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Abstract: Recently, many studies have reported on image synthesis based on Generative Adversarial
Networks (GAN). However, the use of GAN does not provide much attention on the signal
classification problem. In the context of using wireless signals to classify illegal Unmanned Aerial
Vehicles (UAVs), this paper explores the feasibility of using GAN to improve the training datasets and
obtain a better classification model, thereby improving the accuracy of classification. First, we use the
generative model of GAN to generate a large datasets, which does not need manual annotation. At the
same time, the discriminative model of GAN is improved to classify the types of signals based on the
loss function of the discriminative model. Finally, this model can be used to the outdoor environment
and obtain a real-time illegal UAVs signal classification system. Our experiments confirmed that
the improvements on the Auxiliary Classifier Generative Adversarial Networks (AC-GANs) by
limited datasets achieve excellent results. The recognition rate can reach more than 95% in the indoor
environment, and this method is also applicable in the outdoor environment. Moreover, based
on the theory of Wasserstein GANs (WGAN) and AC-GANs, a more robust Auxiliary Classifier
Wasserstein GANs (AC-WGANs) model is obtained, which is suitable for multi-class UAVs. Through
the combination of AC-WGANs and Universal Software Radio Peripheral (USRP) B210 software
defined radio (SDR) platform, a real-time UAVs signal classification system is also implemented.

Keywords: GAN; AC-WGANs; wireless signals; classify model; USRP

1. Introduction

Since the theory of Generative Adversarial Networks (GAN) [1] was proposed in 2014, GAN has
been widely used in various fields [2]. In signal synthesis, Radford et al. [3] used the DCGAN
to generate various image datasets, and Yang et al. [4] used GAN for music generation. In signal
translation, Cycle-GAN is used to perform image-to-image translation [5,6]. GAN is also used for
text-to-image generation [7], texture synthesis, style transfer, video stylization [8], pixel-level domain
transfer [9], image inpainting [10] and so on. Since GAN has a generative model G and a discriminative
model D, we explore in this paper whether the discriminative model of GAN can effectively be used for
signal classification problem as well. In signal classification, a typical challenge is that the labeled data
are hard to collect and therefore limited. As a direct consequence, the training result is significantly
affected. To solve this problem, we explore using the GAN model to improve the training datasets and
recognition model to obtain better classification results in the wireless signal recognition of Unmanned
Aerial Vehicles (UAVs).
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In recent years, with the rapid development of the UAV technology, civilian and consumer-grade
UAVs have been put into use on a large scale, including disaster rescue [11], delivery service [12]
and so on. However, reports of unmanned aircraft (UAS) sightings from pilots, citizens, and law
enforcement also have increased dramatically over the past two years, the FAA now receives more
than 100 such reports each month [13]. UAVs have crashed into the White House, a nuclear power
station [14], an airport [15] and many other places, buildings and infrastructure have been destroyed
and many innocent people have been hurt [16]. However, due to the extensive application of UAVs [17],
the scene of multiple UAVs flying is inevitable [18]. As shown in Figure 1, it has become a necessity to
distinguish illegal UAVs from legal ones when they are flying together.

Build a UAVs datasets Find the illegal UAVs

Take action on illegal UAVsUAVsTake action on illegal U

Acquisition 

Equipment

Unknown UAV

Illegal UAV

Normal UAV

Figure 1. The application UAVs classification systems in the scene of multiple UAVs.

UAVs in operation are conventionally detected by radar, visual detection or acoustic sensors,
as shown in Table 1. Park and Park [19] discussed the detection of UAVs with Frequency-Modulated
Continuous-Wave (FMCW) Radar system, and the UAV signal was detected up to more than 500 m of
distance in real-time with the error of less than 0.1%. However, the cost of radar detection is relatively
high, and it is difficult to detect at a lower height. Nguyen et al. [20] introduced a system for detecting
the presence of UAVs by identifying unique signatures of a UAV’s body vibration and body shifting in
the WiFi signal. The recognition rate of this method approximately reached 80% at a distance of 600 m.
Jeon et al. [21] presented a method capable of detecting the presence of commercial hobby UAVs as a
binary classification problem based on sound event detection. This method used Recurrent Neural
Network (RNN), which showed the best detection performance with an F-Score of 0.8009 with 240 ms
of input audio with a short processing time, indicating the applicability to real-time detection systems.
However, this system is easy to be deceived and cannot identify some types of UAVs. Lim et al. [22]
proposed a system that classifies payload carrying and non-payload carrying DJI Phantom II UAVs by
presenting sound spectrum data to a simple Convolutional Neural Networks (CNN). These networks
provide about 99.92% recognition rate for this problem without the need to violate minimal cost
constraint, but video detection is easily affected by weather and lighting. Unlu et al. [23] used a
two-dimensional scale, rotation and translation invariant Generic Fourier Descriptor (GFD) features
and classified targets as a drone or a bird by a neural network. This system can achieve up to 85.3%
overall correct classification rate. However, this method is unable to deal with the micro-Doppler
effect. Richardson [24] provided a detection method based on Medium Access Control (MAC) address
given the fact that many low-end commercial UAVs have identifiable service set identifier (SSIDs) and
MAC address broadcasting. However, this MAC address based detection method is vulnerable to
interference, and wireless protocols must be known beforehand.
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Table 1. Summary of existing UAV detection technologies.

