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Abstract: An optoelectronic oscillator (OEO) is an optoelectronic hybrid oscillator which utilizes
ultra-low-loss fiber as an electro-magnetic energy storage element, overcoming the limits of traditional
microwave oscillators in phase noise performance. Due to their ability to generate ultra-low phase
noise microwave signal, optoelectronic oscillators have attracted considerable attentions and are
becoming one of the most promising and powerful microwave signal sources. In this paper, we briefly
introduce the operation principle and discuss current research on frequency stability and spurious
suppression of optoelectronic oscillators.
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1. Introduction

Oscillators, as energy conversion devices, can transform a continuous DC signal to a periodic
analog signal [1,2], which is the core component of modern electronic systems, such as communication
systems [3], radar [4], and electronic warfare [5]. Along with providing a clock signal for high-speed
digital systems [6,7], oscillators can also be used as local oscillators for up-and-down frequency
conversion [8,9], and a reference source in synchronous systems [10,11]. As the microwave
electronic systems develop rapidly [8,9], these systems vigorously demand higher levels of oscillator
performances, including frequency range, stability, and phase noise.

In general, the energy storage characteristics of resonators determine the quality of the signals
produced by oscillators [12]. In order to generate high-quality microwave signals, energy storage
elements with a high Q-factor and low losses are essential. The energy storage of contemporary
microwave oscillators, including dielectric oscillators [13] and crystal oscillators [14,15], are mostly
based on electronic and acoustic resonators. When these resonators operate at frequencies above
GHz, the energy storage characteristics will drop sharply, and then the phase noise of generated
high-frequency microwave signals will deteriorate. Owing to microwave photonic technology [16],
optoelectronic oscillators (OEOs), utilizing low-loss optical fiber for energy storage, were originally
proposed by Steve Yao and Lute Maleki in 1996 [17,18]. Moreover, the OEO is deemed as one of the
most promising and powerful methods [19] in producing low-phase noise microwave signal from
hundreds of MHz to 100 GHz.

We have reviewed the literature of optoelectronic oscillators of the past two decades involving
several well-known and recognized academic societies, including but not limited to IEEE, OSA,
and SPIE. We will briefly introduce the fundamental structure and operation principle of optoelectronic
oscillators and review current research on the enhancement of OEO performance, including spurious
mode suppression and long-term frequency stability, which have not been summarized in detail
before. We sincerely hope that this review will help the broad masses of researchers to understand and
improve OEO more effectively.
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This paper is organized as follows: Section two demonstrates the fundamental setup and the
principle of an optoelectronic oscillator and briefly summaries the research status; section three
analyzes the improvement of OEOs, including spurious suppression and frequency stabilization;
Section 4 presents the conclusions and looks into the future.

2. Optoelectronic Oscillators

The schematic diagram of a fundamental optoelectronic oscillator is shown in Figure 1a and
Figure 1b shows the example spectrum of a fundamental OEO. An optoelectronic regenerative feedback
loop consists of a laser, an electro-optical modulator (EOM), a spool of fiber, a photodetector (PD), a
band-pass filter, an electronic amplifier, a phase shifter (PS) and a power coupler (PC). The optical
carrier is provided by the laser and then introduced into the electro-optical modulator. The oscillation
signal of an OEO plays the role of driving RF signal which modulates the optical carrier. Then, the
modulated optical signal is produced and transmitted through the high Q optical energy storage
element, such as low loss long fiber. The photodetector is the bridge between the optical and electrical
domain, which achieves photo-electric conversion. The recovered RF oscillation signal is then amplified,
filtered, and phase shifted, respectively. Finally, the RF signal is fed back to the electro-optical
modulator for the loop close and output via the power coupler. Once the amplitude and phase
conditions of oscillation are met, the OEO will export a high-quality microwave signal. Because of
the long fiber with low transmission loss as the energy storage element, an OEO can obtain long
delay, and then the generated microwave signal features high spectral purity and low phase noise.
The recorded ultra-low phase noise of the most advance OEO is −163 dBc/Hz @ 6 kHz offset for a
10-GHz carrier via 16-km optical fiber [20]. In addition, the energy storage performance of fiber has
nothing to do with the microwave oscillation frequency, since the frequency band of microwave signal
is much lower than optical frequency. Therefore, the phase noise performance of OEO is theoretically
independent of the oscillation frequency [18].
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Figure 1. (a) The schematic diagram of a fundamental optoelectronic oscillator (OEO). EOM:
electro-optical modulator. PD: photodetector. EA: electronic amplifier. PS: phase shifter. PC: power
coupler. (b) The example spectrum of fundamental optoelectronic oscillator.

