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Abstract: Strong electrical dipole resonance (ER) with high quality-factor (Q) (over several thousands)
in a simple silicon all-dielectric rod arrays without asymmetric structure is achieved in the near
infrared (NIR) wavelength range. According to numerical simulations, strong high order ER is excited
by vertical incident plane waves with electric fields polarized perpendicular to the rod instead of
parallel. The electric field coupling between adjacent rods is greatly enhanced by increasing the
length of the rods, and the radiative loss of the ER is significantly depressed, thus achieving high
Q resonances. In the meantime, the electric field enhancement both inside and surrounding the
rod are greatly improved, which is conducive to many applications. The proposed all-dielectric
metasurface is simple, low loss, Complementary Metal Oxide Semiconductor (CMOS) compatible,
and can be applied in many fields, such as sensing, narrowband filters, optical modulations,
and nonlinear interactions.
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1. Introduction

High quality-factor (Q) resonance in metamaterials or metasurfaces is desirable for various
applications of ultra-high sensitive sensing, narrowband filtering, modulation and nonlinear
interactions [1–7]. The realization of high Q value remains a big challenge due to the substantial losses
of metasurfaces in the terahertz, infrared, and optical frequency regimes. The loss in metasurfaces
includes both the ohmic loss of the material and the radiative loss of the resonance. For plasmonic
metasurfaces, besides the ohmic loss inherent to metals, especially in optical regime, the radiation
resistance is usually high due to the surface resonance leading to inevitable leaking of resonant energy
into free space [8–10]. Although metasurfaces with a symmetry broken structure can effectively reduce
the radiative loss of Fano resonance, not only the Q factor achieved is limited to the order of 100,
but also the resonance is very weak even in the lower THz regime where the ohmic loss can be
negligible [8–17]. In the optical band, the Q value of the Fano resonance is limited to ~10 due to ohmic
damping [18].

Comparing with metallic nanostructures, all-dielectric resonators possess the advantages of
low radiative losses due to relative large resonance volume and low absorption loss because of
the eliminated metallic loss [4,19], which implies that strong and high Q resonance is possible.
Owing to effective light confinement, dielectrics with high permittivity can generate magnetic
dipoles, electric dipoles and higher order dipoles due to Mie resonances in the microwave, terahertz,
and optical wavelengths [20–31]. In addition to the powerful applications of all-dielectric metasurface
in manipulating light phase and polarization [32–34], high Q resonance and its applications is also
an interesting research topic. As Fano resonant systems used in its metallic counterpart, strong EIT-like
or Fano resonances with Q value over thousands have been numerically presented in all-dielectric
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metasurfaces consisting of asymmetric rods and rings [5,6,35–37], and experimentally reachable of
~600 in the near-IR wavelength range [6,35]. And strong field enhancement either inside the dielectric
resonators or in SRR gaps accompany with high Q, which is useful for nonlinear interaction [7,38]
or sensing applications [6,36,37]. High Q resonance can also be expected in a simple rod arrays with
high permittivity (ε ≥ 60) dielectrics at microwave frequencies [4], however, as the permittivity of
dielectrics such as commonly used silicon decreases to around 13 in the optical range, high Q over
~100 for electrical resonance (ER) or magnetic response (MR) in a simple silicon metasurface without
asymmetric structure has not been reported yet, to the best of our knowledge.

In this paper, we have numerically demonstrated that strong ER with high Q value over thousands
can be achieved in a simple all-dielectric silicon rod arrays without asymmetric structure. The electric
field coupling between adjacent rods is greatly enhanced by increasing the length of the rods, thus the
radiative loss of the ER is significantly depressed, and high Q value over several thousands is achieved.
At same time, the electric field enhancement both inside and surrounding the rod is greatly improved.

