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Featured Application: This work has several applications: (a) to reveal spatiotemporal variations
of PM2.5 across urban landscapes; (b) to assess the long-term impacts of PM2.5 on human health;
(c) to support government policy decision-making; and (d) to provide valuable information to
the public.

Abstract: High-spatiotemporal-resolution PM2.5 data are critical to assessing the impacts of
prolonged exposure to PM2.5 on human health, especially for urban areas. Satellite-derived aerosol
optical thickness (AOT) is highly correlated to ground-level PM2.5, providing an effective way to
reveal spatiotemporal variations of PM2.5 across urban landscapes. In this paper, Multi-Angle
Implementation of Atmospheric Correction (MAIAC) AOT and ground-based PM2.5 measurements
were fused to estimate daily ground-level PM2.5 concentrations in Beijing for 2013–2017 at 1 km
resolution through a linear mixed effect model (LMEM). The results showed a good agreement
between the estimated and measured PM2.5 and effectively revealed the characteristics of its
spatiotemporal variations across Beijing: (1) the PM2.5 level is higher in the central and southern
areas, while it is lower in the northern and northwestern areas; (2) the PM2.5 level is higher in autumn
and winter, while it is lower in spring and summer. Moreover, annual PM2.5 concentrations decreased
by 24.03% for the whole of Beijing and 31.46% for the downtown area from 2013 to 2017. The PM2.5

data products we generated can be used to assess the long-term impacts of PM2.5 on human health
and support relevant government policy decision-making, and the methodology can be applied to
other heavily polluted urban areas.

Keywords: urban pollution; remote sensing; PM2.5; AOT

1. Introduction

PM2.5 refers to atmospheric particulate matter (PM) with a diameter of less than 2.5 micrometers,
which remains suspended for a longer time in the air. Numerous studies have demonstrated that
exposure to PM2.5 is associated with adverse health effects including respiratory and cardiovascular
diseases [1–3]. In urban areas, PM2.5 concentrations vary sharply over short distances caused by uneven
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distribution of emission sources, diffusion, and physicochemical transformations. While traditional
ground-based monitoring measures PM2.5 concentrations with high temporal resolution (e.g., daily
and hourly), the monitoring sites are generally distributed sparsely and unevenly, lacking the spatial
resolution necessary to analyze the fine-scale spatial variability of pollution; this variability is important
for health impact assessment and is needed to characterize the heterogeneity of human exposure to
PM2.5, analyze its adverse health effects, and effectively prevent and control air pollution [4].

Aerosol optical thickness (AOT), defined as the integrated extinction coefficient over a vertical
column of atmosphere at an observation location, is a measure of the extinction of the solar beam by
aerosol particles in the atmosphere. Satellite-derived AOT can be used to monitor urban air quality
through adding synoptic and spatial distribution information to ground-based air quality data and
modeling [5]. Different approaches have been employed to estimate surface PM2.5 concentrations
from AOT, with many efforts on developing linear regression models to effectively relate PM2.5 and
AOT [6,7]. For example, meteorological data have been incorporated in a multiple regression analysis
and improved the PM2.5–AOT correlation [8]; considering that spatial variation of pollution may
introduce significant biases, a geographically weighted regression model (GWR) was developed to
accommodate such spatial variations [9–11]; and local scaling factors obtained from a global chemical
transport model (GEOS-Chem) were combined with AOT to estimate ground-level PM2.5 [12]. Taking
time-varying parameters into account, a statistical model was developed to calibrate 10 km MODIS
AOT and predict daily PM2.5 concentrations [13], and this model was further improved through adding
meteorological data, land use, and pollution sources [14–23], and applied in the Beijing area to estimate
PM2.5 spatial variations using Moderate Resolution Imaging Spectroradiometer (MODIS) AOT data
products at 3 km resolution [24,25].

In this study, considering the attention paid to the linear mixed effect model (LMEM) developed
by Lee et al. [13] and its demonstrated effectiveness, we assessed the performance of the LMEM in
heavily polluted urban areas. Specifically, the results of LMEM fitting with AOT at 1 km and 3 km
resolutions and different PM2.5 datasets were compared, the spatiotemporal trends of PM2.5 pollution
in Beijing from 2013 to 2017 were analyzed, and the effectiveness of government policies regarding air
pollution mitigation in recent years was evaluated.