After nearly two decades of continuous exploration, the research on optoelectronic oscillators has
made rapid progress [21]. However, it is still necessary to improve the performance and stability of
OEOs for wider application. Nowadays, research on OEOs mainly focuses on the reduction of phase
noise [22], the improvement of spurious suppression ratio [23], frequency stability [24], the expansion
of oscillating frequency [25], frequency tuning [26], miniaturization [27], and multi-frequency
oscillation [28]. This paper mainly analyzes and summarizes the work of spurious suppression
and frequency stabilization for optoelectronic oscillators.

3. Improvement of Optoelectronic Oscillators

For OEOs, the employment of low-loss, long optical fiber as the ultra-high Q electro-magnetism
energy storage element ensures the low phase noise performance. However, it inevitably brings
some knotty problems including rock-ribbed spurs and inferior frequency instability at the same time.
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For the wider practical application of OEOs, suppressing spurious mode and improving long-term
frequency stability are two burning questions.

3.1. Spurious Suppression

In order to produce a microwave signal with superior phase noise performance, an OEO is
supposed to equip high Q-value oscillating cavity and achieve long delay time, which is proportional
to the length of the fiber. When fiber length and oscillation frequency are L and f respectively, Q-value
of oscillating cavity can be represented as

Q = 2π fτ = 2π f
nL
c

(1)

where τ and n are respectively the delay time and the effective refractive index of fiber, and c represents
the speed of light. It can be summarized from Equation (1), that the longer the fiber the greater the
delay time and the Q-value. However, the mode spacing of OEO ∆ f is inversely proportional to the
length of fiber, which can be expressed as

∆ f =
1
τ
=

c
nL

. (2)

For example, the mode spacing of an OEO is about 50 kHz when the length of fiber is 4 km, and
the Q-value of band-pass filter in the OEO loop is accordingly required to be as high as 100,000
so as to obtain 10-GHz single mode oscillation. Nevertheless, Q value of available microwave
band-pass filter will decrease along with the operating frequency, and it is difficult to achieve
microwave band-pass filtering with a bandwidth of the order of 10 kHz and then reject the unwanted
oscillation modes [29–31]. Several methods have been proposed to settle this problem, such as
dual-loop OEOs [32], coupled optoelectronic oscillators (COEOs) [33], injection-locking technique [34],
and high-Q microwave photonic filter [35].

The dual-loop OEOs are implemented based on two fiber loops with different lengths in parallel
as shown in Figure 2. These fiber loops have their own phase match conditions and mode spacing.
Because of the gain-competition between these series of modes, only the frequency components that
meet the phase matching requirements of both loops can stably oscillate. In order to achieve the
oscillating mode match and realize the Vernier effect, the precise control of the loop lengths is necessary.
As a result, the mode spacing of multi-loop OEO is expanded, alleviating the high demand for the
Q-value of filter, and the spurs of OEOs can be effectively suppressed. In [36], Y. Jiang et al. reported a
dual-loop OEO scheme employing a pair of polarization-beam splitter and combiner, and the spurious
suppression ratio was improved to about 60 dB. However, the overall Q-value of the dual-loop OEO
is between the long-loop OEO and the short-loop OEO. Compared to the single-loop OEO with a
long fiber, the Q value of dual-loop OEO decreases and the phase noise correspondingly increases.
To overcome the diminution of phase-noise performance, Jun-Hyung Cho et al. found that the spurious
modes of dual-loop OEO can be reduced while maintaining the phase noise performance by properly
controlling the gains of the OEO, as shown in Figure 3, after investigating the open-loop characteristics.
Through the precise open-loop gain control, they demonstrated the suppression of spurious modes by
more than 21 dB [37].
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Figure 2. The schematic diagram of dual-loop optoelectronic oscillator. EOM: electro-optical modulator.
PD: photodetector. EA: electronic amplifier. PS: phase shifter. PC: power coupler.
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Figure 3. The schematic diagram of dual-loop optoelectronic oscillator based on open-loop gain control
in [37]. OC: optical coupler. Reprinted with permission from Ref. [37], IEEE, 2018.

