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Abstract: There is increasing interdisciplinary interest in phytoplankton community dynamics as the
growing environmental problems of water quality (particularly eutrophication) and climate change
demand attention. This has led to a pressing need for improved biophysical and causal understanding
of Phytoplankton Functional Type (PFT) optical signals, in order for satellite radiometry to be used to
detect ecologically relevant phytoplankton assemblage changes. Biophysically and biogeochemically
consistent phytoplankton Inherent Optical Property (IOP) models play an important role in
achieving this understanding, as the optical effects of phytoplankton assemblage changes can be
examined systematically in relation to the bulk optical water-leaving signal. The Equivalent Algal
Populations (EAP) model is used here to investigate the source and magnitude of size- and pigment-
driven PFT signals in the water-leaving reflectance, as well as the potential to detect these using
satellite radiometry. This model places emphasis on the determination of biophysically consistent
phytoplankton IOPs, with both absorption and scattering determined by mathematically cogent
relationships to the particle complex refractive indices. All IOPs are integrated over an entire size
distribution. A distinctive attribute is the model’s comprehensive handling of the spectral and
angular character of phytoplankton scattering. Selected case studies and sensitivity analyses reveal
that phytoplankton spectral scattering is most useful and the least ambiguous driver of the PFT
signal. Key findings are that there is the most sensitivity in phytoplankton backscatter (bbφ) in the
1–6 µm size range; the backscattering-driven signal in the 520 to 570 nm region is the critical PFT
identifier at marginal biomass, and that, while PFT information does appear at blue wavelengths,
absorption-driven signals are compromised by ambiguity due to biomass and non-algal absorption.
Low signal in the red, due primarily to absorption by water, inhibits PFT detection here. The study
highlights the need to quantitatively understand the constraints imposed by phytoplankton biomass
and the IOP budget on the assemblage-related signal. A proportional phytoplankton contribution of
approximately 40% to the total bb appears to a reasonable minimum threshold in terms of yielding a
detectable optical change in Rrs. We hope these findings will provide considerable insight into the
next generation of PFT algorithms.

Keywords: phytoplankton; PFT; ocean colour; satellite radiometry; radiative transfer; optical
modelling

1. Introduction

Phytoplankton across the world’s oceans represent about half of all primary production on
our planet [1,2]. Their growth and function are fundamental to sustaining life: they constitute the
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foundation of the aquatic food web, and serve critical roles in the recycling of essential elements
such as carbon and nitrogen, as well as in remineralisation [3–5]. Being so responsive to nutrient
availability and water temperature, these tiny organisms are key indicators of ecosystem change,
and understanding their community dynamics is key to answering some of the most challenging earth
science questions of our time about the impacts of climate change on local, regional and global scale
aquatic systems and the carbon cycle. The widespread distribution and integral role of phytoplankton
in global marine ecosystems means that these fields of study depend heavily on modelling together
with satellite data for any large scale analysis. In situ data collection is indispensable for local
scale investigations and for ground truthing of satellite and model data, but simultaneous large
scale direct measurements are logistically impossible. Optical measurements in natural waters are
challenging: they are expensive and logistically difficult, technically complex due to large dynamic
ranges of the signal, and overall require delicate, rigorously calibrated instrumentation with precise
knowledge of sources of error. Remote sensing and moored in situ instrumentation are the only
feasible ways to acquire continuous data series, but these largely involve bulk measurements of
the total optical signal. Isolating the respective optical components for laboratory assessment is a
significant further undertaking. In situ and laboratory measurements are consequently extremely
valuable, and appropriate bio-optical models provide essential tools for the analysis and understanding
of these bulk measurements, whether above- or sub-surface.

It has long been appreciated that phytoplankton have a direct effect on the observable colour of
the ocean, and broad scale biomass estimates based on Chl a concentrations derived from satellite
radiometry are widely relied upon despite persistent uncertainty in the accuracy of information derived
from satellite imagery [6,7]. Recently, there has been considerable interest in more detailed information
on phytoplankton assemblage characteristics [8–11], but it has not been widely ascertained to what
degree Phytoplankton Functional Type (PFT) information can be gleaned from satellite data, and at
what level of confidence. Furthermore, descriptions of PFTs differ with context—and the potential for
identifying relationships between the ecological roles of phytoplankton and their optical properties
must also be considered. Understanding the causal effect of biophysical phytoplankton characteristics
on the optical water-leaving signal is at the heart of addressing these questions, and this is undoubtedly
an outstanding topic in ocean optics.

Any useable radiometric PFT-related signal results directly from the interaction of phytoplankton
with their light environment, but the physical basis of this interaction is not well understood in
terms of observed variability across the wide diversity of aquatic environments and phytoplankton
assemblages [12,13]. Generally, in oceanic waters, it is the strong absorption by phytoplankton which
dominates the phytoplankton contribution to the ocean colour signature, and has therefore been
identified as a promising signal in terms of PFT identification. However, distinguishing the effects of
variable phytoplankton absorption due to biomass changes from the effects due to functional type
changes (and further from changes induced by photoacclimation and photoprotective pigments) is
not straightforward. This ambiguity in the phytoplankton community signal is at the core of the
PFT problem. It is then overlaid with further complexity, given that a potential PFT signal from
the phytoplankton component of a water body’s optical constituents must be considered in the
context of the other components in the water, recognising the contributions from the non-algal sources
of optical variability: absorption due to CDOM (Coloured Dissolved Organic Matter) and detrital
particles, i.e., agd(λ), and non-algal backscatter i.e., bbnap(λ) [13]. The blue spectral region of maximum
phytoplankton absorption is also the region most affected by CDOM and detrital absorption. (It should
also be noted that, in the context of satellite radiometry, blue spectral bands display the largest absolute
measurement uncertainties [7,14]. While the blue water-leaving signal may be large in oceanic regions,
resulting in a small relative uncertainty, this is when the signal is overwhelmingly dominated by the
backscattering of water, decreasing confidence in the lesser contributions of agd(λ) and aφ. Generally,
agd product retrievals from the satellite tend to be less robust than those of other IOPs [15,16].)
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A comprehensive guide to PFT approaches is given by Mouw et al. [17], dividing them into
four categories: abundance-based e.g., Hirata et al. [18] and Brewin et al. [19,20]; radiance based
e.g., the PHYSAT method: Alvain et al. [21,22]; absorption based e.g., Devred et al. [23], Ciotti and
Bricaud [24], and PhytoDOAS: Bracher et al. [25]; and scattering based e.g., Kostadinov et al. [10,26] (all
references in [17]). Existing scattering-based approaches [10,11] assume a Jungian (exponential) particle
size distribution and rely on Mie modelling, which does not adequately represent phytoplankton
angular scattering [27], and there are consequently high uncertainties in PSD retrieval where the
particle size distribution slope is low, i.e., highly productive and coastal areas dominated by relatively
large cells [10]. Low biomass (Chl a < 1 mg·m3) oceanic conditions with an absorption-dominated
phytoplankton component of the water-leaving signal can exhibit good relationships with differential
pigment absorption e.g., the diagnostic pigment approach used on satellite Rrs in Uitz et al. [28].
It follows that, in the context of additional non-algal absorption, differentiated spectra show better
similarity than non-differentiated [29], and also that high spectral resolution measurements show
better potential for retrieving phytoplankton assemblage information than multi-spectral Rrs [29]
when retrieving diagnostic features of the first derivative of Rrs. However, other methods using
the fourth derivative of pigment absorption and Rrs to identify fine-scale phytoplankton absorption
features have found that objective discrimination of pigment groups from hyperspectral Rrs may
not be feasible at low biomass < 1 mg·m3 due to the high similarities in the derivative spectra [30].
This suggests that the primary phytoplankton signal in Rrs is due to biomass (Chl a) rather than
the accessory pigments, and that with the exception of uniquely diagnostic pigment absorption
outside the spectral regions of that of Chl a, phytoplankton information cannot be retrieved without
assumptions about PFT relationships with biomass. The PhytoDOAS method also employs a fourth
derivative analysis [25,31] but is performed on hyperspectral top-of-atmosphere satellite measurements,
avoiding the uncertainties associated with poor atmospheric correction, but the sensitivity of this high
spectral resolution approach to biomass and both algal and non-algal scattering contributions to the
IOP budget has yet to be determined.

Generally, phytoplankton absorption- and abundance-based methods rely on empirical
relationships between biomass, functional type and CDOM. Where these quantities co-vary predictably
or are exactly known, empirical PFT algorithms may be successful. However, Brewin et al. [6]
acknowledges that both the abundance-based approaches as well as approaches relying on differential
pigment absorption break down in environments that do not conform to the generalised relationships
between community structure and biomass upon which these approaches are based, usually in elevated
biomass comprised of small cells. The relative contributions of phytoplankton absorption and scatter
to light emerging from seawater change with biomass, size and other functional type traits, and as
the agd(λ) and bbnap(λ) components vary (see Stramski et al. [32] and references therein). The total
water-leaving signal is a delicate balance of the frequently opposing optical effects of biomass and
phytoplankton assemblage variability such as size, pigments and ultrastructure, together with the
optical effects of the non-algal in-water constituents. An interactive webpage demonstrating the first
order effect of variability in these parameters on Rrs is available in the Supplementary Material. It was
observed by Brown et al. [13] that backscatter anomaly maps (i.e., backscatter independent of variability
due to biomass) correlate approximately with PFT distribution maps calculated from optical anomalies
which were initially attributed to differences in phytoplankton accessory pigments [21]. This leads to
the suggestion that radiance-based methods, e.g., the Alvain (PHYSAT) criteria used to distinguish
PFTs, are in fact primarily due to backscattering characteristics [9,13], indicating that phytoplankton
groups either directly determine, or perhaps are simply associated with, backscattering variability
around the mean.

