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Abstract: This paper provides a general solution to the anti-plane problem of an arbitrarily shaped
hole reinforced with a functionally graded (FG) layer in a homogenous plate. By using the piece-wise
homogeneous layers method and the conformal mapping technique, the complex potentials in
the form of series in the FG layer are derived based on the theory of complex variable functions.
The influence of the FG layer on the shear stress distributions around some typically shaped holes
are discussed by numerical examples, and then the optimized analysis of the stress concentration
factor (SCF) is performed. The results showed that the SCF of various shaped holes can be noticeably
reduced by the optimum design of the material variations in the layer, and the most significant one in
this paper is the triangular hole, whose SCF can be decreased by more than 50%.

Keywords: stress concentration; optimized analysis; arbitrarily shaped hole; FG layer;
anti-plane shear

1. Introduction

Functionally graded materials (FGMs) are increasingly used in many fields due to their continuous
change of material properties and functions in spatial locations. They are able to survive in a harsh
working environment, without losing their properties and without failing during service [1–4].
The continuous variation in the microstructure of FGMs can well mitigate the mismatch of material
properties at the interface, which can effectively decrease the stress concentration as compared to
the existing material interfaces [5]. The fast development of FGMs has been able to reduce the stress
concentration near various shaped holes [6–8]. In the past decade, many works have analyzed the
problems of stress concentration around a hole in FGMs [9–12].

The axisymmetric problem in planes was first studied in [13–15], where the stress concentration
near a circular hole in a FGMs plate with radial arbitrary material constants was considered. Shortly
thereafter, Kubair and Bhanu-Chandar [16] numerically investigated the non-axisymmetric problem of
stress concentration in FGMs panels with a circular hole under uniaxial tension by using the multiple
isoparametric finite element formulation. Yang et al. [17,18] solved the stress field of a FGMs plate with
a circular hole under two different loading conditions, arbitrary constant loads and uniform heat flow
by using complex variable theory. Mohammadi et al. [19] derived the analytical solution for the stress
concentration factor (SCF) around a circular hole in an infinite inhomogeneous plate. Considering
the manufacturing feasibility, Sburlati [20] proposed a method to reduce the stress concentration
by inserting an FG ring around the hole, and presented an analytical calculation of stress field in
an isotropic plate with a circular hole coated by an FG ring. Kubair [21,22] analyzed the SCF and
stress-gradients due to a circular hole in a radial FGMs panel subjected to anti-plane shear loading and
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obtained closed expressions for the stresses and displacements. Moreover, they introduced a novel
definition for the SCF in FGMs panels with geometrical discontinuities in general, and analyzed the
circular hole in particular. Recently, Dave and Sharma [23] derived the solution for stress and moments
around a circular or elliptical hole in an infinite FGMs plate, where the material properties change
with the plate thickness. Goyat et al. [24] use different radial FGMs to reduce the SCF around a central
circular hole in an infinite plate by using the extended finite element method.

All of the abovementioned work was conducted for FGMs plates with a circular or elliptical hole.
In fact, in addition to circles and ellipses, holes with complex geometrical shapes, including triangles,
squares, rectangles, etc., are also very common in engineering structures. The stress concentrations around
these complex shaped holes are more obvious than that of circular or elliptical holes [25–30]. In the case
of homogeneous plates, many works have been reported on the analyses of stress concentration around
irregular holes. For example, Savin [31] systematically studied the problems of stress concentration
near various shaped holes in a homogeneous plate based on complex variable theory. Later, related
analytical and numerical methods were further developed to solve the stress field of more complex
shaped holes [32–35]. More recently, Sharma and Dave [36,37] presented a general solution to calculate
stresses around hypocycloidal and hypotrochoidal holes in an infinite plate using Muskhelishvili’s
complex variable method. Jafari and Ardalani [38] investigated the stress distributions in a finite
metallic plate having different shaped holes, and discussed the effect of bluntness, the size of the hole
and the shape of the hole on the stress concentration.