2. Materials and Methods

2.1. Study Area

Beijing, the capital of China, is located in northeastern China at the northern tip of the North China
Plain, near the meeting point of the Xishan and Yanshan mountain ranges (Figure 1). In recent years,
it has been experiencing heavy air pollution because of the enormous economic boom, the increase
in the number of motorized vehicles, population growth, the surrounding topography, and seasonal
weather conditions. By 2015, the population living in Beijing metropolitan areas was over 21 million,
with about 2.1 million children and 2.2 million elders. This makes Beijing a study area quite suitable
for air pollution research.
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Figure 1. (a) Location of the study area (the red polygon on the map); (b) An elevation map (DEM—
Digital Elevation Model) shows that the study area is surrounded by mountains in the west, north, 
and northeast; (c) The 24 h PM2.5 average (μg/m3) for each site during 2013–2017, classified into six 
levels and represented by different colors; (d) The spatial distribution of average 1 km Multi-Angle 
Implementation of Atmospheric Correction (MAIAC) aerosol optical thickness (AOT) during 2013–
2017, with white color denoting water areas. The boundaries of 16 Beijing districts are shown in black 
lines. 

2.2. Ground-Level PM2.5 Data Sets 

Ground-level PM2.5 data sets were used for model parameterizing and accuracy assessment in 
this study. PM2.5 data are collected hourly in Beijing from totally 35 monitoring sites located in the 
metropolitan area (Figure 1, Table S1). The data sets are managed by the Beijing Municipal 
Environmental Monitoring Center (BMEMC). In this study, the hourly ground-level PM2.5 
concentrations were averaged to get two PM2.5 datasets at each monitoring site for five years from 1 
January 2013 through 31 December 2017: (1) the PM2.5 24 h average between 00:00 a.m. and 23:00 p.m. 
and (2) the PM2.5 period average between 10:00 a.m. and 2:00 p.m.  

2.3. AOT Data Sets 

The major AOT data sets used in this study were the MAIAC AOT data sets, which are produced 
using a generic algorithm specifically developed for MODIS, performing aerosol retrievals and 
atmospheric correction over both vegetated surfaces and bright deserts at 1 km spatial resolution 
based on time series analysis and image processing [26,27]. The MAIAC algorithm also derives 
column water vapor (CWV), the surface reflectance (SR) bidirectional reflectance distribution 

Figure 1. (a) Location of the study area (the red polygon on the map); (b) An elevation map
(DEM—Digital Elevation Model) shows that the study area is surrounded by mountains in the west,
north, and northeast; (c) The 24 h PM2.5 average (µg/m3) for each site during 2013–2017, classified into
six levels and represented by different colors; (d) The spatial distribution of average 1 km Multi-Angle
Implementation of Atmospheric Correction (MAIAC) aerosol optical thickness (AOT) during 2013–2017,
with white color denoting water areas. The boundaries of 16 Beijing districts are shown in black lines.

2.2. Ground-Level PM2.5 Data Sets

Ground-level PM2.5 data sets were used for model parameterizing and accuracy assessment in this
study. PM2.5 data are collected hourly in Beijing from totally 35 monitoring sites located in the metropolitan
area (Figure 1, Table S1). The data sets are managed by the Beijing Municipal Environmental Monitoring
Center (BMEMC). In this study, the hourly ground-level PM2.5 concentrations were averaged to get
two PM2.5 datasets at each monitoring site for five years from 1 January 2013 through 31 December
2017: (1) the PM2.5 24 h average between 00:00 a.m. and 23:00 p.m. and (2) the PM2.5 period average
between 10:00 a.m. and 2:00 p.m.