To further shorten the fiber length, Steve Yao designed a compact architecture named compact
optoelectronic oscillator (COEO) [33], which is another solution to suppress spurs as shown in
Figure 4. The COEO includes an active mode-locked laser loop and an optoelectronic feedback
loop. To enhance the Q value and decrease the phase noise of the oscillator, several hundred meters of
fiber are employed in the active mode-locked laser loop. Since COEO employs shorter fiber to store
energy, the oscillation mode spacing is correspondingly enlarged and the spurs can be suppressed
effectively via conventional microwave band-pass filter. In order to further suppress the spurs of
COEO, our research group proposed that an optical pulse power feedforward scheme can effectively
suppress such side-modes of COEO as shown in Figure 5 [38], through which the mode-locked
optical pulse is reversely intensity-modulated by itself, resulting in fast power limiting. The spurs
can be suppressed as much as 40 dB in a 10-GHz COEO. Recently, we proposed and experimentally
demonstrated a simple COEO scheme embedding a free-running microwave oscillator as shown in
Figure 6 [39]. The COEO and the embedded microwave oscillator share the same electronic feedback
and then inject each other to achieve mutual injection locking effect. Due to the single-mode oscillation
of the free-running oscillator, the multi-mode oscillation of COEO is eased and the spurious noise can
be significantly suppressed to below −120 dBc.
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Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 13 

Optical loopOBPF

Optical Signal

Electrical Signal

G
1

EDF

Pump

WDM

Isolator

Polarization

Controller

OC

Optical 

Coupler

MZM

+

- G
2

EBPF

ELPF

Output

P
D

L
N

A Tunable 

delay

Phase 

shifter

Matched delay

Power 

splitter

External

microwave

Fiber

 

Figure 5. The schematic diagram of the COEO based on optical power feedforward technique. EDF: 

erbium doped fiber. WDM: wavelength division multiplex. OBPF: optical band-pass filter. MZM: 

Mach-Zehnder modulator. PD: photodetector. LNA: low noise amplifier. EBPF: electric band-pass 

filter. ELPF: electric low pass filter. Reprinted with permission from Ref. [38], OSA, 2018. 

Electrical Signal

Optical loop

Electric loop

EDF

Pump

WDM

Photo-

detector

PC

Filter

Isolator Isolator

OC MZM

Polarization

Controller

Optical 

Coupler

Phase 

Shifter

PS
PCPC

Filter
RF Amplifier

Variable 

Attenuator

Optical Signal

Phase Shifter

Power

Coupler

RF output

 

Figure 6. The schematic diagram of the mutually injection-locked COEO. EDF: erbium doped fiber. 

WDM: wavelength division multiplex. Reprinted with permission from Ref. [39], OSA, 2018. 

According to the frequency pulling effect, the spurious suppression of OEO can be achieved by 

injecting another signal, which has close frequency with some oscillating mode of OEO, commonly 

referred to as injection locking. In [40], M. Fleyerl et al. employed an electronic oscillator to injection-

lock the OEO without a narrow-band filter as shown in Figure 7, and the spurs levels closest to the 

carrier frequency were about 55 dB smaller than those obtained by a self-sustained OEO employing 

electronic filter having the Q-factor of 720. However, the phase noise of the final oscillating signal 

would be limited to some extent due to the injection signal. Therefore, a dual injection-locked OEO 

(DIL-OEO) scheme [41] proposed by O. Okusaga et al. has been employed to achieve, not only low 

phase noise, but also low spurs via two OEO systems with different length oscillating cavities. The 

two OEOs inject and affect each other to achieve mutual injection-locking as shown in Figure 8. The 

steady-state power fluctuation in either loop will alter both the phase noise and spur levels of the 

DIL-OEO. In addition, both oscillation modes of the slave and master loops need accurate matches 

to ensure the phase locking effect. 

Figure 6. The schematic diagram of the mutually injection-locked COEO. EDF: erbium doped fiber.
WDM: wavelength division multiplex. Reprinted with permission from Ref. [39], OSA, 2018.