To the best of the authors’ knowledge, little work can be found for the studies of complex
shaped holes in FGMs. This is probably because it is quite complicated to mathematically deal with
arbitrarily curved boundaries in FGMs compared to circular boundaries. In this work, a general
solution is presented for calculating the stress concentration in a homogeneous plate with an arbitrarily
shaped hole reinforced with an FG layer under anti-plane shear loads. The piece-wise homogeneous
layers method was used, and the complex potential functions in the plate and layer were derived.
The theoretical method in the paper can be easily used to derive the stress magnitudes and distribution
around the arbitrarily shaped holes in FGM plates, and the stress concentration can be further
optimized and reduced through analysis of the effect of material variations in the FG layer.

2. Theoretical Analysis

We considered an infinite homogenous plate with an arbitrarily shaped hole subjected to
anti-plane shear loads at infinity. In order to reduce the stress concentration, an FG layer is reinforced
around the hole, which contains smoothly closed contours L0 and LN , as shown in Figure 1.
The material properties in the FG layer vary continuously from contour L0 to LN along the normal
direction of the hole. The domains occupied by the plate and FG layer are represented by Sp and
Sg, respectively.

By means of the piece-wise homogeneous layers method, the field Sg can be approximately
decomposed to N homogeneous layers S(1), S(2), · · · S(j), · · · S(N), where each layer has homogeneous
properties. When the number of layers N is taken to be enough, the functional gradation will gradually
converge to continuous FG materials. It should be pointed out that the real FGM problem is substituted
approximately by an N ring problem in this paper. This artificial division may result in stress jumps,
although the stress jumps become small enough as the number of N increases. The necessary minimal
number N for which the solution is sufficiently exact has been discussed by Yang et al. [17]. It was
found that the error of the solution is less than 0.3% when the number of layers is equal to 80. So,
the same number of layers was chosen in our numerical discussions.
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Figure 1. An infinite plate with an arbitrarily shaped hole reinforced with a functionally graded (FG) 
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Figure 1. An infinite plate with an arbitrarily shaped hole reinforced with a functionally graded (FG)
layer under anti-plane shear.

In this case, the boundary condition on the surface of the hole and the continuous condition of
force and displacement at the interface between each homogeneous layer can be expressed as:

T(0) = 0, (1)

T(j) = T(j+1), (2)

w(j) = w(j+1), (3)

where T and w represent the components of force and displacement at the boundary, respectively, and
j = 1, 2, · · ·N, and (N + 1)-th layer represent the plate domain.

The field Equations and boundary conditions for the anti-plane strain state of a homogeneous
solid can be expressed as the complex variables identified by Muskhelishvili as follows [39]:

τ13 − iτ23 = ϕ′(z), (4)

w =
1

2G

[
ϕ(z) + ϕ(z)

]
, (5)

T =
∫ B

A
(τ13dy− τ23dx) =

i
2

[
ϕ(z)− ϕ(z)

]B

A
, (6)

where τ13 and τ23 denote the shear stresses; and G is the shear modulus.
Then, the following conformal mapping function is introduced, as in Savin [31]:

z = ω(ζ) = R

(
ζ +

∞

∑
n=1

mnζ−n

)
, (7)

where R and mn are constants, which depend on the size and shape of the hole, respectively. By using
the above function, N homogeneous layers in the z-plane can be projected onto N concentric circular
rings in the ζ-plane. The concentric circular rings are expressed as Ω(1), Ω(2), · · ·Ω(j), · · ·Ω(N) here.
The contours L0, LN in the z-plane are simultaneous mapped into the concentric circles Γ0, ΓN with
radii r0, rN , respectively, in the ζ-plane [40]. It should be mentioned that in order to transform the
arbitrarily shaped layers into circular rings, the requirement of the thickness is different and strict for
different shaped layers. A detailed discussion can be found in Yang et al. [40].