2.3. AOT Data Sets

The major AOT data sets used in this study were the MAIAC AOT data sets, which are produced
using a generic algorithm specifically developed for MODIS, performing aerosol retrievals and
atmospheric correction over both vegetated surfaces and bright deserts at 1 km spatial resolution based
on time series analysis and image processing [26,27]. The MAIAC algorithm also derives column
water vapor (CWV), the surface reflectance (SR) bidirectional reflectance distribution function (BRDF),
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and spectral regression coefficients (SRC). MAIAC collects 5 (over poles) to 16 (over equator) days of
MODIS observations depending on locations on the Earth using a sliding window approach. These
MODIS observations are then gridded to 1 km spatial resolution with specific projection coordinate
systems. When the land surface conditions remain stable during a data collection period, the surface
BRDF is retrieved using the regional background aerosol model. The 2.1 µm MODIS band is used to
retrieve AOT and surface reflectance over dark and moderately bright surfaces. Four or more low AOT
days are used to calculate the SRC correlating surface reflectance in the blue and shortwave infrared
bands. Once the SRC is obtained, the AOT is retrieved with the last MODIS observation. AOT retrieval
is conducted with the regional background aerosol model in clear conditions, but with surface BRDF
in hazy conditions. Aerosol Robotic Network (AERONET) [28] validation shows that the MAIAC and
the MODIS Level-2 atmospheric aerosol product (MOD04 ) algorithms have similar accuracy over dark
and vegetated surfaces and that MAIAC AOT generally improves in accuracy over brighter surfaces
due to SRC retrieval and explicit BRDF factor characterization, as demonstrated for several U.S. West
Coast AERONET sites [26].

MAIAC AOT data sets derived from Terra (at ~10:30 a.m. local time) and Aqua (at ~1:30 p.m.
local time) were merged to improve its spatial coverage in urban areas [14]. For a given day, due
to meteorological condition changes and other factors, the two MAIAC AOT measurements might
vary slightly. When merging the AOT data for a given area and a given day, there are two possible
cases regarding the availability of AOT data: (1) both MAIAC-Aqua AOT and MAIAC-Terra AOT are
available, or (2) only one of the two MAIAC AOTs is available. In the second case, the missing AOT
values were estimated through a regression model. As a result, the daily AOT average represents the
average between 10:00 a.m. and 2:00 p.m. for each day. As the ratio of morning AOT and afternoon
AOT varies by season, we reorganized all the AOT data sets into two seasons for each year: warm
season (15 April–14 October) and cold season (15 October–14 April). For the missing AOT estimation,
the R2 values of the regression model in warm and cold seasons were 0.88 and 0.87 respectively,
indicating a good regression-based AOT interpolation.

For comparison purposes, MODIS Collection 6 Level 2 aerosol data products with 3 km spatial
resolution (MOD-3K AOT) for 2014 were also collected. The algorithm for generating MOD-3K AOT is
similar to the algorithm used in the previous 10 km AOT product, but the MOD-3K AOT algorithm
averages 6 × 6 pixels in a single retrieval box rather than 20 × 20 pixels after cloud screening and
other surface mask processes [29]. The MOD-3K AOT products have been validated by ground-based
measurements from six AERONET sites in China, and its spatiotemporal variations show good
agreement with the AERONET AOT, with R2 values of 0.80–0.97 at the six sites [30].

2.4. Data Preprocessing

To establish the PM2.5–AOT relationship model (parameterization), the ground-based PM2.5

measurements and satellite-derived MAIAC AOT values must be collected at the closest spatial
location and time. For each monitoring site (PM2.5), the 1 km pixel of MAIAC AOT where the
monitoring site locates was selected and its AOT value was extracted to form a PM2.5–AOT data
pair. PM2.5–AOT data pairs with either PM2.5 values less than 3.0 µg/m3 or missing PM2.5/AOT
measurements were omitted. In addition, the days with less than two PM2.5–AOT data pairs available
were excluded as a regression slope cannot be estimated from only a single data pair. MAIAC AOT
pixels of water areas were removed through flagging because the high moisture content around water
areas tends to be misidentified as PM2.5 by estimation models.

2.5. LMEM Model Fitting and Validation

Lee et al. [13] developed the LMEM algorithm to estimate PM2.5 from MODIS MOD04 AOT
at 10 km resolution; it takes into account the day-to-day variability of the PM2.5–AOT relationship
based on mixing height, relative humidity, PM2.5 composition, and PM2.5 vertical profile with the
assumption that the PM2.5–AOT relationship varies largely day to day but minimally spatially on
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a given day at the study area. The LMEM calculates day-specific random intercepts and slopes for
the PM2.5–AOT relationship and incorporates both fixed-effects terms and random-effects terms. The
LMEM equation is

PMij =
(

α + µj

)
+
(

β + υj

)
×AOTij + si+εij (1)

where PMij is the daily average PM2.5 concentration at site i on day j; AOTij is the daily average
AOT value corresponding to site i on day j; α and µj are the fixed and random intercepts on day j,
respectively; β and υj are the fixed and random slopes on day j, respectively; si is the random intercept
of site i; and εij is the error term at site i on day j. In this model, the fixed parameter β for AOT
represents the average PM2.5–AOT relationship for the entire space and time in the specific urban area,
while the random parameter υj represents daily variation of the PM2.5–AOT relationship.

