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Abstract: Fringe projection technologies have been widely used for three-dimensional (3D) shape
measurement. One of the critical issues is absolute phase recovery, especially for measuring multiple
isolated objects. This paper proposes a method for absolute phase retrieval using only one coded
pattern. A total of four patterns including one coded pattern and three phase-shift patterns are
projected, captured, and processed. The wrapped phase, as well as average intensity and intensity
modulation, are calculated from three phase-shift patterns. A code word encrypted into the coded
pattern can be calculated using the average intensity and intensity modulation. Based on geometric
constraints of fringe projection system, the minimum fringe order map can be created, upon
which the fringe order can be calculated from the code word. Compared with the conventional
method, the measurement depth range is significantly improved. Finally, the wrapped phase can be
unwrapped for absolute phase map. Since only four patterns are required, the proposed method is
suitable for real-time measurement. Simulations and experiments have been conducted, and their
results have verified the proposed method.
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1. Introduction

Optical 3D measurement plays a pivotal role in all aspects of our lives, such as industrial
production, biological medicine, and consumer entertainment [1–5]. Many optical technologies
including structured light, stereo vision, and digital fringe projection (DFP) have been exploited
to achieve high-density and full-field 3D measurement [6]. Among those technologies, DFP has
become the most popular one because of its speed, accuracy, and flexibility [7]. Fourier transform and
phase-shift are two main methods applied in the DFP system [8]. The former method only uses one
pattern for computing phase map, but the measured surfaces must be rather simple to avoid a spectral
overlapping problem. On the other hand, the phase-shift method exploits at least three patterns to
compute the phase map pixel-by-pixel, which can achieve higher accuracy and stronger robustness,
especially for complex surfaces. However, those two methods can only work out wrapped phases
which need to be unwrapped for absolute phase maps.

Ideally, when referring to the neighboring pixels, the wrapped phase can be unwrapped by
adding integral multiple of 2π at each pixel. In reality, however, local shadows, random noises,
and isolated objects are very usual occurrences that make the unwrapping phase difficult [9].
Thus, many absolute phase retrieval algorithms have been proposed, which can be divided into
two major classes: spatial algorithms and temporal algorithms [7]. The spatial algorithms are
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generally used for smooth surfaces, while the temporal algorithms are more suitable for complex
surfaces and attract more attention [10]. Research conducted in this field brings forth several typical
examples. Chen et al. [11,12] first proposed two-wavelength phase-shift interferometry, and then
developed multi-wavelength phase-shift interferometry to enhance the measurement capability.
Sansoni et al. [13] combined phase-shift and gray-code into the 3D vision system, which greatly
improved the measurement performance. Wang et al. [14] put forward an effective and robust
phase-coding method. Zheng et al. [15] improved the phase-coding method for a large number of
code words. Chen et al. [16,17] successively developed a quantized phase-coding method and a
modified gray-level coding method, which achieved good results when measuring isolated objects.
Nevertheless, all the aforementioned methods require three or more extra patterns, which will limit
the speed of measurement. To reduce the number of patterns, some researchers have utilized color
patterns for 3D measurement [18–20]. However, these methods have always failed for colorful objects.
Other researchers have employed more cameras to capture the patterns from different perspectives,
such that the multi-view geometric constraints can be used for absolute phase calculation [21–23].
However, the measurement field reduces because of the multiple perspectives, and the cost and
complexity of the system increase due to additional cameras [24].

To realize high-speed measurement, An et al. [25] recently proposed a pixel-wise phase
unwrapping method with no additional pattern. Based on the geometric constraints of fringe projection
system, an artificial phase map Φmin at the closest depth plane zmin is generated, and then the phase
unwrapping can be executed by referring to Φmin. Subsequently, a number of algorithms were
developed for phase unwrapping based on An’s method [26–29]. However, the maximum depth range
this method can handle is within 2π in phase domain. When the object points far away from depth
plane zmin brings more than 2π changes, this method is no longer applicable.

Inspired by An’s method, this paper presents an absolute phase retrieval method using only one
additional coded pattern to improve the measurement depth range. Firstly, the wrapped phase is
calculated from three phase-shift patterns, and the code word is extracted from the coded pattern.
Secondly, an artificial fringe order map kmin of depth plane zmin is generated, and then the code word
is mapped to the fringe order by referring to the fringe order map kmin. Finally, the wrapped phase is
unwrapped for the absolute phase map. Simulations and experiments have been conducted to verify
the proposed method.

2. Principle

2.1. Fringe Projection System

The setup of a typical fringe projection system is shown in Figure 1. This system mainly includes
a projector, a camera, and measured objects. The patterns are projected by the projector onto the
measured objects from one direction, modulated by the objects’ surfaces, and then captured by the
camera from another direction. In Figure 1, Points Oc and Op respectively denote the optical centers of
the camera and the projector. The optical axes of the projector and the camera intersect at point O on
the reference plane. Note that line OcOp is parallel to the reference plane, so points Oc and Op have
the same distance L from the reference surface. Based on the triangulation principle, the height of the
measured objects can be computed as [30]:

h =
L ∗ ∆φ

2π f0d + ∆φ
(1)

where ∆φ denotes the phase difference between the point P on the object and the point B on the
reference plane, f 0 denotes the frequency of the fringe on the reference plane. For a specific system,
parameters L, d0 and f 0 are fixed, which can be obtained by calibration [31].
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Figure 1. Fringe projection system.