Utilizing Equation (7), Equations (4)–(6) can be transformed as:
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τ13 − iτ23 = ϕ′(z)/ω′(ζ), (8)

w =
1

2G

[
ϕ(ζ) + ϕ(ζ)

]
, (9)

T =
i
2

[
ϕ(ζ)− ϕ(ζ)

]B

A
. (10)

Equations (1)–(3) using Equations (8) and (10) appear as:

ϕ1(ζ)− ϕ1(ζ) = 0, (11)

ϕj(ζ)− ϕj(ζ) = ϕj+1(ζ)− ϕj+1(ζ), (12)

1
Gj

[
ϕj(ζ) + ϕj(ζ)

]
=

1
Gj+1

[
ϕj+1(ζ) + ϕj+1(ζ)

]
. (13)

In ζ-plane, the complex potential functions in each circular ring Ω(j) and the plate can be written
as in [39]:

ϕj(ζ) =
∞

∑
−∞

a(j)
k ζk, (14)

ϕN+1(ζ) = Bω(ζ) +
∞

∑
k=1

a(N+1)
k ζ−k, (15)

where a(j)
k and a(N+1)

k are unknown coefficients and B is a constant dependent on the remote stresses
as B = τ∞

13 − iτ∞
23.

By inserting Equations (14) and (15) into Equations (11)–(13), and then comparing the coefficients
of the same power σ±k in the Equations, a group of linear Equations can be obtained as follows. For the
hole boundary,

a(1)−kr−k
0 − a(1)k rk

0 = 0, (16)

a(1)k rk
0 − a(1)−kr−k

0 = 0, (17)

as j = 1, 2, · · · (N − 1),

a(j)
−kr−k

j − a(j)
k rk

j = a(j+1)
−k r−k

j − a(j+1)
k rk

j , (18)

a(j)
k rk

j − a(j)
−kr−k

j = a(j+1)
k rk

j − a(j+1)
−k r−k

j , (19)

1
Gj

[
a(j)

k rk
j + a(j)

−kr−k
j

]
=

1
Gj+1

[
a(j+1)

k rk
j + a(j+1)

−k r−k
j

]
, (20)

1
Gj

[
a(j)
−kr−k

j + a(j)
k rk

j

]
=

1
Gj+1

[
a(j+1)
−k r−k

j + a(j+1)
k rk

j

]
, (21)

and as j = N

a(N)
−k r−k

N − a(N)
k rk

N = a(N+1)
k r−k

N + Bω(rNσ)− Bω(rNσ), (22)

a(N)
k rk

N − a(N)
−k r−k

N = −a(N+1)
k r−k

N + Bω(rNσ)− Bω(rNσ), (23)

1
GN

[
a(N)

k rk
N + a(N)

−k r−k
N

]
=

1
GN+1

[
a(N+1)

k r−k
N + Bω(rNσ) + Bω(rNσ)

]
, (24)

1
GN

[
a(N)
−k r−k

N + a(N)
k rk

N

]
=

1
GN+1

[
a(N+1)

k r−k
N + Bω(rNσ) + Bω(rNσ)

]
. (25)

The Equations (16)–(25) constitute a group of 4N × M + 2 × M linear Equations. The linear

Equations only covers 4N × M + 2× M unknown coefficients a(j)
k , a(j)

−k, a(j)
k , a(j)

−k (k = 1, 2, · · ·M,
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j = 1, 2, . . . N) and a(N+1)
k , a(N+1)

k , so all of these coefficients used in the complex potential functions
can be easily solved according to the equations by means of the business software MATLAB (R2014a,
2014, MathWorks, Natick, MA, America). Finally, field variables in the layer and plate can be calculated
from Equations (4) and (5).

3. Numerical Examples

FGMs can generally be tailored through the power-law function, due to its easy control of
properties and better implementation, so the following change function of Young’s modulus in the FG
layer is used in numerical discussions [8]:

E(r) = Ep

(
r

rN

)n
, (26)

where Ep is the Young’s modulus in domain Sp. The Poisson’s ratio in the FG layer is assumed to be
unchanged and the same as the plate νg = νp = 0.3.

In order to check the accuracy of the present numerical analysis, the obtained solutions for several
special cases were compared with Lubarda [41], in which the analytical solution of circumferential
shear stress around circular and elliptical holes in a homogenous plate without FG layers is presented.
The conformal mapping function Equation (7) for ellipses can be written as [31]

z = ω(ζ) = R
(

ζ +
a− b
a + b

ζ−1
)

, (27)

where a and b are the semimajor and semiminor axes, respectively. The constant R in Equation (7) does
not have an effect on the stress field for the infinite field, so we chose R = 1. The exponents of Young’s
modulus in Equation (26) are chosen as n = 0, which corresponds to the case of the hole without an FG
layer. In the case, the circumferential shear stresses around an elliptical hole for different values of the
ellipse aspect ratio are compared with the analytical solution given by Equation (34) in Lubarda [41].
The results are shown in Figure 2. It was found that the present numerical solutions are in very close
agreement with Lubarda [41].