We trained (fitting and validating) the LMEM using a large number of PM2.5–AOT sample data
pairs for PM2.5 estimation from 2013 to 2017. As an AOT pixel value represents the average aerosol
level in a given 1 km × 1 km area while a ground-based PM2.5 measurement only represents the
aerosol level at a point, theoretically, there may be systematic bias between AOT-derived PM2.5 and
ground-measured PM2.5. The site bias may also vary by surface cover type, topography, distance to
pollution source, and other anthropogenic and natural environmental conditions. It should be noted
that site random effect (si) was not considered when estimating PM2.5 concentrations for our study
period because AOT values are unbiased representative of the corresponding grid cells; in other words,
PM2.5 values derived from AOT reflect the overall PM2.5 levels in the grid cell, but the unadjusted
predicted PM2.5 levels with site effects maybe be more representative of the average population
exposures to PM2.5 [13].

After the model training, the PM2.5 estimates over our study area for the whole time period were
generated using LMEM and 1 km MAIAC AOT. Further, the model performance using 1 km AOT data
and 3 km AOT data was compared using the 1 km MAIAC AOT and 3 km MOD-3K AOT data sets for
2014 as inputs. In addition, as the PM2.5 24 h average and the PM2.5 period average may differ, we
also established different LMEM models and compared the model performance with these two PM2.5

data sets.
Tenfold cross-validation (CV) was applied to test the potential model overfitting through

randomly splitting the entire samples (PM2.5–AOT pairs) into 10 subsets with each subset containing
approximately 10% of the whole sample dataset. One sample subset was used for model testing,
while the remaining nine sample subsets were used for model fitting. This procedure was repeated
10 times until every subset was tested. The site-specific (each site) R2 between estimated PM2.5 and
ground-based PM2.5 measurements, mean prediction error (MPE), and root-mean-squared prediction
error (RMSPE) were calculated for model fitting and cross validation results:

MPE = ∑n
i=1

(
y′i − yi

)
/n (2)

RMSPE =
√

∑n
i=1

(
y′i − yi

)2/n (3)

where y′i and yi are the estimated PM2.5 and the measured PM2.5 of the ith sample, respectively, and n
is the total number of PM2.5–AOT sample pairs.

3. Results

3.1. Data Descriptive Statistics

In this study, there were 33,785 PM2.5–AOT sample pairs in total for the 35 monitoring sites and
1301 days (239 days for 2013, 261 days for 2014, 268 days for 2015, 269 days for 2016, and 264 days for
2017), which were used for model fitting and model validation. The number of PM2.5–AOT sample
pairs varies from 666 to 1015 by site. The data statistics demonstrate that the overall mean of the
PM2.5 24 h average is 72.15 µg/m3, varying from 44.95 µg/m3 (SD = 46.89 µg/m3) to 105.02 µg/m3
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(SD = 87.29 µg/m3) by site (Table S2), and the overall mean of the PM2.5 period average between
10:00 a.m. and 2:00 p.m. is 65.82 µg/m3, varying from 39.39 µg/m3 (SD = 47.49 µg/m3) to 92.33 µg/m3

(SD = 87.36 µg/m3) by site (Table S3). The overall mean MAIAC AOT is 0.49, varying from 0.30
(SD = 0.32) to 0.61 (SD = 0.66) by site (Table S4). As shown in Figure 1, the study area is surrounded
by mountains in the west, north, and northeast, while it is quite flat in the south and southeast.
PM2.5 levels have an increasing gradient trend from north to south, and the spatial distribution of the
MAIAC AOT average and PM2.5 levels for the whole study time period has a similar spatial pattern.
The consistency of the spatial trends between the MAIACT AOT average and PM2.5 levels indicates
the correlation of AOT and PM2.5.