Detection Technology Advantages Drawbacks

Radar detection
Well-Suited for long-distance. No
need cooperation from the target.

Expensive. Low/no waves reflect from
non-reflective materials. Hardly
distinguishable from birds or bats. Flying
at an altitude of fewer than 100 feet would
be difficult to detect.

Acoustic detection
Low cost.Passive. Easy to be
combined with other technology.

Easy to be deceived.Cannot detect fixed wing
UAV. Detection distance less than 500 m.

Visual detection
Flexibility. Inexpensive.Detect either
large aircraft or small objects.

Limited by light and weather. Need to
create recognition database.

MAC address
Relatively inexpensive. Effective
detection and accurate tracking.

Suffer from interference. Must have some
knowledge of emitter parameter and
protocol.

Ray Tracing Simulations
Convenient to simulate different
scenarios. Unable to deal with micro-Doppler effect.

Zhang et al. [25] proposed a detection algorithm based on an Artificial Neural Network (ANN)
where the recognition rate is greater than 82% within a distance of 3 km. Fu et al. [26] presented an
SDR-based, portable universal software radio peripheral (USRP) system for detection in two scenarios.
For the scenario in which a UAV communicates with the ground controller, the cyclostationarity
signature of the drone signal and pseudo-Doppler principle are employed. For the scenario in which a
UAV is not sending any signal, a micro-Doppler signature generated by the radio frequency signal
is exploited for detection and identification. Bisio et al. [27] proposed a WiFi-based approach that
aimed at detecting nearby aerial or terrestrial devices by performing statistical fingerprint analysis on
wireless traffic.

However, most of the above-mentioned methods are not very robust and cannot detect illegal
UAVs. Due to the small size, low flying height and slow speed of most UAVs, most of existing detection
systems do not perform well. Small UAVs are not easy to distinguish from birds and can be hidden
by urban buildings, therefore the detection technology has a high false positive rate. In this paper,
an SDR-based wireless signal detection technology is used to collect the wireless communication
signals of the UAVs, and is then combined with an Auxiliary Classifier Wasserstein Generative
Adversarial Networks (AC-WGANs) classification model to realize low-cost, high-precision UAV
detection and recognition. Due to the crystal oscillation of the device, component jointing, and the
loss of electronic device, the radio frequency (RF) signals of the device are slightly different, and thus
can be distinguished. The technology based on wireless signals detection has been used to classify a
number of Internet-of-Things (IoT) devices (same model and same RF front-end), which proves the
feasibility of this method to detect the UAVs [28]. The technology based on wireless signal detection
of UAVs has two main challenges. On the one hand, a variety of wireless signals exist in the real
environment. As a direct result, it is very difficult to accurately collect the UAVs signals, label the
signals, and establish a reliable database. On the other hand, the classification models such as k-Nearest
Neighbor (KNN), Convolutional Neural Networks (CNN), and Support Vector Machine (SVM) need
to select the appropriate feature signals for classification through feature extraction. In the process of
feature selection, important feature information is often lost, and the recognition rate of the signal is
seriously affected. To solve these two challenges, we use the combination of oscilloscope and USRP
to acquire the signals of UAVs in the indoor environment and the outdoor environment to establish
the database. Next, we propose an automatic classification model of the UAV based on AC-WGANs.
Without special feature extraction, only a modified principal Component Analysis (PCA) reduction
operation is needed to realize the automatic classification of the UAVs signals.

The contributions of this paper are as follows:
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• We propose a novel method of using AC-WGANs model to classify the wireless signal to identify
illegal UAVs. Specifically, we improve the generative model G to enhance the training datasets
and use the loss function of the model to classify the wireless signals.

• We establish an illegal UAVs classification system based on the wireless signal. The system
is divided into three parts: collecting the wireless signal, pre-processing, and classification.
Combined with AC-WGANs model and USRP, a real-time classification system is implemented.

• We compare and analyze the UAVs signals in the indoor environment and the outdoor
environment. The recognition rate can reach more than 95% in the indoor environment, and this
system is also suitable for outdoor environments.

The rest of the paper is organized as follows. In Section 2, we introduce the related work of
the wireless signal classification system and the basis of the AC-WGANs model. In Section 3, we
provide a network overview of the AC-WGANs model. In Section 4, we analyze the difference of the
indoor environment and outdoor environment and propose a real-time classification system. Finally,
conclusions and future work are drawn in Section 5.

2. Related Work

The related work includes two parts: the characteristics of the wireless communication signal of
UAVs and the basis of the AC-WGANs classify model.