According to the frequency pulling effect, the spurious suppression of OEO can be achieved by
injecting another signal, which has close frequency with some oscillating mode of OEO, commonly
referred to as injection locking. In [40], M. Fleyerl et al. employed an electronic oscillator to
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injection-lock the OEO without a narrow-band filter as shown in Figure 7, and the spurs levels
closest to the carrier frequency were about 55 dB smaller than those obtained by a self-sustained OEO
employing electronic filter having the Q-factor of 720. However, the phase noise of the final oscillating
signal would be limited to some extent due to the injection signal. Therefore, a dual injection-locked
OEO (DIL-OEO) scheme [41] proposed by O. Okusaga et al. has been employed to achieve, not only
low phase noise, but also low spurs via two OEO systems with different length oscillating cavities.
The two OEOs inject and affect each other to achieve mutual injection-locking as shown in Figure 8.
The steady-state power fluctuation in either loop will alter both the phase noise and spur levels of the
DIL-OEO. In addition, both oscillation modes of the slave and master loops need accurate matches to
ensure the phase locking effect.Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 13 
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High-Q microwave photonic filters such as whispering gallery mode (WGM, Figure 9)
resonator [26], Fabry-Perot etalon [35], and atomic cells [42] can simultaneously implement energy
storage and frequency selection for OEOs, replacing the conventional long fiber and microwave
filter. In [43], M. Bagnell et al. utilized a Fabry–Perot etalon with a finesse of 100,000 as a photonic
filter in a conventional single loop OEO as shown in Figure 10. The etalon provided a high Q-value
microwave band-pass filtering at harmonics of 1.5 GHz free spectral range for oscillation frequency
in the range of 6 to 60 GHz. There were no visible spurious modes above the noise floor, despite
employing as long as a 2 km fiber delay. In [44], we proposed an ultra-high Q optoelectronic hybrid
band-pass filter to suppress a spurious mode of OEO as shown in Figure 11. The 3-dB bandwidth of
the proposed optoelectronic hybrid band-pass filter was about 1 MHz at 29.99-GHz center frequency,
and the spurious suppression ratio can reach more than 83 dBc.
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Figure 10. The schematic diagram of the OEO employing a Fabry–Perot etalon and Pound–Drever–Hall
frequency stabilization. PC: polarization controller. IM: intensity modulator. VOD: variable
optical delay. EDFA: erbium-doped fiber amplifier. AOM: acousto-optic modulator. PM: phase
modulator. CIR: circulator. FPE: Fabry–Perot etalon. PD: photodetector. LPF: low-pass filter.
PID: proportional–integral–derivative controller. VCO: voltage-controlled oscillator. Reprinted with
permission from Ref. [43], IEEE, 2018.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 13 

Laser IM VOD PM

Cir

 

PD

 

PD

E
D

F
A

VCO

PID LPF
PDH Loop

OEO Loop

PC AOM

PC FPE

 

Figure 10. The schematic diagram of the OEO employing a Fabry–Perot etalon and Pound–Drever–

Hall frequency stabilization. PC: polarization controller. IM: intensity modulator. VOD: variable 

optical delay. EDFA: erbium-doped fiber amplifier. AOM: acousto-optic modulator. PM: phase 

modulator. CIR: circulator. FPE: Fabry–Perot etalon. PD: photodetector. LPF: low-pass filter. PID: 

proportional–integral–derivative controller. VCO: voltage-controlled oscillator. Reprinted with 

permission from Ref. [43], IEEE, 2018. 

Laser

MZM MZM OC 

PD2
EA

ESA

PD1

EAFilter

Optoelectronic 
Oscillator

Optoelectronic
Hybrid Filter

PC

DSF

 

Figure 11. The schematic diagram of the millimeter-wave OEO employing an optoelectronic hybrid 

band-pass filter with ultra-high Q value. MZM: Mach-Zehnder modulator. PC: polarization controller. 

OC: optical coupler. DSF: dispersion shifted fiber. PD: photodetector. EA: electrical amplifier. ESA: 

electrical spectrum analyzer. Reprinted with permission from Ref, [44], IEEE, 2018. 

3.2. Frequency Stabilization 

The superior phase noise performance of OEO can be attributed to the employment of low-loss, 

long optical fiber with high Q factor. However, the effective refractive index and length of fiber are 

sensitive to ambient temperature variations. Meanwhile, the oscillating cavity is easily affected by 

mechanical vibrations, stress, and device aging, which make the cavity length change and the 

oscillating frequency drift. Besides, in view of the low Q-value microwave band-pass filter, there 

would be multiple spurious modes in the gain bandwidth of OEO loop. The change of the cavity 

length will cause some spurious modes to obtain sufficient oscillation gain and replace the original 

frequency, leading to stochastic frequency hopping. Those characters have a non-negligible 

contribution to oscillation frequency drift, and they would greatly deteriorate the long-term 

frequency stability of optoelectronic oscillators [45]. In terms of improving the long-term frequency 

stability of OEOs, it is essentially necessary to control the effective cavity length of the OEO and 

reduce the impact of the ambient environment. 