3.2. Results of Model Fitting and Validation

We fitted the LMEM PM2.5 estimation model for each year using the two different daily PM2.5

data sets—the PM2.5 24 h average (Model-I) and the PM2.5 period average (Model-II)—and 1 km
MAIAC AOT. Figure 2a shows the model fitting performance statistics (R2, Intercept, Slope, RMSPE,
and MPE) at each site, with site-specific R2 ranging from 0.72 to 0.97, Slope from 0.75 to 1.1, RMSPE
from 11.50 µg/m3 to 47.08 µg/m3, and MPE from 7.17 µg/m3 to 28.93 µg/m3 for Model-I; and R2

ranging from 0.70 to 0.96, Slope from 0.78 to 1.2, RMSPE from 15.28 µg/m3 to 40.81 µg/m3, and MPE
from 8.56 µg/m3 to 22.80 µg/m3 for Model-II. The median values of R2 and Slope for Model-I are
higher than those for Model-II, and its Model-I’s RMSPE values are lower.
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Figure 2. Boxplot statistics of the estimation performance at each site for R2, Intercept, Slope, RMSPE
(µg/m3), and MPE (µg/m3): (a) Model fitting; (b) Model validation. Here, ‘I’ denotes models using the
PM2.5 24 h average, and ‘II’ denotes models using the PM2.5 period average.

The model fitting performance for each year can be seen in Figure 3a and Table 1: the year-specific
R2 of Model-I ranges from 0.90 to 0.94 and is 0.90 for the whole study period, while the year-specific
R2 of Model-II ranges from 0.91 to 0.93 and is 0.92 for the whole study period. Therefore, both Model-I
and Model-II have high R2 values (more than 0.90), demonstrating that both the PM2.5 24 h average
and the PM2.5 period average between 10:00 a.m. and 2:00 p.m. can be used to fit the estimation model
with high estimation performance. However, the other model fitting statistics indicate that Model-I
performs slightly better than Model-II. In addition, model cross validation performance statistics are
shown in Figure 2b for each site, and in Figure 3b and Table 1 for each year: Figure 2b shows that the
site-specific R2 for both Model-I and Model-II decreases, while RMSPE and MPE increase from model
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fitting to model validation with small differences. The yearly model cross validation results shown
in Figure 3b and Table 1 indicate that the year-specific R2 of Model-I ranges from 0.87 to 0.93 and is
0.90 for the whole study period, while the year-specific R2 of Model-II ranges from 0.89 to 0.92 and is
0.90 for the whole study period. Overall, although both Model-I and Model-II have good estimation
performance with high R2 values, Model-I is relatively better as it has lower RMSPE and MPE values.

We fitted the model for each year and estimated the daily PM2.5 concentrations for the period
from 2013 through 2017. The annual mean PM2.5 concentrations and five-year (2013–2017) mean PM2.5

concentrations were generated for different seasons (warm and cold) and for specific urban areas
(the whole urban area and the central city area) using estimated daily PM2.5 concentrations in order to
reveal the spatiotemporal variations of PM2.5 levels.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 18 
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(b) Model cross validation. The red solid line represents the regression line and the green dashed line is
the 1:1 line with slope of 1.0; ‘I’ denotes models using the PM2.5 24 h average, and ‘II’ denotes models
using the PM2.5 period average.
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Table 1. Model performance summary for MAIAC AOT.

Year N 1 Model

Model Fitting Cross Validation

R2
RMSPE

(root-mean-squared
prediction error) (µg/m3)

MPE
(mean prediction

error) (µg/m3)
R2 RMSPE

(µg/m3)
MPE

(µg/m3)

2013 6290
I 2 0.93 20.64 12.67 0.91 22.42 13.70
II 3 0.91 23.72 13.52 0.89 26.15 14.75

2014 6750
I 0.91 22.08 12.90 0.89 24.34 14.05
II 0.91 22.99 12.93 0.89 25.90 14.18

2015 6768
I 0.93 19.46 11.23 0.91 21.95 12.32
II 0.92 21.10 11.57 0.89 25.20 12.85

2016 6970
I 0.90 19.72 11.36 0.87 22.73 12.56
II 0.92 18.68 10.55 0.90 21.21 11.71

2017 6950
I 0.94 14.26 8.11 0.93 16.19 8.94
II 0.93 16.01 8.77 0.92 18.20 9.69

All 33728
I 0.90 16.98 11.22 0.90 21.67 12.28
II 0.92 20.61 11.42 0.90 23.46 12.58

1 “N” denotes the number of PM2.5–AOT pairs for the specific year. 2 ‘I’ denotes models using PM25 24 h average.
3 ‘II’ denotes models using PM2.5 period average.