Brown et al. [13] conclude that these relationships can only be fully explored if a method is
applied where the phytoplankton groups are causally linked to the optical conditions. The Equivalent
Algal Populations (EAP) model provides exactly such a method, and is used here to investigate the
impact of size- and pigment-based PFT variability on the optical signal, and to confirm the assertion
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that biomass drives the largest part of observed variability in the water-leaving signal, and that the
radiometric signal in the blue is ambiguous due to the effects of agd(λ), and the additional effects of
bbnap(λ) [13,33].

The EAP model is a fully physics-based two-layered spherical model, which calculates, from first
principles, biophysically linked phytoplankton absorption and scattering characteristics from particle
refractive indices reflecting the primary light-harvesting pigments of various phytoplankton groups.
IOPs are calculated at high spectral resolution between 400 and 900 nm and are integrated over an
entire equivalent size distribution [34,35], simulating the dominant optical characteristics of natural
phytoplankton assemblages. The EAP is used here only as a forward model: the intention of this study
is to isolate the biophysical driver(s) of PFT optical signals and determine the associated implications
for detecting PFT changes from satellite radiometry.

In this study, the term “Phytoplankton Functional Type” is used in a broad sense of the dominant
characteristics of a phytoplankton assemblage, with respect to both cell size and accessory pigments,
from an optical perspective.

Study Objectives and Outline

The aim of this work is to investigate the magnitude and spectral location of optical water-leaving
signals resulting from phytoplankton assemblage changes; to determine how these signals respond to
changes in biomass and functional type; to evaluate their optical ambiguity in the context of the optical
effects of other in-water constituents; and to assess their robustness against measurement uncertainties
in satellite radiometry. This work does not present a PFT detection method, but instead aims to identify
the reasonable limits of PFT detection from satellite, inferred from appropriate illuminative case studies
and sensitivity analyses demonstrating the source and magnitude of PFT signals in terms of both cell
size (assemblage De f f ) and accessory pigments.

To give context to the discussion on the case studies, an analysis is first made of the contribution of
the phytoplankton-driven signal to the bulk Rrs, and how this relates to the proportional contribution
of phytoplankton to the IOP budget. A Southern Ocean based case study then demonstrates the
optical impact on the Rrs of transitioning assemblages in terms of both biomass and De f f changes.
This discussion is developed further with a Benguela-like example more representative of productive
upwelling systems investigating the relative magnitude of pigment-driven PFT changes. A sensitivity
analysis then shows the spectral position and magnitude of the accessible phytoplankton optical signal
in Rrs as biomass and De f f vary. The source of these signals is traced back to phytoplankton backscatter
and its relationship with biomass, and ambiguity associated with non algal variability is evaluated.

It is clear that the case studies reflect simplified representative examples of much wider pigment-
and size-related variability in nature, but the described dependence of absorption-driven pigment
signals versus scattering-driven cell size signals on biomass holds across assemblage types. Optical PFT
effects are most easily identified in relatively high biomass environments (Chl a > 1 mg·m3) [36–38],
and where the IOP budget is dominated by phytoplankton [37,39], and so the case studies deal with
these water types. However, as the sensitivity analysis shows, together with the contextual discussion
around ambiguity and uncertainty in satellite Rrs, the conclusions of this study have implications for
the identification of PFT changes from satellite Rrs across all water types.

2. Methods: Modelling Approach

2.1. The Requirement for a Biophysically Consistent PFT Optical Model

The EAP model was developed to understand the causality-driven impact of different
phytoplankton assemblages on the water-leaving optical signal. Optical variability in phytoplankton
is known to be driven by particle size (effective diameter De f f ) [32,40,41], pigment quantity and
type, cellular material, shape and internal structure, fine-scale morphology, and aggregation [42–45].
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The model focuses primarily on particle size as given by the De f f parameter, which is of fundamental
importance both optically and ecologically [10,46].

Due to immense species diversity and variability in distribution, the Phytoplankton Functional
Type (PFT) approach (e.g., Sathyendranath et al. [8], Alvain et al. [21], Ciotti and Bricaud [24],
Bouman [47]) groups phytoplankton species according to their biogeochemical function and attempts
to relate this to their biophysical characteristics, with size as a major consideration [10,46,48].
This approach is important for oceanic waters, characterised by widespread but low biomass,
which contribute the largest proportion of global oceanic primary production [1]. Cell size governs
many biological traits [49]; smaller phytoplankton are ubiquitous and play an important role in nutrient
recycling, while larger phytoplankton often display the highest growth rates [49]. The dynamics of
phytoplankton ecology have profound and intricate influence not only on oceanic biogeochemistry
(e.g., acidification, and its effects on both CO2 uptake and on marine life) but also at higher trophic
levels e.g., on fish ecology, as certain phytoplankton environments promote the development of
different fish populations [48]. A size-based PFT approach is particularly meaningful in the context of
carbon sequestration [46], as particle size determines sinking rates for a large part.

However, phytoplankton ecology is complex, and modelling PFTs with adequate parameterisation
in a biogeochemical context is consequently extremely challenging [12]. Following the EAP’s
conceptual intent to understand the impact of De f f as the primary optical determinant once the effect
of biomass has been accounted for, other sources of bio-optical variability are intentionally constrained.
PFTs can therefore, to the first order, be approached from a size-based perspective, and the EAP model
consequently lends itself extremely well to PFT sensitivity studies in terms of its ability to isolate small
differences in reflectance resulting only from variability in assemblage size distribution [37]. The model
does additionally provide scope for varying other biophysical attributes within a population (such as
the pigment-determined spectral refractive indices, the shape of the size distribution itself, the ratio of
core to shell sphere volumes, and the cellular Chlorophyll a density of the cells in the distribution),
as required. It should be noted, however, that the model is not intended as a full representation of
phytoplankton optical complexities, and there is certainly ecologically significant natural variability
in phytoplankton IOPs e.g., dependent on their growth state [50], in response to growth irradiance,
nutrient availability and water temperature [51–53] and diel cycles [54,55]. These effects can be a large
(e.g., 80% increase in the phytoplankton scattering cross section between sunrise and sunset [54]),
and while they are not explicitly addressed here, they serve to add further uncertainty to PFT retrievals
from the optical water-leaving signal.

Empirically based phytoplankton abundance-type approaches, following observed relationships
between phytoplankton assemblage taxonomic information (e.g., pigments) and biomass, show good
results in low biomass conditions (i.e., where phytoplankton absorption dominates the phytoplankton
IOP contribution), and where the covariability of the phytoplankton optical contribution with that of
other in-water constituents generally holds [56], but do not address the sources of second order
variability or optical causality [13], or the likelihood that these empirical relationships will not
withstand the ecological shifts resulting from changing climatic conditions [6]. A biophysical approach
to PFTs not only allows improved analysis of sensitivity and causality but is likely to have greater
validity in a future ocean (see also [57]).

The optical impact of a phytoplankton assemblage interacting with its aquatic environment is
by no means straightforward, and a rigorous IOP model such as the EAP can systematically vary
phytoplankton biogeophysical attributes in the context of likely additional non-algal absorption and
scatter, and can examine the resulting effects on the light field when used in combination with a
Radiative Transfer (RT) model. The value of this reductionist approach has been demonstrated [58,59]
(and furthermore by Stramski et al. [32]) for separating and understanding the effects of various
phytoplankton groups and accompanying in-water constituents on the oceanic light field and emergent
Rrs. There is a bulk effect attributable simply to biomass, for which Chlorophyll a (Chl a) is used as a
proxy, and which for the most part dominates the phytoplankton-related signal in Case 1 waters [60]
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(It is acknowledged that Chl a concentration and biomass are not equivalent, as biomass includes
non-pigmented biological matter in quantities which may not be proportional to pigmented matter.
However, for the purposes of this study, biomass and Chl a concentration are used interchangeably,
as this work is approached from a purely optical perspective and ignores non-pigmented biological
matter.). PFT characteristics generally result in optical effects secondary to those of Chl a: accessory
pigments dominate assemblage absorption characteristics [61], and particle size is usually the primary
determinant of phytoplankton scattering characteristics [62] (excepting the influence of ultrastructure
in certain species, e.g., highly scattering liths or vacuoles). Natural waters are also subject to non-algal
absorption, the dissolved part of which is frequently referred to as Coloured Dissolved Organic Matter
(CDOM) or gelbstoff, but which may also have a particulate component in addition to non-algal
scatter that can include scatter by detrital matter, sediment, bacteria, and/or bubbles. These quantities
absorb and scatter light with spectral signatures distinct from those of phytoplankton, and their
subsequent optical interactions and resulting effect on the total water-leaving signal are highly complex.
Understanding the interaction between cells’ biophysical characteristics and the light field in the
presence of these additional optically active constituents is central to determining which parts of the
optical signal are useable for PFT diagnostics, and, likewise, where signal ambiguity is prohibitive.

2.2. Equivalent Algal Populations Model: Principal Attributes

The EAP model has been used for a variety of applications [35,37,63,64]. It can be assumed
that a model demonstrated as successful in phytoplankton-dominated waters [65] addresses the
phytoplankton component accurately. Models designed for low biomass, with simplistic and
absorption-decoupled phytoplankton scattering models, tend to underperform in higher biomass
conditions when phytoplankton IOPs dominate [65]. It follows that the phytoplankton component
of the combined optical properties is not generally well represented in these models. Following a
reductionist approach, good information on the phytoplankton component is a prerequisite for any
quantitative comment on the optical contribution of respective PFTs, or identifying changes in the
bulk optical properties of seawater as dominant PFTs change. Only when representing the detailed
nature of phytoplankton optics, with absorption and scattering biophysically consistent—as they are
in nature—is a causal understanding of their interactive effect on the optical signal possible [32,66].

