; sparse representation (QRS complexes) in red.

To measure the effectiveness of the proposed approach, we used several performance metrics that
measure both the model’s sparsity and its accuracy in representing the original signal. On the one
hand, the sparsity was gauged by the coefficient sparsity (C-Sp),

C-Sp (%) =
‖β‖0

(N −M)P
× 100 (17)

which measures how many non-null coefficients (out of the total ones) are required to represent the
signal, and the signal sparsity (S-Sp),

S-Sp (%) =
‖x‖0

N
× 100 (18)

which measures how many samples of the signal’s approximation (out of the total number of samples)
are not equal to zero. Note that ‖ · ‖0 indicates the L0 “norm” of a vector, i.e., its number of non-null
elements. On the other hand, the reconstruction error was measured by the normalized mean squared
error (NMSE) and its logarithmic counterpart, the reconstruction signal to noise ratio (R-SNR):
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NMSE (%) =
‖x−Aβ‖2

2
‖x‖2

2
× 100 (19)

R-SNR (dB) = 10 · log10(NMSE), (20)

where ‖ · ‖2
2 denotes the squared L2 norm of a vector.

The results, for the four performance measured previously described, are displayed in Figure 10.
On the left hand side, we show the results (mean value and standard deviation) for the first 10 patients
in the training set: Patients 104, 105, 117, 121, 122, 131, 150, 155, 156, and 169. On the right hand
side, we show the results (mean value and standard deviation again) for the 11 signals in the test set:
Patients 116, 166, 172, 173, 233 (5 recordings), 255, and 266. Note the large sparsity attained in all
cases (especially as λ increases), and the good reconstruction error for small/moderate values of λ

(i.e., λ ≤ 5). Note also the improvement in performance when incorporating additional waveforms to
the dictionary (e.g., for λ = 2 there is a 3.32 dB improvement in mean R-SNR for the patients in the
test set when using K = 6 instead of K = 1), although this comes at the expense of a reduction in the
signal sparsity (e.g., for the same case, the mean S-Sp goes down by 4.2% when using K = 6 instead of
K = 1). Finally, let us remark that there are no substantial differences between the performance on
signals from the test set (i.e., signals used to build the dictionary) and signals from the training set (i.e.,
signals not used to build the dictionary), as evidenced by the similarity of curves on the left hand side
and right hand side of Figure 10.

As a last performance check, we applied the Pan–Tompkins algorithm to the reconstructed signal
in order to test whether the sparse model introduced some distortion in the location of the QRS
complexes. As a result, we found that all the QRS complexes were always properly detected and
located within two samples (i.e., ±2 ms) of the QRS complexes found in the original signal, even in the
sparsest case (i.e., with K = 1 and λ = 20). Therefore, if we are only interested in the QRS complexes
or some analysis derived from them (e.g., heart rate variability studies), the proposed model is a very
good option to construct a sparse model that keeps all the relevant information.
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Figure 10. Cont.
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Figure 10. Different performance metrics: (Left) results on signals from training set; and (Right) results
on signals from test set (i.e., signals not used to build the dictionary).

4.3. Sparse ECG Representation of Other Channels

In this section, we investigate the feasibility of using the dictionary learnt on lead V4 to represent
ECGs recorded in other leads. To do so, we used the constructed dictionary to model all 15 channels
(leads) available for Patient 104. Let us emphasize that no signals at all from any of the other 14 leads
available were used to derive the dictionary, since all samples used from all the patients during the
dictionary construction stage correspond to lead V4. Table 1 displays the results for λ = 1 and K = 2,
showing that good results are obtained in general for most of the leads. Indeed, the performance
for several leads (II, aVR, V5, V6 and Vx) in terms R-SNR is better than for lead v4, which was
used to construct the dictionary, and poor R-SNR results were only attained for leads aVL and Vy.
Similar conclusions were obtained when considering other values of λ and K. Overall, this shows
the feasibility of constructing a single multi-scale and overcomplete dictionary (possibly using QRS
complexes extracted from several leads) for multiple channels.

Table 1. Performance of the constructed dictionary (using waveforms extracted from lead V4) on other
leads from Patient 104 not used to construct the dictionary.

Channel Lead C-Sp (%) S-Sp (%) NMSE (%) R-SNR (dB)

1 I 86.5245 11.0095 4.1476 13.8220
2 II 83.6901 5.1302 1.8310 17.3732
3 III 92.0191 38.1580 5.1706 12.8646
4 aVR 85.4093 6.0408 2.5404 15.9510
5 aVL 92.9162 61.9314 10.2057 9.9116
6 aVF 88.1383 12.0894 3.0323 15.1823
7 V1 87.4629 5.5182 3.1652 14.9960
8 V2 90.7240 51.0356 3.0689 15.1302
9 V3 86.5196 40.1319 2.3935 16.2097

10 V4 83.1699 26.8689 2.9814 15.2557
11 V5 80.9004 5.1181 2.1296 16.7170
12 V6 81.0859 3.4931 1.6270 17.8862
13 Vx 80.1663 4.3333 1.7768 17.5037
14 Vy 93.0671 62.7804 11.4420 9.4150
15 Vz 94.0583 69.9991 5.8457 12.3316
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5. Conclusions

In this paper, we have described a novel mechanism to derive a realistic, multi-scale and overcomplete
dictionary from recorded real-world ECG signals. The dictionary was constructed offline, thus avoiding
the computational burden of on-line approaches and ensuring the scalability of the proposed methodology
for large datasets with many individuals and/or sample sizes. The obtained dictionary was been used
to perform an accurate sparse representation of several ECGs recorded from healthy patients, showing
that it can properly capture all the QRS complexes without introducing false alarms. Potential future
lines include testing the proposed approach on a larger number of patients (especially including subjects
with cardiac pathologies), the construction of dictionaries composed of multiple waveforms (e.g., P and T
waveforms), and the combination of waveforms extracted from real patients with synthetic waveforms.
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