To better assess the model performance, we also experimented on the 3 km MOD-3K AOT for
the year 2014, and the results are shown in Table 2. The model performance results for the 3 km AOT
are given in Table 2 and in Figures 4–6. Based on comparing the R2, RMSPE, and MPE, slightly better
performance of Model-I than Model-II is also observed at 3 km resolution. As a result, we employed
Model-I to estimate the daily PM2.5 concentrations for the study area during the period 2013–2017.

Table 2. Model performance summary for MOD-3K AOT.

Year N 1 Model
Model Fitting Cross Validation

R2 RMSPE (µg/m3) MPE (µg/m3) R2 RMSPE (µg/m3) MPE (µg/m3)

2014 3163
I 2 0.84 16.95 10.79 0.80 19.02 11.87
II 3 0.83 20.54 12.25 0.79 22.67 13.44

1 “N” denotes the number of PM2.5–AOT pairs for the specific year. 2 ‘I’ denotes models using the PM25 24 h
average. 3‘II’ denotes models using the PM2.5 period average.
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(a) Model fitting; (b) Model cross validation. The red solid line represents the regression line, and the
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and ‘II’ denotes models using the PM2.5 period average.
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3.3. Comparing between Estimated and Measured PM2.5 Concentrations

The differences between the Model-I estimated and measured PM2.5 concentrations are shown in
Figure 7. It can be observed that the PM2.5 concentrations are slightly overestimated in lightly polluted
areas, while they are slightly underestimated in heavily polluted areas. However, the differences are
within ±10.90 µg/m3, and a relative difference of 15.67% for 85% of all the monitoring sites indicates a
good agreement between them.
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3.4. Spatiotemporal Trends of PM2.5 Concentrations

Using the above Model-I, we can create daily, weekly, monthly, seasonal, and annual mean PM2.5

maps which can be applied in health effect analysis, air pollution management, and mitigation policy
decision-making support. Figure 8 illustrates the annual mean maps of MAIAC AOT-derived PM2.5

estimations at 1 km spatial resolution in the study area from 2013 to 2017. The annual mean estimated
PM2.5 concentrations are 63.93, 69.09, 65.28, 59.17, and 48.56 µg/m3 from 2013 to 2017, respectively.
These maps revealed the significantly similar spatial patterns of PM2.5 concentrations across the Beijing
metropolitan area during the study period: high PM2.5 levels are located in the southern parts which
are closer to the major pollution sources from the Hebei Province and in the upwind direction of Hebei,
while low PM2.5 levels appear in rural and mountainous areas in the northern parts. This corresponds
well with the spatial patterns demonstrated by the ground-based monitoring shown in Figure 1c.
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The area within the Fifth Ring Road is the downtown area of Beijing with the highest population
density and heaviest traffic flow. Figure 9 illustrates the annual mean PM2.5 estimates in the downtown
area from 2013 to 2017, showing that PM2.5 levels are apparently reduced, especially in 2017 with much
lower PM2.5 levels. The annual mean PM2.5 estimates in this downtown area are 81.56, 77.50, 80.04,
67.38, and 55.90 µg/m3 from 2013 to 2017, respectively. Within the downtown area, PM2.5 levels in the
northern part are much lower than those in the southern part.

The seasonal mean PM2.5 estimates (Figure 10) for the entire Beijing metropolitan area are 66.10,
45.33, 60.17, and 75.59 µg/m3 for spring (March, April, and May), summer (June, July, and August),
autumn (September, October, and November), and winter (December, January, and February),
respectively, indicating that PM2.5 levels exhibit distinct seasonal variations, with the highest PM2.5

levels in winter and the lowest in summer. Such seasonal variations can be attributed to the mixed
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contributions from meteorological conditions (planetary boundary layer height (PBLH), relative
humidity, seasonal wind, etc.) and local pollution sources such as coal combustion for domestic
heating in winter. Moreover, the seasonal mean PM2.5 has similar spatial patterns with the annual
mean PM2.5; that is, higher concentrations occur in the southern part and lower concentrations occur
in the northern part.
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4. Discussion