The EAP model exhibits a two-layered sphere particle and equivalent size-based community
structure [27], which enables the calculation of phytoplankton IOPs from first principles, presenting a
valuable opportunity for furthering the understanding of causal relationships between phytoplankton
physiology and their optical characteristics based on quantified community structure. It is emphasised
that this is not an empirical model and its use here is not to provide optical closure, but rather to
identify and understand the biophysical drivers of phytoplankton optics and their contribution to an
observable signal in the context of different water types.

At the core of the model are the phytoplankton particle refractive indices, with the imaginary
part of the refractive index approximately representing that portion of light that is absorbed by the
cell, and the real part of the refractive index representing that portion of light which is scattered.
The imaginary and real parts of the refractive index spectra are numerically linked through the
Kramers–Kronig relations [67], whereby the real part of the refractive index n(λ) is calculated as the
imaginary part of a Hilbert transform of the imaginary refractive index, originally derived from cellular
absorption measurements. It should be noted that the imaginary refractive index characterises the
absorption of the intracellular material and has no dependency on cell size. This has implications for
the applicability of the model to a wide range of cell sizes, and is discussed further in Appendix A.1.

With a real refractive index of 1.12 for the ’chloroplast’ sphere, and as 1.02 for the ’cytoplasm’
sphere, this yields an overall particle spectral real refractive index of between 1.03 and 1.04 for
phytoplankton cells (see also Stramski et al. [32], Aas [68]). Full details of the refractive index
calculations can be found in Bernard et al. [69].
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In this model, the imaginary part of the refractive index is also numerically linked to the specified
intracellular Chl a concentration [27,52,54,55,70]. For eukaryotic particles, a core sphere represents the
cytoplasm (which contains approximately 80% water, and is almost colourless), while an outer sphere
represents the more refractive chloroplast, where the pigmented material (generally Chl a in the largest
part) is also strongly absorbing.

A critical feature of the model is that Chl a-specific absorption (a∗φ) is constrained at 675 nm to
reflect the theoretical maximum absorption by unpackaged phytoplankton of 0.027 mg/m2 as per
Johnsen et al. [71]. This is incorporated into the calculation of the imaginary refractive index of the
chloroplast layer n′chlor (outer sphere), based on the assumption that the cytoplasm layer (inner sphere)
has no signficant absorption at 675 nm:

n′chlor(675) =
675

nmedia

πcia∗sol(675)
4Vv

, (1)

where nmedia = 1.334 and Vv is the relative chloroplast volume, ci is the intracellular Chl a, and a∗sol(675)
is the Chl a-specific absorption at 675 nm of that pigment in solution, i.e., unpackaged [27].

The effect of constraining the unpackaged absorption in this way is to establish a quantitative
relationship between the intracellular Chl a and the cell volume; a relationship that is biophysically
consistent as the cell size varies [27]. This results in an effectively decreasing Chl a-specific absorption
with increasing size, observable in the resulting optics as the “package effect” [40,72].

When coupled with a radiative transfer model—here, Hydrolight-Ecolight (Numerical Optics,
Ltd., Devon, UK) is used—the interactions of phytoplankton IOPs (in combination with those of
other in-water constituents) with the surrounding light field can be examined systematically. A full
physics-based model such as this has the additional advantage of providing not only biophysically
interrelated particle absorption, scattering and backscattering, but IOPs for assemblages that are
integrated over the entire assemblage size distribution, and which are fully angularly resolved.
This presents the unique opportunity of closely examining simuluated phytoplankton phase functions,
which are notoriously difficult to measure, and whose behaviour in terms of variability in particle size
and wavelength is poorly understood. With no decoupling of absorption and backscattering, and IOPs
integrated over the entire size distribution, the model provides an unprecedented opportunity to
examine the drivers of variability in phytoplankton optical signals systematically.

2.3. Case Study Methods

The complex optical interactions of De f f and biomass, and the question of whether they can
be separated into a useable PFT signal from a background environment of further non-algal optical
complexity, is best addressed by investigating specific ecological events of interest to the remote
sensing community.

The case studies outlined in the Introduction consider phytoplankton from two groups—a Chl
a-carotenoid phytoplankton group, representing phytoplankton dominated by Chl a, and fucoxanthin
and/or peridinin; and a Chl a- and phycoerythrin-containing group [27]. The former group is
chosen as representative of a wide range of phytoplankton across size classes, and the latter for the
unique absorption characteristics of phycoerythrin-associated phytoplankton species. This selection
is intentionally kept limited in order to assess the relative magnitude of particle size- vs. accessory
pigment-related optical signals in likely ecological scenarios, in the context of changing biomass.

Refractive indices for the chloroplast spheres are derived from measurements of cells from
blooms in the Benguela—dinoflagellate and diatoms, dominated by Chl a and the carotenoid pigments
fucoxanthin and peridinin—as well as for a phycoerythrin-associated cryptophyte group (based on
a Mesodinium rubrum/Myrionecta rubra—dominated assemblage [27]). A justification for using these
derived refractive indices across wide size ranges of modelled phytoplankton assemblages is included
in Appendix A.1. Phytoplankton assemblages are modelled using a Standard Normal size distribution
with a nominal effective variance of 0.6, recognising that while Jungian (exponential) distributions
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are frequently used for bulk particulate in oceanic conditions, the former is more appropriate for
representing the increased species monospecifity associated with elevated biomass ([34]), and the case
studies refer mainly to biomass > 1 mg·m3. Assemblages are modelled with appropriate effective
diameters to represent the effective diameters of measured size distributions in the case studies.
The resulting IOPs are presented, with explanatory notes, in Appendix A.2. (A cyanobacterial group
with substantially altered geometry to represent vacuolated cells has also been developed [63]).

Phytoplankton IOPs are combined, in various proportions as indicated, with appropriate non-algal
optical constituents as detailed for each experiment. The phytoplankton-related optical signal is
assessed against variability in the non-algal contributions (detailed in Appendices A.3 and A.4),
so their absolute magnitude is not critical. Both agd(λ) and bbnap(λ) do, however, assume a smooth
spectral shape with predictable spectral structure. The potential for additional spectral features in
these contributions is not addressed here, and would add further complexity (and hence ambiguity) to
resolving phytoplankton scattering characteristics. Water types are considered homogenous with depth
(i.e., IOPs constant with depth), generic atmospheric and geographic conditions, and the full radiative
transfer solution is calculated by Hydrolight at a spectral resolution of 5 nm. Given the technical
challenges with using EAP phase functions for modelling high resolution spectra [35], a Fournier
Forand phase function chosen for the backscatter fraction of the combined particulate IOPs is used at
each wavelength throughout these experiments. A basic fluorescence efficiency model is included for
completeness (detailed in Appendix B.2), but modelling this spectral region accurately is challenging
and outside of the scope of this work, so the features of this spectral region are not discussed in terms
of PFT sensitivity.

2.3.1. Southern Ocean Case Study: Separating the Effects of Biomass From the Effects of De f f Change

As shown in Lain et al. [65] and Lain et al. [35], where the water-leaving signal is
phytoplankton-dominated (e.g., in the Benguela system), it is quite reasonable to expect that some PFT
information may be derived from the bulk radiometric signal. However, the challenge for the ocean
colour community is determining the PFT signal in low biomass oceanic conditions, for example in the
Southern Ocean.

Phytoplankton dynamics in the Southern Ocean are particularly important for their role in
uptake of anthropogenic CO2 (around half of all oceanic uptake), and hence carbon sequestration [3,4].
Variability in phytoplankton ecology is directly linked to mineral and nutrient cycles: assemblages
of large diatoms drive primary productivity and carbon export, while assemblages of small
phytoplankton play a significant role in nutrient recycling although the net productivity is very
low [73].

The third Southern Ocean Seasonal Cycle Experiment (SOSCEx III) undertaken on the SANAE
55 cruise (austral winter 2015) provides the phytoplankton size distribution and Chl a data for this
experiment [74]. Assemblage De f f were calculated from Coulter Counter measurements, and Chl
a determined by fluorometric analysis [5]. The additional agd(λ) and bbnap(λ) components were
estimated guided by observations in [75,76] respectively, noting that these are simply used to
approximate the bulk Rrs and do not influence any of the other results, as they are discussed in
terms of likely variability rather than absolute magnitudes. EAP phytoplankton IOPs with generalised
Chl a-carotenoid eukaryotic refractive indices were calculated according to the measured De f f and Chl
a concentrations, and were combined with these estimates and run through Hydrolight to produce the
modelled Rrs.

Given that the refractive indices used to model the EAP IOPs for this example are from the
generalised Chl a-carotenoid group suitable for diatom and dinoflagellate species, the likelihood of
encountering Phaeocystis sp. in the Southern Ocean must be addressed. Given the oceanographic
context, as the De f f of 16 µm is reached, it can reasonably be assumed that the assemblage comprises
both diatoms and Phaeocystis. The main accessory pigment in Phaeocystis is 19-hexanolyoxyfucoxanthin,
a derivative of fucoxanthin, a dominant light harvesting pigment in diatoms, and so it may be
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reasonable to model the intracellular absorption properties of individual cells with the generalised
eukaryote refractive indices, but this species forms large floating colonies which result in quite different
optical effects, and this cannot currently be addressed with the model. Thus, while the likely presence
of Phaeocystis is acknowledged, it is not explicitly catered for in the modelling. This does not affect the
observations on identifying changes in De f f in the discussion below.