2.2. Phase-Shift and Coded Patterns

Phase-shift methods have been widely used for optical measurement because of their
measurement accuracy, spatial resolution, and data density [8]. The three-step phase-shift method
requires the fewest number of patterns among various phase-shift methods, thus it is desirable for
high-speed applications. Three-step phase-shift patterns can be described as:

I1(x, y) = A(x, y) + B(x, y) cos[φ(x, y)− 2π/3]
I2(x, y) = A(x, y) + B(x, y) cos[φ(x, y)]
I3(x, y) = A(x, y) + B(x, y) cos[φ(x, y) + 2π/3]

(2)

where A(x, y) denotes the average intensity, B(x, y) denotes the intensity modulation, and φ(x, y)
denotes the phase to be solved for. Figure 2a–c shows three phase-shift patterns generated using
the above equations, and same rows of the three patterns are shown in Figure 3a. Solving the above
equations, the three variables can be calculated as:

A(x, y) = (I1 + I2 + I3)/3

B(x, y) = [(I1 − I3)
2/3 + (2I2 − I1 − I3)

2/9]
1/2

φ(x, y) = tan−1[
√

3(I1 − I3)/(2I2 − I1 − I3)]

(3)

Because of the arctangent operation, the wrapped phase φ(x, y) is limited in range of [−π, π].
Thus, phase unwrapping should be carried out to recover the absolute phase. If the fringe order k(x, y)
is determined, the absolute phase Φ(x, y) can be calculated as:

Φ(x, y) = φ(x, y) + 2π ∗ k(x, y) (4)

To determine the fringe order, we designed one coded pattern. Figure 2d shows the coded pattern,
and one row of this pattern is shown in Figure 3b. The coded pattern can be described as:

IM(x, y) = A(x, y) + B(x, y) ∗M(x, y) = A(x, y) + B(x, y) ∗ [2 ∗mod(dx/Pe, N)/N − 1] (5)

where P represents the fringe period, the truncated integer k = dx/Pe represents the fringe order,
and the remainder C = mod(k, N) represents the code word; note that it is a periodic function with a
period of N. Once these four patterns are captured, the coded coefficient M(x, y) ranging from −1 to 1
can be calculated as:

M(x, y) = cos−1[(Im − A)/B] (6)

Then the code word C(x, y) can be computed as:
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C(x, y) = round[(M + 1) ∗ N/2] (7)
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2.3. Geometric Constraints for Phase Unwrapping

An et al. [25] have recently proposed a pixel-wise phase unwrapping method based on geometric
constraints of the fringe projection system. The main idea is to create the minimum phase map Φmin
at the closest depth plane zmin of the measured volume. Then phase unwrapping can be performed
with reference to minimum phase map Φmin. The details of this method have been described in [25].
The following briefly introduces the main idea of this method.

Figure 4 illustrates the phase unwrapping method using the minimum phase map Φmin. If the
wrapped phase φ is less than Φmin, we need to add k times of 2π to the wrapped phase φ to obtain the
absolute phase Φ. The fringe order k can be computed as:

k(x, y) = ceil
(

Φmin − φ

2π

)
(8)

where function ceil() returns the closest upper integer value. It should be noted that the above equation
must satisfy the following condition:

0 ≤ Φ−Φmin < 2π (9)

Its physics signification is that the measured objects should be close to the depth plane zmin and
within 2π in phase domain. In other words, the maximum depth range should be less than 2π changes
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which will limit the applications of this method. For example, at point A,Φ−Φmin < 2π, and wrapped
phase φ is correctly unwrapped for the absolute phase Φ′= Φ; at point B, Φ−Φmin > 2π, but wrapped
phase φ is wrongly unwrapped for the absolute phase Φ′ 6= Φ.
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2.4. Phase Unwrapping with One Coded Pattern

To improve the measurement depth range, we utilized an additional coded pattern to provide
more information for fringe order determination. Assume that the camera captures an object placed at
the depth plane zmin, there exists a one-to-one mapping between the camera sensor and the projector
sensor, and the minimum fringe order kmin can be uniquely defined on the projector sensor. Figure 5
illustrates the main idea to determine the fringe order k, in which line kmin plots the minimum fringe
order, the line C plots the code word at depth plane z, and line k plots the corresponding fringe order.
The relationship between the three variables can be described as:

k = C + N ∗ ceil
(

kmin − C
N

)
(10)

For example, at point D, kmin − C < 0, thus k = C; at point E, 0 < kmin − C < N, thus k = C + N;
at point F, N < kmin − C < 2 ∗ N, thus k = C + 2 ∗ N. Similarly, the above equation must satisfy the
following condition:

0 ≤ k− kmin < N (11)