In this study, we investigated daily ground-level PM2.5 estimates at 1 km spatial resolution in the
Beijing metropolitan area using the LMEM by incorporating the MAIAC AOT data and ground-based
PM2.5 measurements. The results show that both model fitting and cross validation can generate
higher R2 values for monitoring sites. We also analyzed the model performance for each year in
the five-year study period, indicating that both Model-I and Model-II give higher model fitting R2

values and cross validation R2 values relative to a linear regression model based on the same data
inputs (Figure S1), and can be hugely improved when considering that daily variations of PM2.5–AOT
relationship are correlated to mixing height, relative humidity, PM2.5 composition, and PM2.5 vertical
profile. Both Model-I and Model-II have higher R2 values, indicating that the PM2.5 24 h average and
the PM2.5 period average between 10:00 a.m. and 2:00 p.m. can be used to fit LMEM models with high
confidence. Overall, Model-I has slightly better performance as demonstrated by its lower RMSPE and
MPE values and similar R2 values to Model-II.

AOT represents the amount of aerosols in the vertical column of atmosphere from the ground
to satellite sensors (not only limited to the vertical column segment close to the monitoring sites).
The PM2.5 24 h average captures more of the aerosols which have subsided down to ground level at
monitoring sites than does the PM2.5 period average between 10:00 a.m. and 2:00 p.m. This might
explain why the LMEM model fitted with the PM2.5 24 h average performs a little better than the
LMEM model fitted with the PM2.5 period average.

The LMEM in our study generated higher model fitting R2 values of 0.90–0.94 and cross validation
R2 values of 0.87–0.93 than those in previous studies. For example, the GWR model applied to the
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whole of China with an overall cross validation R2 value of 0.64 [31] and to the Pearl River Delta region
with an R2 value of 0.74 [21]; the empirical nonlinear model applied for the Xian metropolitan area
with an R2 value of 0.67 [32]; the new LMEM model incorporating VIIRS night light data applied to
the Beijing–Tianjin–Hebei Region with an R2 value of 0.75; the improved LMEM model applied to
three megalopolises in China, namely, Beijing–Tianjin–Hebei, with an R2 value of 0.77, to the Yangtze
River Delta region with an R2 value of 0.80, and to the Pearl River Delta region with an R2 value of
0.80 [23]; the observation-based model using MAIAC AOT applied to the Beijing–Tianjin region with
an R2 value of 0.70, to the Yangtze River Delta region with an R2 value of 0.77, and to the Pearl River
Delta region with an R2 value of 0.83 [33]; and the LMEM models using MOD-3K AOT applied to
Beijing with R2 values of 0.796 and 0.81 [24,25]. The model performance for Beijing in this study is also
comparable with those studies conducted in the U.S. with MAIAC AOT data as inputs. For example,
model fitting over the southeastern U.S. achieved an R2 value of 0.83, while cross validation achieved
an R2 value of 0.67 [14]; annual model fitting gets an R2 value of 0.71–0.85, while cross validation gets
an R2 value of 0.62–0.78 during 2001–2010 [15], and cross validation in the New England area achieved
an R2 value of 0.89 [34].

Our overall RMSPE of 21.67 µg/m3 from model cross validation is higher than those in studies
on areas in the United States (<9.0 µg/m3) [9,13–17,35–37], but much lower than other results over the
whole of China (32.98 µg/m3), which might be mainly due to the much denser ground monitoring
sites in our study area. Our method has a slightly higher overall RMSPE than do those studies
in the same study area (Beijing) using the coarser 3 km spatial resolution for PM2.5 estimation by
Li (16.04 µg/m3) [24] and Xie (17.85 µg/m3) [25], but with higher R2. This is possibly due to the
smoothing effect of satellite data at coarser resolutions, representing more coverage for air quality
conditions. The higher RMSPE in Beijing than in the United States is more likely due to the higher
PM2.5 levels in Beijing ranging from 3.0 to 773.6 µg/m3, which is up to 10 or more times those in
the United States, and the larger variations in the PM2.5 levels may possibly be overlooked due to
the missing satellite AOT values. Another possible reason is that the correlation of PM2.5–AOT was
negative instead of positive under heavy pollution conditions, causing the dense aerosol layer (high
AOT) with low PM2.5 levels or much lower PBLH (low AOT) with high PM2.5 levels to occur in
northern China [38]. The model also may underestimate the PM2.5 concentrations at the high PM2.5

levels shown in Figure 6. Furthermore, the air pollution sources and location of the monitoring sites
may also causing high RMSPE values [13].