2.1. Wireless Signals of UAVs

Most UAVs use wireless signals for communication (e.g., Phantom, Parrot, Hubsan, Xiro and
so on [29,30]). Current 802.11 standards specify frame types for use in transmission of data as
well as management and control of wireless links, and frames are divided into very specific and
standardized sections. Each frame consists of a MAC header, payload, and frame check sequence
(FCS) [31]. The antenna orientation in relation to the frame of the UAV (single and multiple antennas)
influences the link quality and range of communication significantly. Using a three antenna extension
to IEEE 802.11 devices, air-to-ground links can support high throughput at distances up to 500 m.
Therefore, we can use the wireless signals to detect UAVs, despite the size, line of sight, protocol
standardization and forensic tool support (hardware and software) of the UAVs. Almost all UAVs use
the standard Institute of Electrical and Electronics Engineers (IEEE) 802.11a/b/g/n/w protocol to
pair with controller devices, and the working frequency is between 2.4 and 2.5 GHz. All standards
have the same preamble that signifies the start-point of a signal, and the center frequency of the
transmission. At the 2.4 GHz band, WiFi is allocated throughput 11 wireless channels ranging from 1
to 11. However, only three of these channels (1, 6, and 11) are used, as each channel is only 5 MHz wide.
Since transmissions on the 2.4 GHz band are 20 MHz wide, the utilized channels are spaced to mitigate
co-channel interference [32]. Table 2 provides a summary of the frequency, modulation, and technology
systems used by most of the UAVs, including DJI phantom, Parrot, Spektrun, JR, Futaba and so on.

Table 2. Popular technology systems used by UAVs.

Frequency Modulation Technology

Control 2.4 GHz/5.8 GHz FHSS/DSSS/OFDM
FASST/Lightbridge/DSMX
/DMSS/AFHSS/HOTT
/ZigBee/WiFi

Telemetry
868 MHz/433 MHz/
2.4 GHz/4 GHz Divers/DSSS/OFDM ZigBee

Video 2.4 GHz/5.8 GHz OFDM/FM Lightbridge/WiFi

In this paper, we use the USRP software defined radios, oscilloscope, and antennas to collect UAVs
wireless signals. Different UAVs have different wireless signals. For example, the center frequency
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of Phantom2 operation is 2.447 GHz, and the center frequency of Phantom3 operation is 2.457 GHz,
as shown in Figure 2. Thus, when we collect the UAVs signal, the center frequency and bandwidth of
the acquisition system should be accurately set in the acquisition. At the same time, by comparing the
wireless signals of different UAVs, it is evident that the signals of different UAVs have different features.

USRP B210

(a) The data acquisition equipment

Phantom 2

Phantom 3

(c) The start signals of different UAVs

Center Frequency:

2.447GHz

Phantom 2

Center Frequency:

2.457GHz

Phantom 3

(b) Center Frequency of different UAVs

Figure 2. (a) The data acquisition equipment USRP B210. (b) The center frequency of different UAVs
including Phantom2: 2.447 GHz, and Phantom3: 2.457 GHz. (c) The wireless communication signals of
different UAVs.

2.2. The Evolution of GAN Model

The GAN model includes a generative model G and a discriminative model D, which uses an
adversarial process to propose a new framework for estimating generative models [1]. We can improve
the D model to classify the wireless signals collected from the UAVs. Since 2014, GAN has appeared
in various forms, as shown in Figure 3. In 2015, Radford et al. [3] found a Deep Convolutional GAN
(DCGAN) model, which is more stable in training and produces higher quality samples. The DCGAN
is competitive with a probabilistic generative data augmentation technique utilizing learned per class
transformations [33] while being more general as it directly models the data instead of transformations
of the data. However, the DCGAN model is unsuitable for classification. Information Maximizing GAN
(InfoGAN) proposed by Chen et al. [34] uses the information-theoretic extension to learn disentangled
representations in a completely unsupervised manner. In contrast to previous approaches that
require supervision, InfoGAN is completely unsupervised and learns interpretable and disentangled
representations on challenging datasets. In addition, InfoGAN adds only negligible computation cost
on top of GAN and is easy to train. However, the core idea is more suitable for learning hierarchical
latent representations, improving semi-supervised learning, and using InfoGAN as a high-dimensional
data discovery tool. In 2016, Mao et al. [35] found that regular GANs hypothesize the discriminator as
a classifier with the sigmoid cross entropy loss function. However, this loss function may lead to the
vanishing gradients problem during the learning process. The Least Squares Generative Adversarial
Networks (LSGANs) adopt the least squares loss function for the discriminator. Minimizing the
objective function of LSGAN yields minimizing the Pearson χ2 divergence. The LSGANs are able to
generate higher quality images than regular GANs and are more stable during the learning process.
However, there is little research of the LSGANs in complex datasets.
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Figure 3. The evolution of GAN model.

Wasserstein GAN (WGAN) [36] can improve the stability of learning, get rid of problems such as
mode collapse, and provide meaningful learning curves useful for debugging and hyperparameter
searches. Furthermore, the corresponding optimization problem is sound and provides extensive
theoretical work, highlighting the deep connections to different distances between distributions [37].
The Auxiliary Classifier GANs (AC-GANs) proposed by Odena et al. [38] can generate multiple
samples, which expand on previous work for image quality assessment to provide two new analyses for
assessing the discriminability and diversity of samples from class-conditional image synthesis models.
Most of the GAN models are used for image sample generation rather than for classification and
recognition detection. In our paper, we improve the discriminative D model of the AC-GANs model,
which can be adapted to the multi-class identification and detection of wireless signals, and enhance
the AC-GANs model according to the WGAN model. Therefore, a more stable AC-WGANs model can
be obtained to effectively enhance the recognition rate. The framework of the AC-WGANs model is
shown in Figure 4.