2.3.2. Benguela-Like Case Study: Addressing Pigment Variability

The assemblages modelled in the first case study address optical changes due only to biomass
(i.e., concentration of Chl a pigment) and size (assemblage De f f ), as the same set of generalised
Chl a-carotenoid refractive indices is used for all phytoplankton particles represented. However, this
approach addresses only a small subset of important changes in phytoplankton assemblage type, and in
the presence of variability in dominant accessory pigments, the EAP model can be set to incorporate
different refractive indices as appropriate for phytoplankton displaying accessory pigments other
than carotenoids.

To illustrate the effects of pigment variability, this case study simulates a transition from a high
biomass Myrionecta rubra-dominated assemblage, to a high biomass peridinin (carotenoid)-containing
dinoflagellate-dominated assemblage. M. rubra is a fascinating but troublesome ciliate species,
and enjoys an endosymbiontic relationship with cryptophytes containing the diagnostic pigment
phycoerythrin [77], and so “borrows” their characteristic red colour. M. rubra blooms can reach
extraordinary biomass, resulting in darkly pigmented ’red tide’ waters that have negative impacts
both ecologically (depletion of nutrients, and the potential for anoxia as the bloom dies), as well as on
the recreational use of coastal waters [77]. Again, assemblages are modelled using a Standard normal
size distribution and the same values of ε are used as for the carotenoids. This ensures that, in this
example, all assemblage changes observed are due only to pigment-related differences.

It should be made clear that the modelled transition is not intended to represent a likely ecological
succession (except possibly a Lagrangian one, if a dinoflagellate bloom is advected into a previously
M. rubra-dominated region), but rather to test what biomass and pigment differences are required for
the detection of distinct optical conditions, particularly in the context of remote sensing.

2.3.3. Spectral Shape and Sensitivity Analyses

To test the sensitivity of the EAP model, a general allometric approximation of changing De f f
from 2 to 8 µm was chosen for this analysis, which ranges from 0.1 to 10 mg/m3. It is recognised that
this scenario does not represent all possible ecological changes, but is a reasonable approximation
for a mid-range biomass diatom and dinoflagellate-dominated environment where there may be a
detectable PFT signal.

3. Results and Discussion

3.1. Quantifying the Contribution of Phytoplankton to the Rrs Signal

Remembering that the Remote Sensing Reflectance (Rrs) is grossly proportional to bb/a [78],
it should be noted that, for a given De f f and phytoplankton group, bbφ/aφ will be constant
for any given concentration of Chl a because the package effect observed with increasing Chl a
concentration is implicit in the model (see the comparison of Bricaud and EAP a∗φ for varying Chl a
concentrations in Lain et al. [65]). However, the contribution of the phytoplankton IOPs to the total,
i.e., bbφ/aφ as a percentage of total bb/a, will vary. The EAP model, used together with Hydrolight,
allows the inspection of any component optical quantity of interest, and here, the contribution of the
phytoplankton IOPs to the total IOP budget is investigated. EAP phytoplankton IOPs are used with
Hydrolight to calculate a full radiative transfer solution resulting in a new theoretical quantity, Rrsφ.
This quantity is introduced as an approximate quantification of the phytoplankton contribution to the
bulk Rrs, in order to more intuitively understand the relative optical contributions in terms of remote
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sensing. While acknowledging that Rrs is not an additive quantity, Rrsφ is the calculation of reflectance
with only water and phytoplankton IOPs. It does not account for any optical interaction between the
phytoplankton and other in-water constituents likely to be present in natural waters, such as CDOM
or detrital and mineral particles. These interactions are assumed to be secondary to the contribution of
phytoplankton, but have not been quantified. It is anticipated that trans-spectral effects are most likely
to suffer from this type of subtractive approach, but a full photon tracing model (such as a Monte
Carlo model) would be needed to ascertain this. By modelling the phytoplankton contribution to the
water-leaving signal, we can assess the availability of signal for PFT retrieval.

Being able to identify the spectral regions sensitive to changes in phytoplankton assemblage
(focusing on those due to change in assemblage De f f ) is valuable, especially to identify spectral
regions which might be sufficiently independent from the ambiguity introduced by other in-water
constituents. This allows the quantification of the phytoplankton signal with confidence, even where
these other constituents are not well characterised. The spectral regions of maximum proportional
phytoplankton signal are the ones which hold potential for detecting PFT changes from an in-water
perspective, as these represent the regions of the largest phytoplankton-related signal variability as the
assemblage changes.

The resulting contribution of phytoplankton to the total Rrs is shown in Figure 1, for typical
Case 1 waters as a simple illustrative example. In this example, agd covaries with Chl a while bbnap is
constant. This represents the combined acdom, known to approximately covary with Chl a, and detrital
absorption adet, which is assumed to be small with respect to acdom [79] and approximately constant
(adet is neglected altogether in some IOP models e.g., Alvain et al. [9]). As CDOM does not scatter,
bbnap represents the scatter of only the detrital component of the non-algal constituents. Thus, it is
assumed that biomass increases together with acdom, against a relatively unchanging background
detrital population whose IOPs are dominated by backscatter. As the phytoplankton contribution to
the IOP budget increases (i.e., generally, as biomass increases), the impact of the other constituents is
proportionally less in the Rrs. This varies with De f f , and is observable in Figure 1 to a greater degree
in the Rrs with a smaller (nominal) De f f of 2 µm as compared with a larger (nominal) De f f of 12 µm to
show the higher level of phytoplankton backscatter of small cells contributing to brighter Rrs, which is
less sensitive to the addition of scattering from other sources.

For each De f f , it is evident that the phytoplankton percentage contribution to the bulk Rrs increases
with biomass. However, it can be seen that there is a dependency on De f f which, when considered
in the context of transitioning assemblages, is not straightforward. This observation indicates a
requirement to go beyond the Case 1/Case 2 water type distinction for PFT signal analysis and
applications: the differential in phytoplankton scatter as De f f varies in both water types must be
considered as well as variable bbnap in Case 2. When it comes to retrieving information about the
phytoplankton IOPs, their proportional contribution to the bulk water-leaving signal (or the total IOPs)
should be considered. Figure 2 demonstrates the proportional IOP contributions for the 0.1, 1 and
10 mg/m3 cases.

3.2. Case Study 1: Separating the Effects of Biomass from the Effects of De f f Change

Figure 3 presents two distinct events which illustrate the interdependency of the size and biomass
signals. Modelled Rrs are shown for selected adjacent stations (20 to 21 is marked A; 12 to 13 is marked
B) where a nominal threshold of change detectable by satellite is reached in the blue and green spectral
regions, in other words, where a change in Rrs would be evident on a satellite image. Given the
ambiguity in the causality of the phytoplankton signal, assessing the magnitude of changes to the
water-leaving signal as the in-water constituents vary will give an indication of whether there may
be enough radiometric signal at TOA to even detect the change. A threshold in situ measurement
resolution of 1 × 10−4 sr−1 [80] is taken as an indication of sensitivity to detecting change in Rrs by
direct measurement. Given an average estimated uncertainty in satellite Rrs of ± 0.6 × 10−3 sr−1

across the spectrum [81], here a conservative 1 × 10−3 sr−1 is used to indicate a potentially detectable



Appl. Sci. 2018, 8, 2681 11 of 34

change in water-leaving signal from satellite. These thresholds are not definitive and are used purely
for the purpose of contextualising the discussion. Both examples in Figure 3 display large changes in
Rrs, but these are causally distinct: (A) represents a large change in Chl a concentration and in De f f ,
while (B) represents a large change in Chl a concentration but a negligible change in De f f .

Figure 1. Relative contribution of phytoplankton to total Rrs (with agd(400) = 0.07 · [Chla]0.75,
and bbnap(550) = 0.005 m−1) for increasing biomass with De f f = 2 and 12 µm. These populations
are idealised examples and not intended to represent any observed relationship between Chl a
concentration and De f f .
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Figure 2. Example proportional phytoplankton to total Inherent Optical Property (IOP) contributions
for Case 1 waters, for idealised eukaryote assemblages of 2 and 12 µm.
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Figure 3. Modelled Rrs for stations 20, 21, 12 and 13 of SOSCEX III. The modelled bulk Rrs are calculated using Equivalent Algal Populations (EAP) generalised
Chl a-carotenoid refractive indices and measured Chl a concentrations for the phytoplankton component, and include estimated agd(λ) and bbnap(λ) contributions
appropriate for this region [75,76]. Stations 20 to 21 (A) represent a large change in both Chl a concentration and in De f f . Stations 12 to 13 (B) represent a large
change in Chl a concentration only. The centre panel shows the measured De f f for the cruise track (starting at the ice shelf on the bottom right and continuing in an
anticlockwise direction.) The effective diameter image is courtesy of SANAE 55 Report [74].
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Station 20 to 21 therefore represents a significant phytoplankton community shift, as large changes
in both De f f (from 6 to 16 µm) and Chl a concentration (from 1 to 11 /m3) were recorded. To isolate
this change in phytoplankton signal, the differences in Rrsφ for an assemblage with De f f = 6 µm
and an assemblage with De f f = 16 µm are presented in Figure 4A for the measured range of Chl a
concentration. Note that the large differences of about 2 × 10−3 sr−1 in Rrs in the blue, observable in
Figure 3A, only appears at very low biomass in Figure 4A as this difference in Rrs is almost entirely
due to the difference in biomass and not a change in De f f . The spectral location of the most promising
size-related signal for PFT retrieval is evidently dependent on biomass, and, at low biomass, it is
positioned near 435 nm, while, at higher biomass, it is around 570 nm. As this is the phytoplankton-only
signal, the question remains to what extent this signal is expressed in the bulk Rrs, when the optical
impact of the non-algal constituents is also considered.

Figure 4. Southern Ocean stations 20 to 21: δRrsφ is shown for δDe f f of 6 to 16 µm (A). The effect of
agd(λ) at 435 nm is shown in (B), and bbnap(λ) at 570 nm in (C). The units of the colour bars are sr−1.