The annual mean PM2.5 concentrations decreased to 48.56 µg/m3 from 63.93 µg/m3 (~24.04%)
over the whole Beijing area and to 55.90 µg/m3 from 81.56 µg/m3 (~31.46%) for the downtown area
from 2013 to 2017, showing that the air quality has been dramatically improved since 2013. The annual
mean PM2.5 concentrations averaged from all monitoring sites decreased to 55.73 µg/m3 from
79.84 µg/m3 (~30.20%) over the whole Beijing area and to 57.63 µg/m3 from 85.63 µg/m3 (~32.70%)
for the downtown area from 2013 to 2017. The trends in the annual mean PM2.5 concentrations revealed
by our model estimation and by the ground measurements are consistent, indicating that the PM2.5

levels have really been lowered from 2013 to 2017. While the PM2.5 concentrations across Beijing
remain high, substantial improvements have occurred in recent years due to government policies and
mitigation measures implemented to improve air quality. In September 2013, the Chinese government
released the “Plan of Action for Preventing and Controlling of Atmospheric Pollution” [39] promoting
ten control measures, including restriction on the number of vehicles in megacities, reducing coal
combustion, and promoting the use of clean energy such as water, gas, geothermal energy, wind power,
solar energy, and bioenergy. The Plan also set the goal for Beijing to reduce its annual mean PM2.5

concentration to 60 µg/m3 by 2017. To achieve this, the Beijing Municipal Government issued a 5-year
Clean Air Action Plan (2013–2017) that includes policies to control population growth, reduce the
number of vehicles, control emissions for some major air pollutants including industrial emissions,
and promote the use of clean energy and new energy by public vehicles [40]. The results of our study
indicate that the annual PM2.5 concentration goal set for Beijing was achieved in 2017.
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5. Conclusions

Through integrating ground-based PM2.5 measurements and MAIAC AOT, this study has
preliminarily demonstrated that the LMEM model can be used effectively for estimating surface
PM2.5 at high spatial resolution (1 km) for heavily polluted urban areas with high accuracy. The results
indicated that LMEM models fitted using the PM2.5 24 h average have better performance than those
using the PM2.5 period average. The high spatial resolution of MAIAC AOT data sets has a substantial
advantage over other satellite AOT data sets at coarser resolutions for estimating surface PM2.5 by
providing more spatial variation details of PM2.5 in large urban areas, which is valuable for pollution
warning and health impact analysis. The spatial patterns and trends revealed by the annual mean
PM2.5 concentrations generated by our models show good consistency with those revealed by the
ground-based measurements, and both have indicated that the surface PM2.5 levels have decreased
from 2013 to 2017, thereby verifying the effectiveness of government air quality control measures
in recent years. This study generated 1 km PM2.5 data sets at different temporal resolutions (daily,
weekly, monthly, seasonal, and annual) for the Beijing metropolitan area. These data products can be
provided to the government environmental management agencies and urban air quality and public
health research institutions for applications in relevant research and policy decision-making support.

The PM2.5 data products at 1 km spatial resolution in this study may work well to estimate the
incidence of specific diseases or relevant mortalities in large areas but are still not adequate to estimate
PM2.5 effects at community levels. Hotspots like urban street canyons are not detectable at such a
resolution. For better health impact studies, AOT data products at higher spatial resolutions still need
to be incorporated with the models in the future.

MAIAC AOT data have been available twice per day since 2000 and therefore have the potential
to be applied in health impact analysis for long-term exposure to PM2.5. Given the higher R2 values for
both site-specific and year-specific model estimation statistics, other explanatory factors are unlikely
to play a dominant role in the models, but it is worth future investigation to improve the models.
The methodology can be applied to other large and heavily polluted urban areas in China or other
regions of the world based on further tests.

Supplementary Materials: The following materials are available online at http://www.mdpi.com/2076-3417/8/
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Daily AOT Average for Each Monitoring Site.
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