Appl. Sci. 2018, 8, x 6 of 13 

 
Figure 2. The circumferential shear stresses around an elliptical hole without FG layer (comparison). 

In the following, the effects of Young’s modulus on the shear stress distributions are discussed 
for some typically shaped holes. The conformal mapping functions for these typical shapes are 
summarized as follows [31]: 

( )ω ζ ζ=  (circle), (28) 

( ) 11
3

ω ζ ζ ζ −= +  (ellipse), (29) 

( ) 21
3

ω ζ ζ ζ −= +  (triangle), (30) 

( ) 31
6

ω ζ ζ ζ −= −  (square), (31) 

( ) 1 3 51 1 1
2 8 25

ω ζ ζ ζ ζ ζ− − −= + − −  (rectangle). (32) 

The variations in shear stress 3θτ  around different shaped holes under anti-plane shear loads 

23τ ∞
 are shown in Figures 3–7, where the thickness of the layer in the image plane is assumed to be 

00.2r . It can be easily observed that the variations in shear stress are noticeably different for different 

shaped holes. For circular and elliptical holes, the maximum shear stresses occur at 0 , 180δ =    of 
the hole surface, while they occur at 0δ =   for a triangular hole, and at the corners for square and 
rectangular holes. Comparatively speaking, the FG coating around the triangular hole has the largest 
magnitude of concentrations of the five different shaped holes, and the maximum shear stress of an 
ellipse and rectangle is usually larger than that of a circle and square, respectively. On the other hand, 
according to the change of exponent n , it is found the shear stresses of all shaped holes are largest 
for 0n= , which means the hole without an FG layer. For 0n≠ , i.e., the hole having an FG layer, the 
shear stresses get small, and they decrease further as n  increases. 

Figure 2. The circumferential shear stresses around an elliptical hole without FG layer (comparison).

In the following, the effects of Young’s modulus on the shear stress distributions are discussed
for some typically shaped holes. The conformal mapping functions for these typical shapes are
summarized as follows [31]:

ω(ζ) = ζ (circle), (28)
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ω(ζ) = ζ +
1
3

ζ−1 (ellipse), (29)

ω(ζ) = ζ +
1
3

ζ−2 (triangle), (30)

ω(ζ) = ζ − 1
6

ζ−3 (square), (31)

ω(ζ) = ζ +
1
2

ζ−1 − 1
8

ζ−3 − 1
25

ζ−5 (rectangle). (32)

The variations in shear stress τθ3 around different shaped holes under anti-plane shear loads τ∞
23

are shown in Figures 3–7, where the thickness of the layer in the image plane is assumed to be 0.2r0.
It can be easily observed that the variations in shear stress are noticeably different for different shaped
holes. For circular and elliptical holes, the maximum shear stresses occur at δ = 0◦, 180◦ of the hole
surface, while they occur at δ = 0◦ for a triangular hole, and at the corners for square and rectangular
holes. Comparatively speaking, the FG coating around the triangular hole has the largest magnitude
of concentrations of the five different shaped holes, and the maximum shear stress of an ellipse and
rectangle is usually larger than that of a circle and square, respectively. On the other hand, according
to the change of exponent n, it is found the shear stresses of all shaped holes are largest for n = 0,
which means the hole without an FG layer. For n 6= 0, i.e., the hole having an FG layer, the shear
stresses get small, and they decrease further as n increases.
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The variations in shear stress τθ3 along the normal direction of the hole with different shapes are
displayed in Figures 8–12. It is found that as the exponent n increases, the shear stresses for all shaped
holes clearly decrease in the FG layer, while the stresses increase slightly in the plate. As n = 0, i.e.,
there is no FG layer, the shear stresses decrease smoothly and continuously from the hole surface to
outside, and tend towards the remote stress τ∞