Generator

Network

Random

Vector

Input

signals

Random

Index
Input

Label C

Training

Set

Fake

Signals

Real

Signals

Discriminator

Network

Generator G: A parameterized probabilistic

generating model to obtain a generated

distribution probability.

Random

Index

C(Class)

Z(noise) Real/

Fake

c=1,

c=2,

c=3,

c=4,

...

Discriminator

D: Determine

whether the

signal is real

or fake.

Figure 4. The framework of AC-WGANs model.

3. Network Overview

The AC-GANs model is a method commonly used for image synthesis [38] and the model can
be improved as a multi-classification recognition model. In the AC-GANs, every generated sample
has a corresponding class label, c ∼ pc, in addition to the noise, z. G uses both to generate signals
X f ake = G(c, z) and real signals Xreal ∼ x̃(i). The discriminator gives both a probability distribution
over sources and a probability distribution over the class labels, P(S|X), P(C|X) = D(X). The objective
function has two parts: the likelihood of the correct source LS, and the likelihood of the correct class LC.

LS = E[log P(S = real|Xreal)] + E[log P(S = f ake|X f ake)] (1)
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LC = E[log P(C = c|Xreal)] + E[log P(C = c|X f ake)] (2)

D is trained to maximize LS + LC while G is trained to maximize LC − LS [38].
We input the training data to train the D and G models. After that, we use the parameter of the

D model to create a test model D′ to classify the test signals, and obtain the likelihood of the correct
class L′C.

L′C(m)M
m=1 = E[log P(C = c′(m)|X′real)]

M
m=1 (3)

where X′real ∼ x̃(m) is the testing data, M is the type of wireless signals, and c′(m) is the label of each
type of wireless signals. Next, we compare the L′C to get the most likely label as the test label of the
testing data and obtain the recognition rate.

WGAN [36] and improved WGAN [39] use Kullback–Leibler (KL) instead of Jensen–Shannon
(JS) divergence. WGAN can not only improve the stability of learning and reduce problems such
as mode collapse but also provide meaningful learning curves that are useful for debugging and
hyperparameter searches.

min
G

max
D∈D

E
x∼Pr

[D(Xreal)]− E
x∼Pg

[D(X f ake)] (4)

WGAN achieves the stable state of the model by finding the minimum loss function of the
generated model G and discriminating the maximum loss function of the model G. Combined with the
AC-GANs multi-classification model, the specific practices include the following three points [36,39]:

1. In the feed-forward neural network, it is unnecessary to use smooth Lipschitz functions such as
the sigmoid.

gw = ∇w[
1
m

m

∑
n=1

fw(c, gθ(Xreal))−
1
m

m

∑
n=1

fw(c, gθ(X f ake))] (5)

gθ = −∇θ
1
m

m

∑
n=1

fθ(c, gθ(X f ake)) (6)

2. RMSProp is chosen instead of Adam, which is known to perform well even on very non-stationary
problems (α is the learning rate).

w = w + α · RMSProp(θ, gw) (7)

θ = θ − α · RMSProp(θ, gθ) (8)

3. The log trick can be ignored when training the GAN model with a convolutional architecture.

LS = E[P(S = real|Xreal)] + E[P(S = f ake|X f ake)] (9)

LC = E[P(C = c|Xreal)] + E[P(C = c|X f ake)] (10)

L′C(m)M
m=1 = E[P(C = c′(m)|X′real)]

M
m=1 (11)

4. Experiments

As shown in Figure 5, the classification system can be used to protect the important areas by
separating the illegal ones from all UAVs. The system based on wireless signals requires equipment
to collect the UAV signal, so the detection range is also limited by the performance of the equipment
device, including the range of the receivable signal, signal quality and so on. Therefore, in the case
of limited acquisition equipment, we can set different application scenarios to adapt to different
application environments. In some place, multi-point layout, fixed-point deployment, and multiple
wireless signal acquisition devices can be adopted. The wireless signals collected by the signal
acquisition device are then transmitted to the centralized processing system for processing. At last,
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the processed information is transmitted through the UAVs cloud platform. In some areas, the data
are relatively large, and the control scene can be used to collect wireless signals from illegal UAVs
and controllers by means of irregular wireless patrols. In this way, equipment costs can be reduced.
The classification system can be realized in real-time, including training the classification model
of the signal centralized processing system and real-time test in the indoor environment and the
outdoor environment.

UAV Cloud

Signal centralized processing system

Acquisition equipment

Signal reception
Acquisition equipment

Acquisition equipment
Acccqqquisition equippp

Acquisiiiittttiiion eeeqqquipmentAA

Illegal UAV

Training Classify Model

Real-time Classification

Legally UAV

Legally UAV

Figure 5. The application of the UAV classification system.

4.1. Indoor Environment

In the indoor environment, the situation of wireless signals is very complicated, especially because
the wireless signals in the 2.4–2.5 GHz frequency range also include IEEE 802.11b and IEEE 802.11n
WiFi signals. Thus, we first analyzed the wireless signals ranging from 2.4 to 2.5 GHz. We used an
Agilent (DSO9404A) oscilloscope to collect the wireless signal of different devices. The oscilloscope
has a sampling bandwidth of 1 GHz and a sampling rate of 20 GSa/s, which meets the sampling
requirements [40]. It can be found that, even if the same WiFi protocol is used, different mobile phone
models and different devices, such as routers, have different features. Figure 6a shows the signal
acquisition process of the oscilloscope. The collected signal was detected to obtain the processed
start-point signal. Figure 6b shows the signal waveforms of different devices. It can be found that
different devices have different waveforms generated by different WiFi protocols.