Working with the change in phytoplankton size signal identified at 435 nm (bottom left corner,
Figure 4A), agd(λ) is added at increasing concentrations to simulate a range of bulk Rrs at 435 nm
in Figure 4B, and bbnap(λ) is likewise added incrementally at 570 nm in Figure 4C. In these plots,
horizontal gradients indicate Rrs sensitivity primarily to the constituent on the y axis, while vertical
gradients indicate that the change in Rrs is driven by the biomass, and is not sensitive to variability on
the y axis.

Figure 4B shows that the difference in bulk Rrs for the given δDe f f is only detectable at
the satellite threshold level (shown in yellow) at low biomass under very low agd(λ) conditions.
As biomass increases, increasing absorption by phytoplankton as well as by additional agd(λ),
reduces the magnitude of the water-leaving signal and renders any δDe f f information ambiguous.
When additionally considering the brightening effect of bbnap(λ) in the blue (not quantified here),
it can readily be perceived that the water-leaving signal is too complex at 435 nm to retrieve useful
size information.

In Figure 4C, the relationship with bbnap(λ) at 570 nm is more straightforward. Change in Rrs due
to δDe f f is detectable in the bulk Rrs at the satellite threshold (in red) from about 2.5 mg/m3 upwards
regardless of the bbnap(λ) contribution, at least for Case 1 type conditions. The magnitude of this signal
is almost entirely biomass driven. (This is in line with the observation made by [13] that the MODIS
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wavebands at 531 and 551 nm are good indicators of backscatter anomalies because their magnitude is
proportional to the addition or removal of particulate backscattering, and the longer wavelength band
at 551 nm is less affected by variability in both agd(λ) and phytoplankton absorption [10].)

It should be appreciated, though, that Rrsφ in these figures is representing the change in Rrs

due to size at a particular biomass (i.e., biomass is constant while assemblage characteristics vary),
effectively removing the effects of simultaneous biomass changes. Figure 5 simulates a transition from
6 to 16 De f f with biomass 1 to 11 mg/m3, where the intermediate values of both De f f and Chl a are
simply linearly interpolated. The vertical lines highlight 435 and 570 nm which were identified in
Figure 4A as being the spectral regions of greatest size-driven signal. In Figure 5, while biomass and
size effects combine to form large changes in Rrsφ in the blue, it is the smaller signal around 570 nm that
contains the most size-driven change as it is not affected by biomass to the same degree. Figure 4B,C
show that the signal at 435 nm is sensitive to the effects of variable agd, while the phytoplankton signal
at 570 nm remains robust against variability in the non-algal optical contributions.

Figure 5. A simulated transition from 6 to 16 De f f with biomass 1 to 11 mg/m3. Intermediate values of
De f f and Chl a are simply linearly interpolated. The lines highlight 435 nm and 570 nm, regions of
maximum size signal, which are (at 435 nm) and are not (at 570 nm) sensitive to the effects of additional
optical constituents.

By contrast, stations 12 to 13 exhibit a large change in Rrs—seen first in Figure 4B; shown again in
Figure 6A—with an increase in Chl a from 0.9 to 7.1 mg/m3 but only a very small change in De f f from
7 to 8 µm. This is likely, given the location in the lee of the South Sandwich Islands, to reflect a diatom
bloom associated with island wake effects, due to fertilisation by terrestrial iron [82]. Tracing the signal
due to this change in De f f across all Chl a concentrations in this range in Figure 6B shows that there is a
size related signal between 550 and 600 nm, but it is of an order of magnitude less than in the previous
example, and so does not show potential for detection by satellite radiometry. This is illustrated further
in the lower panel (C), showing the location of this signal but also that it is almost all attributable to
biomass—as shown by the Rrsφ representing De f f 7 at 7.1 mg/m3 i.e., what the higher biomass Rrs

would look like without the increase in effective diameter as the assemblage changes. It can be seen
quite clearly from these spectra that a difference in the blue due only to this δDe f f , with any variability
agd(λ), would not be detectable by any means.

It should be noted that the spectral locations of maximum δDe f f features are a direct consequence
of the spectral nature of the IOPs used in the modelling, and that both of these examples use
the same Chl a-carotenoid refractive indices to generate the phytoplankton IOPs. In other words,
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as phytoplankton IOPs are adjusted to represent pigment differences, the spectral character of the
assemblage change will vary. A slight migration in the exact location of the maximum available
δDe f f signal is observable with different ranges of De f f , although within the Chl a-carotenoid group it
remains between 550 and 600 nm for any difference in De f f between 1 and 40 µm. (This is discussed in
more detail later with respect to Figure 9, and an additional figure is shown in Appendix.)

Figure 6. Modelled Rrs for Stations 12 and 13 (A), with EAP eukaryote phytoplankton IOPs, and agd(λ)

and bbnap(λ) components estimated guided by observations in [75,76], respectively; (B) shows δRrsφ

for this large change in Chl a concentration (1 to 7 mg/m3) but a small δDe f f of 7–8 µm. The unit
of the colour bar is sr−1. Note that the results are one order of magnitude less than in the previous
example; (C) shows the negligible effect on Rrsφ of a change in De f f from 7 to 8 µm at the measured
Chl a concentrations.

3.3. Case Study 2: Addressing Pigment Variability

Both the phycoerythrin-containing and peridinin-containing assemblages are modelled here,
Figures 7 and 8) with De f f of 12 µm, so the simulated optical changes as the assemblage changes from
M. rubra-dominated to dinoflagellate-dominated are all due to differences in pigmentation, for any
given Chl a concentration. From the log-scale Rrs, it is evident that the pigment-related differences in
Rrs become larger as biomass increases. In the very high biomass blooms (≥30 mg·m−3) typical of the
Benguela system, it is known that M. Rubrum—containing assemblages are identifiable from MERIS
satellite imagery [83] due to the effects of the diagnostic phycoerythrin peak (at 565 nm) appearing in
the 560:520 nm band ratio.

An analogous study of the sensitivity of the maximum δRrsφ signal to non-algal constituents is
made at 570 nm for the pigment-driven feature appearing at high biomass (10 mg·m3, Figure 9).
The sensitivity of pigment-driven differences to non-algal effects is in contrast to the Southern
Ocean size example in that it is largely driven by variability in bbnap(λ). As biomass increases
past 10 mg·m3, the magnitude of the δRrsφ grows as bbnap(λ) increases, showing no impact at all of
biomass past 20 mg·m3. What this means is that while significant biomass is required to detect pigment
changes, past a certain upper biomass limit, the magnitude of the pigment differential signal grows
proportionally as Rrs is augmented by non-algal scatter.
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Figure 7. Benguela-like pigment-based experiment: Modelled Rrs shown for Chl a-carotenoid
pigmented assemblages (solid lines) and phycoerythrin containing assemblages (dotted lines) for
identical Chl a concentrations, at 0.1, 0.3, 3, 10 and 30 mg·m−3. There is no change in De f f ,
both are 12 µm. The non-algal optical constituents are modelled with agd(400) = 0.07 ∗ [Chla]0.75,
and bbnap(550) = 0.005 m−1.

Figure 8. δRrs shown for a change from a high biomass Myrionecta rubra-dominated assemblage, to a
high biomass peridinin (carotenoid)-containing dinoflagellate-dominated assemblage. There is no
change in De f f .

Absorption-based pigment differences are therefore sensitive to scattering variability unless
the biomass is very high, and this is particularly relevant in spectral regions affected by scattering
variability due to changes in De f f (Figure 4). Noting the log-scale Chl a axis of Figure 9, it can be
observed that while the respective magnitudes of the pigment-driven (De f f = 12 µm, Figure 9) and
size-driven (De f f from 6 to 16 µm, Figure 4) signals are comparable at the point that pigment differences
appear (i.e., 10 mg·m3), the size-driven feature is more sensitive at lower biomass—detectable at around
2 mg·m3 for the given change in De f f . This sensitivity will be affected by the size range in question and
also by pigment concentrations, but it can be inferred that, generally, where size changes of this range
(or larger) take place together with pigment changes, it is the size change that drives the variability
in the water-leaving signal, and changes in the reflectance due to a substantial change in De f f are
observable at lower biomass than those due to pigment changes.
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Figure 9. δRrs sensitivity to agd and bbnap at 570 nm, for a high biomass Myrionecta rubra-dominated
assemblage, to a high biomass peridinin (carotenoid)-containing dinoflagellate-dominated assemblage.

This applies equally to accessory pigments other than phycoerythrin absorbing in spectral regions
affected by phytoplankton scatter and/or by variability in non-algal scatter. This speaks to the
importance of both the magnitude of the change in bbφ(λ)/aφ(λ) and the proportional contribution of
bbφ(λ)/aφ(λ) to the total bb(λ)/a(λ) when evaluating the potential for accessing these signals from
Rrs (see Figure 2).

This result also implies that there are cases where the δDe f f signal is augmented by pigment
changes, for example when moving from small fucoxanthin- or peridinin-dominated cells to large
phycoerythrin-dominated cells, as the optical effect of reduction in backscatter around 560–570 nm
by large cells will be enhanced by additional pigment absorption in the δRrs signal. However,
there remains a complex optical relationship with biomass, and this effect needs to be properly
accounted for in order to accurately detect the augmented signal.

The EAP approach to pigments does not address the extent to which fine spectral resolution
accessory pigment absorption features persist in Rrs, nor their retrieval from hyperspectral radiometry.
The intention with the EAP model is to demonstrate the dependence on biomass to retrieve absorption
features, and the inherent signal ambiguity as the contrasting optical effects of bbφ(λ) and aφ(λ)

interact to form the phytoplankton signal within the Rrs. It is worth noting that hyperspectral
radiometry will not overcome the inherent signal-related constraints identified in this study.