Several methods of improving the frequency stability of OEOs have been proposed, including 

temperature-insensitive fiber [46], thermal stabilization [47,Error! Reference source not found.] and 

phase-locked loop [48]. Employing temperature-insensitive fiber in the OEOs can diminish the 

impact of ambient environment variation. In [46], M. Kaba et al. replaced the common single-mode 

fiber with solid-core photonic crystal fiber (SC-PCF) serving as energy storage element for OEO and 

the frequency stability was improved to some extent. Nevertheless, the phase noise of OEOs with SC-

PCF is less-than-ideal due to the sacrifice of Q value resulting from larger transmission loss. Thermal 

stabilization, including temperature control and system isolation for OEOs, is also an effective 

solution to relieve the negative influence of ambient environment variation. For instance, Steve. Yao 

et al. placed the OEO system in a bubble-filled box to isolate the effects of sound and vibration [47]. 

Figure 11. The schematic diagram of the millimeter-wave OEO employing an optoelectronic hybrid
band-pass filter with ultra-high Q value. MZM: Mach-Zehnder modulator. PC: polarization controller.
OC: optical coupler. DSF: dispersion shifted fiber. PD: photodetector. EA: electrical amplifier. ESA:
electrical spectrum analyzer. Reprinted with permission from Ref, [44], IEEE, 2018.

3.2. Frequency Stabilization

The superior phase noise performance of OEO can be attributed to the employment of low-loss,
long optical fiber with high Q factor. However, the effective refractive index and length of fiber
are sensitive to ambient temperature variations. Meanwhile, the oscillating cavity is easily affected
by mechanical vibrations, stress, and device aging, which make the cavity length change and the
oscillating frequency drift. Besides, in view of the low Q-value microwave band-pass filter, there would
be multiple spurious modes in the gain bandwidth of OEO loop. The change of the cavity length will
cause some spurious modes to obtain sufficient oscillation gain and replace the original frequency,
leading to stochastic frequency hopping. Those characters have a non-negligible contribution to
oscillation frequency drift, and they would greatly deteriorate the long-term frequency stability of
optoelectronic oscillators [45]. In terms of improving the long-term frequency stability of OEOs, it is
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essentially necessary to control the effective cavity length of the OEO and reduce the impact of the
ambient environment.

Several methods of improving the frequency stability of OEOs have been proposed, including
temperature-insensitive fiber [46], thermal stabilization [47,48] and phase-locked loop [49]. Employing
temperature-insensitive fiber in the OEOs can diminish the impact of ambient environment variation.
In [46], M. Kaba et al. replaced the common single-mode fiber with solid-core photonic crystal fiber
(SC-PCF) serving as energy storage element for OEO and the frequency stability was improved to some
extent. Nevertheless, the phase noise of OEOs with SC-PCF is less-than-ideal due to the sacrifice of Q
value resulting from larger transmission loss. Thermal stabilization, including temperature control
and system isolation for OEOs, is also an effective solution to relieve the negative influence of ambient
environment variation. For instance, Steve. Yao et al. placed the OEO system in a bubble-filled
box to isolate the effects of sound and vibration [47]. In [48], D. Eliyahu et al. made use of resistive
heaters and temperature controllers for the high-Q devices of OEO, such as the optical fiber and the
narrow band-pass microwave filter. The free-running OEO under thermal stabilization featured a
short-term frequency stability of 0.02 ppm. The slope of frequency versus. temperature improved from
−8.3 ppm/◦C for non-thermally stabilized OEO to −0.1 ppm/◦C. However, it is worth mentioning
that the means of thermal stabilization inevitably increased bulk and power consumption, which
brings new issues. Meanwhile, the performance for frequency stability of OEOs could not meet higher
requirements in special applications, which means that further stabilization methods would still be
necessary, as shown in Figure 12 [49].
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Figure 12. The schematic diagram of the long-term frequency stabilization for OEO based on
temperature control and PLL techniques. EOM: electro-optical modulator. DDF: dispersion deduced
fiber. PD: photodiode. LNA: low noise amplifier. BPF: band-pass filter. EC: electrical coupler. PS:
power splitter. LPF: low-pass filter. PID: proportional-integral-derivative. Reprinted with permission
from Ref. [49], IEEE, 2018.