Most of the UAV and WiFi signals are in the frequency range of 2.4–2.5 GHz, and the preamble
of the wireless signal is identifiable and can be used for classification detection of the UAVs [41].
We selected five types of UAV signals from different manufacturers for detection and identification:
Phantom, Hubsan, Mi, WiFi, and Xiro. Bandpass filtering, start-point detection [42] and dimensionality
reduction were performed. After that, the model was trained and identified in the AC-WGANs model.
The AC-WGANs algorithm flow includes four steps: signal acquisition, signal preprocessing, model
training, and classification (Figure 7). The signal acquisition process of the UAV will cause some
low-frequency noise due to factors such as environment and equipment stability. Therefore, the noise
was filtered by setting a bandpass filter in the 2.4 GHz band, and then the start-point detection was
performed. Finally, extracting the envelope data and reducing the dimensionality of the wireless
signals were performed..
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Agilent DSO9404A oscilloscope Original signal The signal of starting point

(a) The flowchart of signal collection

(1) Iphone-802.11b (2) Huawei-802.11b (3) Mi-802.11b

(8) Phantom2(UAV)(5) Iphone-802.11n (6) Huawei-802.11n (7) Mi-802.11n

(9) Phantom3(UAV)

(b) The wireless signals of different devices

(4) Dlink(Router)

(10) Mi(UAV) (11) Hubsan(UAV) (12) Xiro(UAV)

Figure 6. Detecting the application scene of the UAVs.

Acquisition

Equipment

Collecting

Signals
Pre-Processing

Indoor/Outdoor

Environment

The wireless

signals of UVAs

Detecting start-point/Amplitude

envelope/PCA reduction

Figure 7. The pre-processing of the wireless signals.

After the pre-processing of the wireless signals, the AC-WGANs classify model was used for
classification. The UAVs signal and WiFi signal was input to this model and the probability of each
label was compared to determine the type of the inputting signal. To analyze the influence of noise
on model recognition rate, artificial noises with a signal-to-noise ratio (SNRs) of 5 dB to 35 dB were
added in the wireless signals to compare the effects of different noises on model recognition rate.
Figure 8 shows the classification rate of wireless signals in different SNRs. In the case of low SNRs,
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especially at 5 dB, the recognition rate was significantly improved, reaching more than 95%, and the
signal may be classified as an unknown signal if the signal isn’t in the datasets of the classify model,
as shown in Table 3. Figure 8a shows the classification of AC-WGANs based on PCA and Restricted
Boltzmann Machine (RBMs) [43]. In addition to the PCA, the RBMs was used in the dimensionality
reduction, and also had good performance. However, considering the time complexity and space
complexity, the PCA is more suitable. Figure 8b shows the comparison of the recognition rates of
various algorithms, including Deep Belief Nets (DBN) [44], KNN, SVM, and GANs. Considering the
stability and recognition rate, it can be seen that the improved AC-WGANs is better.
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Figure 8. The classification of indoor environment.

Table 3. Classification of different signals at 5 dB: confusion matrix.

Phantom3 Hubsan Mi Wifi Xiro

Phantom3 86.0% 0.0% 0.0% 0.0% 0.0%
Hubsan 0.5% 99.5% 0.0% 0.0% 0.0%
Mi 0.0% 0.0% 99.5% 0.0% 0.0%
Wifi 0.0% 0.0% 0.0% 100.0% 0.0%
Xiro 1.5% 0.0% 0.0% 0.0% 99.5%
Unknown 12.0% 0.5% 0.5% 0.0% 0.5%

4.2. Outdoor Environment

The outdoor environment includes different types of wireless signals in each frequency band.
The oscilloscope can collect signals in the whole frequency range, and the long-distance UAVs signal
strength is weak, so the wireless signal acquisition combined with the oscilloscope and the antenna is
no longer sufficient. According to the frequency characteristics of the UAVs signal, the USRP B210 is
suitable for collecting signals, which has a radio frequency range from 70 MHz to 6 GHz, supports
a maximum real-time bandwidth of 56 MHz and has a reference sampling rate of 61.44 MS/s [45].
After collecting long strings of wireless signals through USRP, the signals were processed through
IQ combination and start-point detection, and the useful signals were intercepted. The different
kinds of signals in the outdoor environment are shown in Figure 9. Figure 9a is the signal acquisition
equipment: USRP B210. Figure 9b,c shows the original and the amplitude envelope of UAVs wireless
signals. Figure 9d shows four types of different wireless signals, including UAVs signal, unknown
signal, and unexpected signal.
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USRP B210

(a) The signal acquisition equipment (b) The original signal (c) The amplitude envelope of signal

(1) UAVs signal (a) (2) UAVs signals(b) (4) Unexpected signal(3) Unknown signal

(d) Different kinds of wireless signals

Figure 9. Different kinds of signals in the outdoor environment.