3.4. Radiometric Sensitivity of EAP Size-Based PFT Detection—Magnitude of δRrsφ

Having established that at low biomass the PFT signal in the blue is easily overwhelmed by
the effects of agd(λ) and bbnap(λ), and that pigment effects are generally secondary to those of δDe f f ,
the PFT signal due to phytoplankton scattering in the 500 to 600 nm region can be evaluated for
sensitivity in terms of changes in De f f and biomass. To this end, the EAP model is again coupled with
Hydrolight to simulate expected variability in Rrs due to changes in De f f with the aim of evaluating
the sensitivity of the model.

Figure 10A demonstrates how the combined effects of biomass and De f f interact to form the
maximum available δRrsφ signal at low biomass and small size ranges. The figure shows that this
maximum lies between 520 and 570 nm—the exact wavelength varies with both size difference and
biomass. The shifting position of maximum δRrsφ is shown in Figure 10B. Increasing biomass improves
the ability to trace the size-related effects, and a De f f change from 2 µm up to at least 8 µm is not
detectable at the threshold in oceanic conditions with Chl a < 1 mg/m3.
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Figure 10. Maximum δRrsφ for δDe f f from a starting assemblage with De f f 2 µm, as Chl a varies
(A). Note that the δRrsφ occurs at different wavelengths from 500 to 600 nm (B), and this shows the
maximum signal, so there is no exact wavelength information in (A). Using a difference of 1 × 10−3

sr−1 as a threshold for detection by satellite, it can be seen that, while the maximum size change here (2
to 8 µm) is not detectable with Chl a < 1 mg/m3, by 10 mg/m3, even a small change in De f f results in
a detectable change in Rrs.

Using 1 × 10−3 sr−1 as a threshold for detection by satellite, it can be seen that an ecologically
significant shift in De f f from 2 or 3 to 6 µm, such as at the onset of an oceanic bloom, looks potentially
detectable from about 2 mg/m3. By 10 mg/m3, even a small change in De f f results in a detectable
change in Rrsφ, but, as biomass falls below this, the change in De f f must be increasingly large to be
detected. This is consistent with inversion studies of EAP sensitivity [37]. Note that this experiment
addresses only the phytoplankton-related signal, and that when attempting to identify these signals in
the bulk Rrs, it is necessary to consider the sensitivity of the phytoplankton signal to the optical effects
of the non-algal constituents. These results can be considered to show the minimum threshold for
potential detection i.e., the signal is further ambiguated by non-algal optics in a real-world context.

The spectrally shifting nature of the δRrsφ signal for oceanic PFT applications provides a strong
case for hyperspectral sensors in the 520 to 570 nm wavelength region. The extent to which the δRrsφ

signal persists in fixed waveband ratios is investigated in the next section on shape sensitivity.

3.5. Spectral Shape Sensitivity of EAP Size-Based PFT Detection

To further test the sensitivity of the EAP model and the causal IOP variability in terms of
identifiable changes in spectral shape from a multi-spectral perspective, Rrsφ ratios for 440:560 nm
(blue:green), 560:665 nm (green:red) and 665:710 nm (red:NIR) wavelengths were calculated for a range
of De f f and biomass.

These are shown in Figure 11, representing corresponding changes in the Rrsφ and in the
phytoplankton backscattering, for these wavelength pairs. The B:G Rrsφ ratio shows a strong biomass
dependency and a small sensitivity to size at large sizes, for 0.5 ≤ Chl a ≤ 4.5 mg/m3. The R:NIR ratio
shows some sensitivity to larger sizes from about 3 mg/m3, but this decreases as biomass increases.
The G:R ratio shows a significant size-related feature for small sizes (≤ 6 µm) from biomass of about 2
mg/m3 upwards (encircled in Figure 10). This is where a peak in the corresponding bbφ ratio appears,
suggesting that the large change in magnitude of the Chl a-specific backscatter b∗b φ between small De f f
(Figure 12) is directly responsible for the sensitivity in the Rrsφ G:R ratio seen in Figure 11.
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Figure 11. Rrsφ ratios for blue:green, green:red and red:NIR (Near Infra-Red) wavelengths as shown,
for Chl a concentrations of 0.1 to 20 mg/m3 and De f f 1 to 40 µm. The B/G ratio shows a strong biomass
dependency and a small sensitivity to size at large sizes, for 0.5 ≤ Chl a ≤ 4.5 mg/m3. The bbφ ratios all
display a strong size signal at 2–4 µm, and the G/R ratio shows a corresponding size-related feature.

This is an important finding. There is a marked size dependency in all of the b∗b φ ratios, with the
greatest rate of change somewhere between De f f 2 and 8 µm, but it is only in the case of the G:R ratio
that the magnitude of the backscatter is sufficient for this signal to be identifiable in the Rrsφ. Given that
the radiometric signal in the blue is greatly reduced by large phytoplankton absorption and agd, and the
red and NIR wavelengths are similarly affected by the absorption of water, it can be concluded that
the main driver of the useable PFT signal in the green and red is phytoplankton backscatter.

Figure 13 shows the rapid increase in the proportional contribution of phytoplankton to total
backscatter at 560 and 665 nm. It is known that, for typical diatom/dinoflagellate assemblages, the
560 nm region is more influenced by backscatter than by absorption. The fact that the magnitude of the
total backscatter is much lower at 665 than at 560 nm, together with the strong absorption by water in
this region, result in a small useable Rrs signal. A contribution of approximately 40% of phytoplankton
to total bb at 560 nm corresponds with the limits of detectable δRrsφ (see Figure 2), indicating that
this is the proportion at which phytoplankton backscatter starts driving the total water-leaving signal
around 560 nm. Consequently, this is the minimum contribution for which some δDe f f information
may be known. For an oceanic bloom example δDe f f from 2–6 µm, this threshold contribution is
reached at about 2 mg/m3, while to detect an example δDe f f of 10 to 20 µm in a eukaryotic succession,
extremely high biomass is required. The mid-range biomass sensitivity demonstrated here presents
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opportunities for identifying higher resolution size classes than the 2 to 20 µm and >20 µm categories
currently frequently employed [6,8,10,84]. The ability to achieve better resolution within the 2–20 µm
size class is particularly desirable for marine ecosystem modelling [6].

Figure 12. b∗b φ shown for De f f 1 to 10 µm. The largest differences in backscatter across the spectrum
occur between 1 and 4 µm, with the exception of the overlapping of b∗b φ in the red and NIR.

Figure 13. Percentage contribution of phytoplankton to total backscatter (including water, and with
nominal bbnap(550) = 0.005), shown for De f f 1 to 40 µm and Chl a from 0.1 to 20 mg/m3, at 440, 560
and 665 nm.

3.6. Considering Uncertainties

Particularly when considering δRrs retrievals from satellite, it is important and necessary to
contextualise the magnitude of the PFT signal with respect to uncertainties on the satellite radiometry. A
brief study on model and associated radiometric uncertainty is available in Appendix D. An important
observation is that, while the 500 to 600 nm region of the promising PFT signal may be mostly
insensitive to the effects of non-algal constituents, it is also where variability in Rrs due to the
different approaches to phytoplankton phase functions is important, emphasising the critical role of
phytoplankton scatter in this signal.

4. Conclusions

The distinct causal optical effects of variations in phytoplankton biomass, mean assemblage size,
pigment-related spectral variability and non-algal constituents are not easily identified, with substantial
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interdependency and spectral ambiguity. Consistent with previous studies [37,39], it can be seen here
that ambiguity is critical in attempting to resolve the phytoplankton community structure signals.

The case studies illustrate how most of the Rrs signal that is due to phytoplankton is driven by
biomass, an expected result. This concept underpins, after all, the primary missions of most ocean
colour sensors: resolving variability in phytoplankton biomass. The study shows that quantitative
consideration of the constraints of biomass and the phytoplankton contribution to the total IOP budget
is required when addressing the PFT question.

The key findings include the assertions that most of the absorption driven phytoplankton signal
in Rrs in the blue is too ambiguous to use, and that the most useful PFT signal is caused by spectral
backscatter. Furthermore, the ability to assess the PFT signal against non-algal optical contributions is
largely driven by biomass and the IOP budget.

Overall, spectral scattering properties of natural waters are not well characterised [85,86],
and phytoplankton spectral backscattering characteristics are underexploited in terms of their impact
on the water-leaving signal. The importance of better representing the angular and spectrally variable
nature of phytoplankton scattering has been established [35], and it is clear that phytoplankton
backscatter is at the heart of the PFT question.

The size-related PFT signal is driven by phytoplankton scattering, and spectral regions where
scattering is at its most sensitive to De f f show the most potential for PFT detection from the total
water-leaving signal. There is most sensitivity to size-related changes in bbφ in the 1–6 µm size
range. Phytoplankton size-related features, most likely driven by phytoplankton absorption variablity,
appear in Rrs around 430 nm at low biomass, and scattering-driven size-related features in the 520
to 570 nm spectral region at elevated biomass. The water-leaving signal in the blue spectral region
is highly complex and ambiguous, being the result of varied and contrasting effects of absorbing
and scattering characteristics of both algal and non-algal in-water constituents. Consequently, the
size-related signal appearing in low biomass waters (<1 mg/m3) may be useful only when agd(λ) and
bbnap(λ) are exactly known. Accessory pigment absorption features that persist in Rrs in low biomass
suffer from the same vulnerability to uncertainty in the non-algal constituents. Satellite measurement
uncertainty and agd(λ) retrievals may in future be improved (e.g., with the use of radiometry in the
UV), but, given current uncertainties, achieving sufficiently accurate satellite estimates of the non-algal
optical components is unlikely for this purpose.