23 at a distance. In the case of the hole coated by an FG
layer (n 6= 0), the shear stresses no longer decrease from the hole surface to outside. For example,
shear stresses increase gradually in the FG layer as n rises to 2 and 5 for circular and elliptical holes,
respectively, and to 5 for triangular, square and rectangular holes. In these cases, the maximum stresses
do not occur at the hole surface, but at the interface between the FG layer and plate. That is, the position
of maximum stress τmax

θ3 may change from the hole to the interface after n increases to some value.
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4. Optimized Analysis

Based on the results in Section 3, we were able to find the optimum design for the material
variations in the layer according to the desired magnitude and distribution of stress for different
shaped holes. The variations in SCF shown in Figures 8–12 with exponent n are discussed further here.
The classical definition of SCF for homogenous materials is the ratio of the maximum stress at the
circumference of the hole to the applied far-field stress. Recently, considering the realistic physical
meaning, a novel definition of SCF for FGMs was proposed by Kubair [21,22] as the ratio of stress
in a FGMs plate with and without holes. This novel definition for SCF describes the effect of the
geometrical discontinuity (circular hole) in a FGMs plate that is physically meaningful. A detailed
introduction and computation can be found in Kubair [21,22]. In this paper, the classical definition for
SCF, which is still widely adopted in FGMs [6,7,24,42,43] is used for further analysis and discussion,
i.e., here the SCF is expressed as τmax

θ3 /τ∞
23. The variation in SCF with exponent n for different shaped

holes is shown in Figure 13. It can be seen that the position of SCF alters from point A to point B for the
five different shaped holes with n increasing. This is consistent with the conclusion mentioned above,
i.e., the position of maximum stress will change from the hole to the interface with the variation of
exponent n. Additionally, it can be observed that as exponent n increases from 0 to 5, the SCF decreases
firstly at point A, and then increases at point B. So apparently, the SCF has a minimum value when n is
chosen as a special value. For different shaped holes, the value of exponent n is different.
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Table 1 summarizes the corresponding relationship between the minimum SCF and exponent
n for five shaped holes. At the same time, the optimized SCF is also compared with the SCF for the
case of no FG layer. It is clear that the SCF can be significantly reduced by the optimum design of
the material variations in the layer. The most obvious example here is the triangular hole whose SCF
decreases by more than 50%.

Table 1. The comparison of the stress concentration factor (SCF) for two different cases (with and
without functionally graded (FG) layer).

Shape of Hole
Without FG Layer With FG Layer

The Decreasing Percentage of SCF
Exponent SCF Exponent Minimum SCF

Circle n = 0 2.000 n = 0.932 1.716 14.2%

Ellipse n = 0 3.000 n = 1.695 2.255 24.8%
Triangle n = 0 6.000 n = 4.237 2.919 51.4%
Square n = 0 2.856 n = 3.220 1.663 41.8%

Rectangle n = 0 4.575 n = 4.068 2.299 49.7%
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5. Conclusions

A general solution to the anti-plane problem of an arbitrarily shaped hole reinforced with an FG
layer in a homogenous plate is provided. Using the method of piece-wise homogeneous layers and the
conformal mapping technique, the FG layer in which the material properties change continuously along
the normal direction of the hole is reduced into N homogeneous concentric circular rings. The complex
potentials in each circular ring and the plate are solved based on the continuous conditions at the
interfaces by following the Muskhelishvili approach. The numerical examples of shear stress around
some typical shaped holes are presented for different Young’s modulus. Four conclusions can be
drawn as follows.

(1) The maximum shear stress of ellipse and rectangle shaped holes is usually larger than that of
circular and square shaped holes, respectively, and the FG layer around the triangular hole has
the largest magnitude of concentrations of all the five different shaped holes.

(2) When the hole is reinforced by an FG layer, the maximum shear stresses at the hole surface get
smaller, and they decrease further for all shaped holes when the gradient exponent of Young’s
modulus increases.

(3) As the gradient exponent n increases, the shear stresses decrease obviously in the FG layer,
while they increase slightly in the plate. So, the position of maximum stress changes from the
hole to the interface after n increases to some value.

(4) The SCF of various shaped holes can be reduced significantly by using the optimum design of
the material variations in the layer, and the most obvious one is the triangular hole whose SCF
can be decreased by more than 50%.
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