After setting the parameters of the USRP acquisition signal, the wireless signals of the flying
UAVs could be collected. After pre-processing, various signals were separated, including various
UAVs signals, unknown signals, and other unexpected signals. To train the AC-WGANs classification
model, unsupervised learning such as K-means could be used to separate the signals, as shown in
Figure 10. In the outdoor environment, the UAV signals of distances in the range of 10 m to 400 m
were collected. After training the classification model, the USRP B210 collected the wireless signal
in real time and performed pre-processing. The processed signal was input into the discriminative
model D of AC-WGANs to classify and detect the wireless signals. The recognition results are shown
in Figure 11. Figure 11a is the real-time testing in the outdoor environment, and Figure 11b is the
classification of different distances.

+

Z

Labels C

Generator G

Fake signals G(z)

Real signals X

Label /Fake

UAVs
Acquisition

Equipment
Pre-processing

Kmeans

Unknown

Unexpected

UAV(a)

UAV(b)

Unsupervised learning

Discriminator D

Training modelReal-time testing

Figure 10. The real-time classification system of the UAV signal.
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The accuracy rate in the door environment
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(b) Classification of different distance in the outdoor environment

10m 200m
0

60

70

90

80

50

100

40

30

20

10

400m

UAV
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Figure 11. The classification of different distance in the outdoor environment.

5. Conclusions

The wireless signals of UAVs are identifiable and can be used for detection of illegal UAVs.
The AC-WGANs model has a high recognition rate and can be applied to the real-time classify system
of the UAV signals in a long distance from 10 m to 400 m. The real-time classification system of the
UAVs implemented in this paper can be used in the scene of multiple UAVs to separate the illegal ones.
When combined with multiple pieces of acquisition equipment, this system can protect some important
areas such as the airports and nuclear power stations. It should be very interesting to extend this
framework to other domains such as video and audio classification. In the future work, the scenario
of large datasets and the classification system of large datasets would be considered, and the case of
similar devices (same model or same RF front-end), multiple UAVs would be analyzed, too. In this
classification system, the influence of different models, SNRs and pre-processing methods would be
detailed in the future work.
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Abbreviations

The following abbreviations are used in this manuscript:

AFHSS Adaptive Frequency Hopping Spread Spectrum
Attn-GAN Attentional Generative Adversarial Networks
BEGAN Boundary Equilibrium Generative Adversarial Networks
CGAN Conditional Generative Adversarial Nets
Cycle-GAN Cycle-Consistent Adversarial Networks
DSMX Digital Signal Multiplex Equipment
DSSS Direct Sequence Spread Spectrum
FASST Flexible Audio Source Separation Toolbox
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FHSS Frequency Hopping Spread Spectrum
FM Frequency Modulation
Markovian-GAN Markovian Generative Adversarial Networks
MASK-GAN Masked Generative Adversarial Networks
OFDM Orthogonal Frequency Division Multiplexing
ProGAN Progressive Generative Adversarial Networks
Semi-GAN Semi-supervised Learning Generative Adversarial Networks
SRGAN Super-Resolution Generative Adversarial Networks
Vae-GAN Variational Autoencoder Generative Adversarial Networks

References

1. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the International Conference on Neural Information
Processing Systems, Montreal, QC, Canada, 8–11 December 2014; pp. 2672–2680.

2. GitHub—Hindupuravinash/the-Gan-Zoo: A List of All Named GANs! Available online: https://github.
com/hindupuravinash/the-gan-zoo#the-gan-zoo (accessed on 3 December 2018).

3. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks. arXiv 2016, arXiv:1511.06434v2.

4. Yang, L.C.; Chou, S.Y.; Yang, Y.H. MidiNet: A Convolutional Generative Adversarial Network for
Symbolic-domain Music Generation. arXiv 2017, arXiv:1703.10847.

5. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks. arXiv 2017, arXiv:1703.10593.

6. Hesse, C. Image-to-Image Demo—Affine Layer. Available online: https://affinelayer.com/pixsrv/
(accessed on 20 February 2018).

7. Xu, T.; Zhang, P.; Huang, Q.; Zhang, H.; Gan, Z.; Huang, X.; He, X. AttnGAN: Fine-Grained Text to Image
Generation with Attentional Generative Adversarial Networks. arXiv 2017, arXiv:1711.10485.

8. Li, C.; Wand, M. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial
Networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; pp. 702–716.

9. Yoo, D.; Kim, N.; Park, S.; Paek, A.S.; Kweon, I.S. Pixel-Level Domain Transfer; Springer: Cham, Switzerland,
2016; pp. 517–532.

10. Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; Huang, T.S. Generative Image Inpainting with Contextual Attention.
arXiv 2018, arXiv:1801.07892.

11. Ahn, T.; Seok, J.; Lee, I.; Han, J. Reliable Flying IoT Networks for UAV Disaster Rescue Operations.
Mob. Inf. Syst. 2018, 2018, 1–12. [CrossRef]

12. World’s First Drone Delivery Service Launches in Iceland. Available online: https://www.cnbc.com/2017/
08/22/worlds-first-drone-delivery-service-launches-in-iceland.html (accessed on 23 August 2017).

13. UAS Sightings Report. Available online: https://www.faa.gov/uas/resources/uas_sightings_report/
(accessed on 9 August 2018).