This finding exposes a vulnerability in historical approaches to phytoplankton identification
and quantification based on the features of phytoplankton absorption characteristics in the blue.
Satellite PFT methods using this approach all suffer from this shortcoming where assemblage-related
variability is secondary to biomass effects, and where phytoplankton relationships with agd(λ) and
bbnap(λ) are not precisely known. These approaches additionally rely on implicit relationships between
Chl a and De f f which may not always hold. This work shows that, at low biomass (< 1 mg·m3),
where Rrs is absorption-dominated, it is unlikely that there is sufficient size- or pigment-driven PFT
signal to be retrieved from satellite radiometry without making these assumptions. (Phytoplankton
whose prominent absorption features are at longer wavelengths, such as phycocyanin-containing
cyanobacteria, present a different case). Isolating variability in Rrsφ as De f f and biomass vary shows
that an example oceanic bloom δDe f f from 2 to 6 µm is only detectable at the satellite measurement
threshold of 1 × 10−3 sr−1 when the biomass reaches about 2 mg/m3 (Figure 10A).

Consequently, it is the size-related backscatter-driven signal in the 500 to 570 nm region,
appearing at substantial biomass, that is the most useful for PFT identification from satellite radiometry
as it is sufficiently insensitive to reasonable variability in both agd(λ) and bbnap(λ) (when composed of
small particles) (Figure 4). Variability in scatter due to non-algal particulate in the same size range
as phytoplankton will likely ambiguate the distinctive spectral scatter of PFT changes, and this has
not yet been tested. The location of the maximum δRrsφ size feature shifts between 520 and 570 nm
(Figure 10B), suggesting strongly that hyperspectral data in this region would add greater capability
here. Further analysis is needed to quantify the potential advantages of hyper- over multi-spectral



Appl. Sci. 2018, 8, 2681 23 of 34

data with respect to this shifting maximum signal, and also with respect to the reduced SNR implicit
in narrow waveband measurements.

Understanding the proportional phytoplankton contribution to the total IOP budget and the
resulting water-leaving signal is central to the determination of sufficient phytoplankton-driven signal
containing PFT information. The proportional ’net’ contribution of phytoplankton i.e., bbφ/aφ as a
percentage of total bb/a, has been identified as the driver of PFT sensitivity in the Rrs. Given the
detectable differences in Rrs as size and biomass change, a proportional phytoplankton contribution of
approximately 40% to the total bb appears to a reasonable minimum threshold in terms of yielding
a detectable optical change. The proportional contribution always varies with the non-algal optical
constituents agd(λ) and bnap(λ).

Despite the many sources of model uncertainty and the requirement for model validation in
specific regions, these results indicate the necessity of approaching PFTs from a strongly biophysical
perspective. There is a great need for better characterisation of phytoplankton community structure
and improved handling of the complex spectral and angular nature of phytoplankton scattering.

The EAP model code in Matlab R2018a (The Mathworks Inc., Natick, Mass, United States) or
in Python 3.7, as well as the Fortran routine for Hydrolight allowing the choice of discretised EAP
phase function based on wavelength rather than backscatter fraction (see Appendix D: Uncertainties),
are freely available to the community. Please contact the corresponding author.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/12/
2681/s1, Visualisation Tool: Interactive visualisation of spectral Rrs with assemblage De f f shown for 2–20 µm,
with user-controlled Chl a concentration, agd(400) and bbnap(550).
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Appendix A. Phytoplankton Assemblage Variability in the EAP Model

The successful validation of the model in very high biomass Benguela conditions [65] gives
confidence in the representation of the phytoplankton component of the water-leaving signal, as it is
known that, in these cases, the Rrs is overwhelmingly dominated by phytoplankton. It is concluded
in Lain et al. [65] that it is the EAP’s detailed handling of phytoplankton spectral backscatter that
sets it apart from other IOP models. The core mathematics of the model are fully described in
Bernard et al. [27]. A detailed study of EAP phytoplankton angular scattering and phase functions is
available in Lain et al. [35].

Appendix A.1. Justification for Using Measurement-Derived Refractive Indices across Wide Size Ranges

The main light-harvesting pigments in typical diatom and dinoflagellate assemblages (fucoxanthin
and peridinin, respectively)—while chemotaxonomically distinct—display the typical broad,
featureless absorption spectra characteristic of carotenoids, with peaks centered around 500 nm [87] and
vary well within the natural variability of phytoplankton absorption (Figure A1). They consequently
have similar refractive indices [27] and so these types were combined into a generalised set of
diatom/dinoflagellate IOPs, as no significant difference was found between the dinoflagellate and
diatom groups in terms of their optics that could not be attributed to the respective particle sizes (see
also [38,88]). This group of IOPs should correctly be referred to as Chl a-carotenoid IOPs.

http://www.mdpi.com/2076-3417/8/12/2681/s1
http://www.mdpi.com/2076-3417/8/12/2681/s1
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Figure A1. Pigment absorption spectra from Bricaud et al. [87], reprinted with permission from the
American Geophysical Union. The broad featureless absorption spectra of fucoxanthin and peridinin
peaking at around 500 nm are shown by the thin and thick brown lines, respectively.

While the measurements and refractive index derivations [89] were performed for cells of
approximately 12 to 20 µm, it should be made clear that the imaginary refractive index characterises the
absorption of the intracellular material and has absolutely no dependency on cell size. It can be inferred
therefore that these refractive indices can be used to represent a range of phytoplankton sizes displaying
dominant Chl a and carotenoid pigments. Southern Ocean nanophytoplankton comprise mainly
diatoms and dinoflagellates, but also chlorophytes and haptophytes in smaller proportions [90,91].
The latter two phytoplankton groups are generally dominated by Chl a and the fucoxanthin pigment
derivatives 19’-hex-fucoxanthin and 19’-but-fucoxanthin [91], which display somewhat elevated
absorption peaks located at slightly shorter wavelengths with respect to fucoxanthin [87,92]. The optical
influence of these derivative pigments is assumed to be negligible in the context of the case studies for
two reasons. Firstly, in the nanophytoplankton group as a whole, the fucoxanthin-derived pigments
occur in far lesser concentrations than that of fucoxanthin itself [91], which is represented by the
refractive indices. This is reinforced by the derivation of a nanophytoplankton group of refractive
indices in non-bloom conditions (De f f = 2 µm), whose impact on the IOPs of small cells was not
sufficiently different from the diatom-dinoflagellate group to warrant its routine use for small cells.
Secondly, these pigments act to increase phytoplankton absorption around the 450 nm spectral region,
identified the spectral region as very vulnerable to small variability in agd, and to large satellite Rrs

measurement uncertainty, so the conclusions regarding the spectral regions containing the most useful
signatures for PFT detection still hold.

EAP sensitivity testing has indicated that increasing the intracellular Chl a density Ci may be
appropriate for small cells, but this is not explored here.
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Appendix A.2. EAP Phytoplankton IOPss

Phytoplankton-specific IOPs are presented in Figures A5 and A6 for generalised Chl a-carotenoid
assemblages and for phycoerythrin-containing assemblages, respectively.

Figure A2. EAP Eukaryote Chl a-carotenoid-dominated IOPs for a range of assemblage De f f .

Figure A3. EAP Phycoerythrin-containing IOPs (based on Myrionecta Rubra), used for
cryptophyte-dominated assemblages in the Benguela, and Synechococcus sp. in the Southern Ocean.

Appendix A.3. EAP agd(λ) Parameterisation

A simple exponential combined gelbstoff and detrital absorption term agd(λ) [93,94] is used as a
representative of commonly occurring conditions in the Benguela:

agd(λ) = agd(400) exp[−S(λ− 400)]. (A1)

The exponential slope factor S is given a constant value of 0.012 [95]. This value, derived for the
Benguela system, is not adjusted for the agd(λ) term used in the Southern Ocean Case Studies. This is
acknowledged as a source of uncertainty, but supporting literature suggests that values in the range
0.0140 ± 0.0032 nm−1 cater adequately for a variety of water types [93].

An observed relationship of

agd(400) = 0.0904 log[Chla] + 0.1287 (A2)
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from measurements in the Benguela is used to scale the gelbstof/detrital exponential term, and agd(750)
onwards is assumed to be zero. This parameterisation was derived for high biomass environments.
At very low biomass (< 1 mg/m3), the log[Chla] term becomes negative, and so, for the Southern
Ocean case studies, this parameterisation was amended to

agd(400) = 0.07 · [Chla]
0.75 (A3)

following Alvain et al. [21], noting that the referenced parameterisation is for 440 nm and not 400,
but also that the agd term is used as an approximate measure of total signal sensitivity, and so, in this
sense, an absolutely accurate term is not a requirement.

Appendix A.4. EAP bbnap(λ) Parameterisation

Non-algal backscattering is modelled after Roesler and Perry [96] who describe a small particle
backscattering term represented by a power law relationship (their bbs, referred to as bbnap in the EAP
model). It has a constant spectral shape dependent only on wavelength, but variable in magnitude.

bbnap(λ) = λ−1.2. (A4)

This is then adjusted to a selected value of bbnap(550), as detailed in the text.
Small particle (non-algal) scatter bnap is approximated as 50 times the bbnap in the Benguela

examples and as 100 times the bbnap in the Southern Ocean examples. This yields a non-algal particulate
backscattering probability (b̃bnap) of 0.02 (2%) and 0.01 (1%), respectively. This is assumed to be
reasonable given that it has been shown that the total particulate backscattering probability b̃b varies
in the range 1.2 to 3.2 % in coastal waters dominated by non-algal particles (i.e., Case 2) [97], and that
generally accepted values for b̃b in Case 1 waters is around 1% [98].