In other words, the measured objects should be close to the depth plane zmin within 2πN in phase
domain. Through the above analysis, the proposed method raises the measurement depth range by N
times compared with the traditional method.
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3. Simulation

To test the performance of the proposed method, some simulations were carried out. Figure 6
shows the simulation of the closet depth plane zmin. Specifically, Figure 6a–c shows three phase-shift
patterns with eight periods; Figure 6d shows the corresponding wrapped phase ranging from −π to π;
Figure 6e shows the fringe order map regarded as kmin; and Figure 6f shows the absolute phase map
regarded as Φmin.
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Then, a hemisphere was selected as the measure object and simulated, as shown in Figure 7.
Specifically, Figure 7a–c shows the three phase-shift patterns; Figure 7d shows the coded pattern with
N = 4; Figure 7e shows the fringe order determined by the proposed method; Figure 7f shows the
fringe order map determined by An’s method for comparison; Figure 7g shows the absolute phase
map recovered by the proposed method; Figure 7h shows the absolute phase map recovered by An’s
method. Obviously, the fringe order and the absolute phase map are correctly determined by the
proposed method. However, An’s method fails in contrast. The 3D reconstruction results of the
hemisphere using the two methods are shown in Figure 8. As we can see, the proposed method can
accurately recover the whole surface of the hemisphere, but An’s method fails to measure the overall
hemisphere surface. The maximum depth range of the proposed method can deal with is 2πN, which
is four times that of An’s method.
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using the proposed method; (h) absolute phase map using An’s method.
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4. Experimental Setup

To test the proposed method in real condition, a fringe projection system was set up. The system
consisted of a projector (Light Crafter 4500) with resolution of 912× 1140 pixels, and a camera (IOI Flare
2M360-CL) with resolution of 1280 × 1024 pixels. A flat board was placed at the closest depth plane
of the measured volume, and used as the reference plane. Two isolated objects were selected as the
measured objects. Total four patterns, including three phase-shift patterns and one coded pattern,
were projected onto the reference plane and the measured objects by the projector, and sequentially
captured by the camera.

Figure 9a–c shows three phase-shift patterns projected onto the reference plane, respectively.
Figure 9d shows the corresponding wrapped phase. Figure 9e shows the fringe order, also regarded
as the minimum fringe order map kmin. Figure 9f shows the absolute phase map also regarded as the
minimum phase map Φmin. Similarly, Figure 10a–c shows the images of three phase-shift patterns
projected onto the measured objects, respectively. Figure 10d shows the corresponding wrapped phase
map calculated from the three phase-shift patterns. Meanwhile, the average intensity and intensity
modulation were calculated. Figure 10e shows the coded pattern with N = 4, and Figure 10f shows the
corresponding code word map.
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Figure 9. Images of the reference plane. (a–c) Phase-shift patterns; (d) wrapped phase map;
(e) minimum fringe order map kmin; (f) minimum phase map Φmin.

In order to compare the proposed method and An’s method, Equations (12) and (14) were both
used for computing fringe order. Figure 11a,b shows the fringe order maps recovered by the two
methods. As we can see, the proposed method recovered the fringe order map Φ correctly; however,
An’s method led to the wrong fringe order map Φ′ at some areas. There are obvious differences
between the two fringe order maps within the two circular areas plotted in Figure 11. The pixels of the
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same stripe had the same fringe order k in Figure 11a. However, the pixels of the same stripe had a
different fringe order k’ in Figure 11b.
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For better illustration, Figure 12a,b shows the 600th rows of the two fringe order maps and
absolute phase maps. Clearly, Φ−Φmin < 8π and Φ′ −Φmin < 2π. This indicates that the maximum
depth range of the proposed method is up to 8π, and that of An’s method is only 2π. Therefore, the
proposed method can obtain much larger depth range than An’s method. Finally, we reconstructed the
3D shapes of the two isolated objects, as shown in Figure 13.
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Figure 13. Measurement result of two isolated objects.

In order to further verify our method, two separate planes were also measured using the proposed
method. Figure 14a–c shows three phase-shift patterns projected onto the two planes, respectively.
Figure 14d shows the corresponding wrapped phase map. Figure 14e shows the coded pattern,
and Figure 14f shows the corresponding code-word map. Then the fringe order was calculated,
as shown in Figure 15a. Using Equation (4), the absolute phase map was recovered, as shown in
Figure 15b. Finally, the 3D shapes of two planes were reconstructed, as shown in Figure 16. There are
no obvious mistakes in the measurement results. The experimental results illustrate the performance
of the proposed method.
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5. Conclusions

This paper has presented an absolute phase retrieval method using only one coded pattern. A total
of four patterns are used for 3D shape measurement, which is suitable for high-speed applications.
The code words are encoded into the coded pattern, which can be correctly recovered using the average
intensity and intensity modulation of phase-shift patterns. Based on the geometric constraints of fringe
projection system, the minimum fringe order map is generated, then the code word can be easily
converted into fringe order. Compared with the conventional method, the proposed method can
significantly enhance the measurement depth range.
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