14. Tran, P. Watch this UAV Crash into a French Nuclear Power Station. Available online: https://www.
defensenews.com/unmanned/2018/07/03/watch-this-uav-crash-into-a-french-nuclear-power-station/
(accessed on 3 July 2018).

15. Drone Attacks Are Essentially Terrorism by Joystick—The Washington Post. Available online:
https://www.washingtonpost.com/opinions/drone-attacks-are-essentially-terrorism-by-joystick/
2018/08/05/f93ec18a-98d5-11e8-843b-36e177f3081c_story.html?noredirect=on&utm_term=.fdcd72f3951d
(accessed on 5 August 2018).

16. Forrest, C. 17 Drone Disasters That Show Why the FAA Hates Drones—TechRepublic. Available online: https:
//www.techrepublic.com/article/12-drone-disasters-that-show-why-the-faa-hates-drones/ (accessed on
13 June 2018).

17. Wikipedia. Delivery Drone—Wikipedia. Available online: https://en.wikipedia.org/wiki/Delivery_drone
(accessed on 10 December 2018).

https://github.com/hindupuravinash/the-gan-zoo#the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo#the-gan-zoo
https://affinelayer.com/pixsrv/
http://dx.doi.org/10.1155/2018/2572460
https://www.cnbc.com/2017/08/22/worlds-first-drone-delivery-service-launches-in-iceland.html
https://www.cnbc.com/2017/08/22/worlds-first-drone-delivery-service-launches-in-iceland.html
https://www.faa.gov/uas/resources/uas_sightings_report/
https://www.defensenews.com/unmanned/2018/07/03/watch-this-uav-crash-into-a-french-nuclear-power-station/
https://www.defensenews.com/unmanned/2018/07/03/watch-this-uav-crash-into-a-french-nuclear-power-station/
https://www.washingtonpost.com/opinions/drone-attacks-are-essentially-terrorism-by-joystick/2018/08/05/f93ec18a-98d5-11e8-843b-36e177f3081c_story.html?noredirect=on&utm_term=.fdcd72f3951d
https://www.washingtonpost.com/opinions/drone-attacks-are-essentially-terrorism-by-joystick/2018/08/05/f93ec18a-98d5-11e8-843b-36e177f3081c_story.html?noredirect=on&utm_term=.fdcd72f3951d
https://www.techrepublic.com/article/12-drone-disasters-that-show-why-the-faa-hates-drones/
https://www.techrepublic.com/article/12-drone-disasters-that-show-why-the-faa-hates-drones/
https://en.wikipedia.org/wiki/Delivery_drone


Appl. Sci. 2018, 8, 2664 14 of 15

18. Ju, C.; Son, H. Multiple UAV Systems for Agricultural Applications: Control, Implementation,
and Evaluation. Electronics 2018, 7, 162. [CrossRef]

19. Park, S.; Park, S.O. Configuration of an X-band FMCW radar targeted for drone detection. In Proceedings of
the International Symposium on Antennas and Propagation, Phuket, Thailand, 30 October–2 November
2017; pp. 1–2.

20. Nguyen, P.; Truong, H.; Ravindranathan, M.; Nguyen, A.; Han, R.; Vu, T. Matthan: Drone Presence Detection
by Identifying Physical Signatures in the Drone’s RF Communication. In Proceedings of the International
Conference on Mobile Systems, Applications, and Services, New York, NY, USA, 19 June–23 June 2017;
pp. 211–224.

21. Jeon, S.; Shin, J.W.; Lee, Y.J.; Kim, W.H.; Kwon, Y.H.; Yang, H.Y. Empirical Study of Drone Sound Detection
in Real-Life Environment with Deep Neural Networks. arXiv 2017, arXiv:1701.05779; pp. 1858–1862.

22. Lim, D.H.; Kim, H.G.; Hong, S.G.; Lee, S.H.; Kim, G.Y.; Snail, A.; Gotwals, L.; Gallagher, J. Practically
Classifying Unmanned Aerial Vehicles Sound Using Convolutional Neural Networks. In Proceedings
of the 2018 Second IEEE International Conference on Robotic Computing (IRC), Laguna Hills, CA, USA,
31 January–2 February 2018; pp. 242–245.

23. Unlu, E.; Zenou, E.; Rivière, N. Using Shape Descriptors for UAV Detection. In Proceedings of the Electronic
Imaging 2017, Burlingam, CA, USA, 28 January 2018; pp. 1–5.

24. Richardson, M. Drones: Detect, Identify, Intercept and Hijack. Available online: https://www.nccgroup.
trust/uk/about-us/newsroom-and-events/blogs/2015/december/drones-detect-identify-intercept-and-
hijack/ (accessed on 2 December 2015).