Keeping the non-phytoplankton backscattering constant with Chl a results in a dependent but
nonlinear relationship, resulting in an overall b̃b that decreases as Chl a increases (Figure A4), noting the
spectral variability of small phytoplankton at elevated biomass.

Figure A4. Bulk backscatter ratio shown for De f f 2 and 12 µm, with nominal bbnap(550) = 0.01 m−1

and bnap as 50 times the bbnap, as for a coastal environment, shown for Chl a of 0.5, 1.0 and 2.0 mg/m3.
The elevated backscatter ratio of coastal environments with respect to the Southern Ocean (where bnap

is modelled as 100 times the bbnap) is attributed to the contribution of terrestrial mineral particles with
a high refractive index [66,99].
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Appendix B. Measurements and Modelling Parameters

Appendix B.1. Chl a

Chl a measurements are made using a Turner 10-AU Fluorometer (Turner Designs, San Jose, CA,
USA), following Holm-Hansen et al. [100].

Appendix B.2. Model Parameters Used for Hydrolight-Ecolights

For most of the experiments, Ecolight’s 2-component IOP model was used to generate Rrs(λ).
The “clearest natural water” IOPs were selected for Component 1 (water). IOPs for component 2
(everything else) were precomputed in Matlab from the EAP phytoplankton IOPs and additional
agd(λ) and bbnap(λ) contributions as required.

Fluorescence quantum efficiency φ was approximated by Chl a concentration:

<10 mg/m3 = 1%
10–50 mg/m3 = 0.6%
50–100 mg/m3 = 0.2%
>100 mg/m3 = 0.1%.

These values are based on MODIS φsat climatologies [101], and measurements [102] to characterise
the reduction in φ as eutrophication increases.

A constant set of generalised atmospheric conditions was selected for all experiments. An annual
average for solar irradiance and a solar zenith of 30◦ was used in lieu of time and location.

Appendix C. Position of Maximum δRrsφ

Further to Figure 9B in the main text, Figure A5 shows the position of maximum δRrsφ for
assemblage changes from 8 µm and 14 µm, respectively, for Chl a concentrations between 10 and
20 mg/m3. It can be seen that, at these high biomass concentrations, there is no spectral migration of the
maximum δRrsφ with biomass, and that once the maximum δRrsφ signal reaches 570 nm, its location
does not change with increasing De f f for biomass up to 20 mg/m3. This has been tested up to 40 µm
(not shown).

Figure A5. Spectral position of maximum δRrsφ for assemblage changes from 8 µm and 14 µm,
respectively

Appendix D. Uncertaintiess

Uncertainties in satellite radiometry are given in the main text, and model error in terms of
uncertainty/variability in the phase function is described fully in [35]. There are many additional
sources of uncertainty in the model (non-sphericity of phytoplankton, approximations in size



Appl. Sci. 2018, 8, 2681 28 of 34

distribution, Chlorophyll a density, to name a few), and further work is needed to quantify them
appropriately. For demonstrative purposes here, given that any retrieval of size properties would be
performed with the model itself, the model uncertainty is constrained to just that of the phase function
variability, as this has a size implication in itself, as shown in [35].

In Figure A6, the model uncertainty is shown for Rrsφ against a background of total Rrs with
nominal additional agd(λ) and bnap(λ), together with the satellite Rrs measurement uncertainty.
Despite the small model uncertainty on the phytoplanton signal in the blue, the huge impact of
additional agd(λ) and the large satellite radiometric uncertainty clearly show the large degree of
ambiguity and potential error in the retrieval of the phytoplankton component, even if the agd(λ) is
exactly known. Satellite-derived agd(λ) (and CDOM) products have large uncertainties: r2 of less than
0.25 for three different agd(λ) algorithms against in situ data [16]—noting that dependence on the
atmospheric correction means that a significant level of error is propagated through the algorithms
from this source, particularly in the blue.

Figure A6. Total Rrs with satellite measurement uncertainties in the blue and red bands from [16] and
linearly interpolated between them. An indication of model uncertainty on the Rrsφ is calculated by
the spectral differences resulting from the use of a combined bbp(λ)-specific Fournier Forand phase
function independent of wavelength, vs. wavelength- and bbφ(λ)-dependent EAP phase functions.

The most significant spectral regions of Figure A6 in the context of this study are those where
the uncertainty on Rrsφ overlap with the bulk satellite Rrs measurement uncertainty in each example.
These are the spectral regions where the phytoplankton-specific signal dominates the bulk signal to
the point that they are arguably indistinguishable, so these regions are particularly promising in terms
of PFT detection from the bulk Rrs. It is also encouraging to note that the regions of maximum δDe f f
previously identified fall within these regions, meaning that particularly close to 570 nm, the bulk signal
not only closely reflects the causal phytoplankton signal but is also not very sensitive to reasonable
variability in agd(λ) and bnap(λ). However, it is an important consideration that these are also regions
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of large uncertainty in the size signal, and that, as De f f increases, the Rrs expression of reduced
phytoplankton scatter becomes more vulnerable to variable bnap(λ).

At low biomass, the phytoplankton signal falls well outside of the bulk measurement uncertainty,
but the question of whether phytoplankton IOPs could be retrieved from the bulk depends on the
resulting proportional contribution to the total. With reduced bbφ/aφ, even small variability in the
non-algal contribution to bb/a results in signal ambiguity. In this case, the additional agd(λ) and
bnap(λ) contributions need to be exactly known, in order to be able to retrieve any PFT information.

It can also be observed in Figure A6 that the magnitude of model uncertainty is less, and the
proportional contribution of phytoplankton to the bulk IOPs is greater, at wavelengths slightly shorter
than those of the maximum δDe f f in the case studies. Thus, the spectral location of the largest
observable δDe f f signal may not necessarily be the most revealing of PFT discrimination in terms of
the associated uncertainties. A sophisticated uncertainty model would be necessary to calculate the
respective advantages of reduced contribution uncertainties on a smaller signal vs. slightly larger
uncertainties on a larger workable signal. It is also worth considering that, even where the bulk and
Rrsφ signals are distinct, there are spectral regions where they are parallel i.e., maintain the same
shape. It can be concluded that the phytoplankton contribution determines the spectral shape in these
regions—although the uncertainty associated with a smooth bbnap(λ) curve is also not quantified here.
This information could potentially be exploited to investigate PFT signal from the bulk Rrs.

Further work on incorporating EAP phase functions into Hydrolight has enabled the Rrsφ

presented here to include the fluorescence term, and this is also a spectral region of a large proportional
phytoplankton contribution together with small model uncertainty as calculated by the difference in
approach to scattering phase functions. This region (around 685 nm) appears in the maximum δRrs

plots from the case studies, but has not been discussed as confidence in modelling this spectral region
accurately needs to be improved with respect to natural variability in a fluorescence quantum yield
and phytoplankton response to the light environment. However, it is known that this region holds
further useful information on phytoplankton health [103] as well as size.

Overall, the uncertainties in both measured and modelled quantities should be considered in
terms of the proportional contribution by phytoplankton. The highest proportional phytoplankton
contribution to the bulk optics, and therefore the most promising signal for PFTs, occurs where
elevated scatter due to biomass is complemented by the elevated scatter of small phytoplankton cells.
Approaches to modelling the phase functions result in an inherent ambiguity of about 4 µm at very
high biomass, but this drops with biomass and as De f f increases.
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102. Ostrowska, M.; Woźniak, B.; Dera, J. Modelled quantum yields and energy efficiency of fluorescence
photosynthesis and heat production by phytoplankton in the World Ocean. Oceanologia 2012, 54, 565–610.
[CrossRef]

103. Greene, R.M.; Geider, R.J.; Kolber, Z.; Falkowski, P.G. Iron-induced changes in light harvesting and
photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol. 1992, 100, 565–575.
[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4319/lo.1989.34.8.1510
http://dx.doi.org/10.2989/025776198784126944
http://dx.doi.org/10.1029/95JC00455
http://dx.doi.org/10.1364/AO.45.003605
http://www.ncbi.nlm.nih.gov/pubmed/16708107
http://dx.doi.org/10.1029/2000JC000404
http://dx.doi.org/10.1029/2002JC001514
http://dx.doi.org/10.1093/icesjms/30.1.3
http://dx.doi.org/10.5194/bg-6-779-2009
http://dx.doi.org/10.5697/oc.54-4.565
http://dx.doi.org/10.1104/pp.100.2.565
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods: Modelling Approach
	The Requirement for a Biophysically Consistent PFT Optical Model
	Equivalent Algal Populations Model: Principal Attributes
	Case Study Methods
	Southern Ocean Case Study: Separating the Effects of Biomass From the Effects of Deff Change
	Benguela-Like Case Study: Addressing Pigment Variability
	Spectral Shape and Sensitivity Analyses


	Results and Discussion
	Quantifying the Contribution of Phytoplankton to the Rrs Signal
	Case Study 1: Separating the Effects of Biomass from the Effects of Deff Change
	Case Study 2: Addressing Pigment Variability
	Radiometric Sensitivity of EAP Size-Based PFT Detection—Magnitude of Rrs
	Spectral Shape Sensitivity of EAP Size-Based PFT Detection
	Considering Uncertainties

	Conclusions
	Phytoplankton Assemblage Variability in the EAP Model
	Justification for Using Measurement-Derived Refractive Indices across Wide Size Ranges
	EAP Phytoplankton IOPss
	EAP agd() Parameterisation
	EAP bbnap() Parameterisation

	Measurements and Modelling Parameters
	Chl a
	Model Parameters Used for Hydrolight-Ecolights

	Position of Maximum Rrs
	Uncertaintiess
	References