The phase-locked-loop (PLL) technique is the most practical and has been widely used in the
frequency stabilization for microwave oscillators. The active PLL control circuit can lock the oscillation
signal generated by OEO to an external highly-stable reference source. The final signal of PLL-based
OEO has the same frequency stability with the external reference while maintaining phase noise
performance at high-offset frequencies. Our research group proposed and demonstrated a novel
broadband and wide-range feedback tuning scheme on the strength of a dual parallel Mach-Zehnder
modulator (DPMZM) and optical band-pass filter for PLL stabilization of tunable OEO as shown in
Figure 13 [50]. The PLL-based stabilization for OEO was achieved at different oscillating frequencies
and the long-term frequency stability was indeed improved with more than four orders of magnitude
without any thermal control. However, the PLL-aided OEO in [50], which is realized by controlling
the bias voltage of the modulator would affect the light intensity, thereby negatively affecting the
OEO oscillating state. The analog voltage-controlled phase shifter is typical in adjusting the cavity
length in the PLL-based OEO. In [51], A. Bluestone et al. proposed a novel voltage-controlled oscillator
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(VCO) which is an OEO utilizing phase-locked loop architecture as shown in Figure 14. The OEO
demonstrated excellent phase-noise performance at high-offset frequencies, while the PLL reduces
the phase noise at low-offset frequencies. Nevertheless, the maximum phase shift range of the
commercial microwave phase shifter decreases along with the operating frequency, and it will be
too narrow to compensate the frequency drift for OEOs at a high operating frequency. Therefore,
we proposed a frequency conversion pair to improve the frequency-drift compensation range for
the PLL-stabilized OEO as shown in Figure 15 [52]. The cavity length is adjusted by controlling
the phase shift of oscillation signal at relatively low frequency via frequency division and frequency
multiplication. Moreover, the stability of the locked optoelectronic oscillator was improved from
4.1 × 10−7 to 1.1 × 10−10 at 1000 s averaging time. In order to achieve the frequency stability of
millimeter-wave (MMW) signal produced by OEO, we proposed a novel frequency-de-multiplication
OEO (FD-OEO) scheme as shown in Figure 16 [53]. The oscillation of the FD-OEO can be maintained
without optical first-order sidebands, which would help to simplify the photonic-assisted frequency
multiplication process while providing a wide frequency compensation range for the millimeter-wave
signal. The overlapping Allan deviation of the generated 40-GHz MMW signal reaches 1.38 × 10−12 at
the average time of 100 s as shown in Figure 17.
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Figure 13. The schematic diagram of the feedback tune scheme in PLL stabilization of OEO [50]. LD:
laser diode. MZM: Mach-Zehnder modulator. DSF: dispersion-shifted fiber. PD: photodetector. EA:
electrical amplifier. BPF: band-pass filter. EC: electronic coupler. ESA: electrical spectrum analyzer.
PID: proportional-integral-derivative regulator module. Ref: microwave reference. Reprinted with
permission from Ref. [50], OSA, 2018.
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Figure 14. The schematic diagram of the phase-locked loop architecture utilizing OEO as a
voltage-controlled oscillator (VCO). MZM: Mach-Zehnder modulator. PC: polarization controller. PD:
photodetector. EA: electrical amplifier. ESA: electrical spectrum analyzer. Reprinted with permission
from Ref. [51], IEEE, 2018.
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Figure 15. Schematic diagram of the stabilized OEO scheme based on the FCP with equivalent wide
frequency-compensation range [52]. MZM: Mach-Zehnder modulator. DSF: dispersion-shifted fiber.
PD: photodetector. EA: electronic amplifier. PC: power combiner. BPF: band-pass filter. FD: frequency
divider. VCPS: voltage controlled phase shifter. Att: attenuator. FM: frequency multiplier. PS: power
splitter. Ref: microwave reference. FS: frequency synthesizer. PID: proportional-integral-derivative
regulator module. Reprinted with permission from Ref. [52], IEEE, 2018.
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4. Conclusions

Low phase noise RF oscillators are required in multiple applications, ranging from radar and
Global Position System (GPS) to high performance analog to digital converters to trans-oceanic data
transmission. Since 1996, the OEO has been investigated for applying to many different fields requiring
low phase noise RF signals. However, inferior frequency stability and rock-ribbed spurs, which result
from the inherent structure, hinder the practicability of the OEO. In this article, we analyzed and
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summarized the research on the improvement of frequency stability and spurious suppression of
OEOs to contribute and provide new insights for future work. The wide-band frequency tunability
and stability of optoelectronic oscillators are a critical issue that need to be solved urgently.
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