25. Zhang, H.; Cao, C.; Xu, L.; Gulliver, T.A. A UAV Detection Algorithm Based on an Artificial Neural Network.
IEEE Access 2018, 6, 24720–24728. [CrossRef]

26. Fu, H.; Abeywickrama, S.; Zhang, L.; Yuen, C. Low-Complexity Portable Passive Drone Surveillance via
SDR-Based Signal Processing. IEEE Commun. Mag. 2018, 56, 112–118. [CrossRef]

27. Bisio, I.; Garibotto, C.; Lavagetto, F.; Sciarrone, A.; Zappatore, S. Unauthorized Amateur UAV Detection
Based on WiFi Statistical Fingerprint Analysis. IEEE Commun. Mag. 2018, 56, 106–111. [CrossRef]

28. Zhao, C.; Shi, M.; Cai, Z.; Chen, C. Research on the Open-Categorical Classification of the Internet-of-Things
Based on Generative Adversarial Networks. Appl. Sci. 2018, 8, 2351. [CrossRef]

29. Andre, T.; Hummel, K.; Schoellig, A.; Yanmaz, E. Application-driven design of aerial communication
networks. IEEE Commun. Mag. 2014, 52, 129–137. [CrossRef]

30. The ALENTECH PLUS Can Be Installed on Most DJI Products, These Include the Following. Available online:
https://alienth.cn/products/alientech (accessed on 10 December 2018).

31. IEEE 802.11—Wikipedia. Available online: https://en.wikipedia.org/wiki/IEEE_802.11 (accessed on
8 December 2018).

32. Rapport Research into the Radio Interference Risks of Drones | Rapport | Agentschap Telecom. Available
online: https://www.agentschaptelecom.nl/documenten/rapporten/2017/december/6/rapport-research-
into-the-radio-interference-risks-of-drones (accessed on 16 January 2018).

33. Hauberg, S.; Freifeld, O.; Larsen, A.B.L.; Iii, J.W.F.; Hansen, L.K. Dreaming More Data: Class-dependent
Distributions over Diffeomorphisms for Learned Data Augmentation. arXiv 2016, arXiv:1510.02795.

34. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. InfoGAN: Interpretable
Representation Learning by Information Maximizing Generative Adversarial Nets. arXiv 2016,
arXiv:1606.03657.

35. Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Smolley, S.P. Least Squares Generative Adversarial Networks.
arXiv 2016, arXiv:1611.04076.

36. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875.
37. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings

of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017;
Volume 70, pp. 214–223. Available online: http://proceedings.mlr.press/v70/arjovsky17a.html (accessed on
24 October 2018).

38. Odena, A.; Olah, C.; Shlens, J. Conditional Image Synthesis with Auxiliary Classifier GANs. arXiv 2016,
arXiv:1610.09585.

39. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs.
arXiv 2017, arXiv:1704.00028.

http://dx.doi.org/10.3390/electronics7090162
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/december/drones-detect-identify-intercept-and-hijack/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/december/drones-detect-identify-intercept-and-hijack/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/december/drones-detect-identify-intercept-and-hijack/
http://dx.doi.org/10.1109/ACCESS.2018.2831911
http://dx.doi.org/10.1109/MCOM.2018.1700424
http://dx.doi.org/10.1109/MCOM.2018.1700340
http://dx.doi.org/10.3390/app8122351
http://dx.doi.org/10.1109/MCOM.2014.6815903
https://alienth.cn/products/alientech
https://en.wikipedia.org/wiki/IEEE_802.11
https://www.agentschaptelecom.nl/documenten/rapporten/2017/december/6/rapport-research-into-the-radio-interference-risks-of-drones
https://www.agentschaptelecom.nl/documenten/rapporten/2017/december/6/rapport-research-into-the-radio-interference-risks-of-drones
http://proceedings.mlr.press/v70/arjovsky17a.html


Appl. Sci. 2018, 8, 2664 15 of 15

40. Test Equipment Solutions Datasheet. Available online: http://www.testequipmenthq.com/datasheets/
Agilent-DSO9404A-Datasheet.pdf (accessed on 2 October 2013).

41. Zhao, C.; Chi, T.Y.; Huang, L.; Yao, Y.; Kuo, S.Y. Wireless local area network cards identification based on
transient fingerprinting. Wirel. Commun. Mob. Comput. 2013, 13, 711–718. [CrossRef]

42. Zhao, C.; Shi, M.; Cai, Z.; Chen, C. Detection of unmanned aerial vehicle signal based on Gaussian
mixture model. In Proceedings of the International Conference on Computer Science and Education,
Philadelphia, PA, USA, 21–23 October 2017; pp. 289–293.

43. GitHub—Meownoid/Tensorfow-rbm: Tensorflow Implementation of Restricted Boltzmann Machine.
Available online: https://github.com/meownoid/tensorfow-rbm (accessed on 1 January 2018).

44. Google Code Archive—Long-Term Storage for Google Code Project Hosting. Available online: https:
//code.google.com/archive/p/matrbm/ (accessed on 1 November 2010).

45. USRP B200/B210 Product Overview. Available online: https://www.ettus.com/content/files/b200-b210_
spec_sheet.pdf (accessed on 1 December 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.testequipmenthq.com/datasheets/Agilent-DSO9404A-Datasheet.pdf
http://www.testequipmenthq.com/datasheets/Agilent-DSO9404A-Datasheet.pdf
http://dx.doi.org/10.1002/wcm.1196
https://github.com/meownoid/tensorfow-rbm
https://code.google.com/archive/p/matrbm/
https://code.google.com/archive/p/matrbm/
https://www.ettus.com/content/files/b200-b210_spec_sheet.pdf
https://www.ettus.com/content/files/b200-b210_spec_sheet.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Wireless Signals of UAVs
	The Evolution of GAN Model

	Network Overview
	Experiments
	Indoor Environment
	Outdoor Environment

	Conclusions
	References