2. Simple Silicon Rod Arrays with High Q Resonance

The structure of the all-dielectric metasurface is shown in Figure 1a, where a silicon rectangular
rod array (n = 3.45) is deposited on top of a semi-infinite quartz substrate (n = 1.46). And it
can be easily fabricated by plasma-enhanced chemical vapor deposition (PECVD), electron-beam
lithography, residual resist etching and lift-off process [6,35]. Unlike most previously reported rod-type
all-dielectric metasurfaces, where normal incident light polarized along the rods is used to excite
a broad ER [5,6,36,37,39], in this paper, the electric field of the incident wave is polarized perpendicular
to the rods (i.e., in x-axis). Numerical simulations are conducted using the commercial CST software
(CST Studio Suite 2014, CST company, Darmstadt, Germany) at frequency-domain, and periodic
boundary conditions are utilized both in x and y directions and open boundary condition are used in
the wave propagating direction of z. The lattice periods in the x and y direction are fixed as Px = 800 nm
and Py = 900 nm, respectively.
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Figure 1b shows the simulated transmission spectrum. Two strong and clear dips are observed 
in the wavelength range of 1100 nm to 1400 nm. To interpret the origin of these two resonance dips, 
the field distribution inside the silicon rod are calculated and illustrated in Figure 2. For the broad 
resonance at shorter wavelength of 1187 nm, the electric and magnetic field are illustrated in Figure 2a,b. 
The electric and magnetic fields are mainly localized inside the dielectric rods, and the electric field 

Figure 1. (a) Schematic diagram of the unit cell for the all-dielectric metasurface. The length, width and
height of the silicon rod are represented by a, b, and h. The lattice constants of unit cell are
Px (800 nm) × Py (900 nm); (b) Transmission of the silicon rod arrays for the geometrical parameters
of a = 680 nm, b = 300 nm, h = 200 nm. ER: electrical resonance; MR: magnetic response.

Figure 1b shows the simulated transmission spectrum. Two strong and clear dips are observed
in the wavelength range of 1100 nm to 1400 nm. To interpret the origin of these two resonance
dips, the field distribution inside the silicon rod are calculated and illustrated in Figure 2. For the
broad resonance at shorter wavelength of 1187 nm, the electric and magnetic field are illustrated in
Figure 2a,b. The electric and magnetic fields are mainly localized inside the dielectric rods, and the
electric field in the x-z plane is greatly enhanced (Figure 2a) showing a typical loop surrounding the rod.
However, due to the existence of the quartz substrate, the electric field distribution is not uniform and
exhibits strong directional emission into the substrate. Meanwhile, the azimuthal component of the
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displacement current inside each rod results that the magnetic field linearly polarizes along y direction
in the center of the rod in the x-y plane at the same wavelength (Figure 2b). It mainly corresponds to
MR and a typical fundamental mode TM11δ of the dielectric rod resonator [40]. While for the narrow
resonance at longer wavelength of 1357 nm, the strong electric field (Figure 2c) is polarized in the central
region of the rod along x direction and formed ring-type at both side of dielectric rod. According to the
Maxwell electromagnetic theory, a strong magnetic field (Figure 2d) at the cross-section (y-z plane) is
induced along the azimuth by the large displacement current, which corresponds to ER and a typical
high order TE12δ mode of the rod resonator [40], though it is usually hybridized due to the coupling
between neighboring rods [41].
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Figure 2. Field distribution inside one unit cell of the rod array. (a,b) |E| in x-z plane and |H| in x-y
plane at wavelength of 1187 nm, representing the magnetic dipole moment; (c,d) |E| in x-z plane and
|H| in x-y plane at wavelength of 1357 nm, representing the higher order electric dipole moment.

As Yang et al. [39] indicated that both ER and MR contributed to the resonance in a long rod silicon
metasurface when a normal incident light is polarized along the rods, to further confirm the distinct ER
and MR behavior, we also adopted a standard S-parameter retrieval method [42] to compute the effective
permittivity and permeability shown in Figure 3. At the resonance wavelength of ~1187 nm, it shows
negative permeability and positive permittivity which explain that this resonance is mainly attributed
to the MR, but affected by the coupling between the MR and the ER. Whereas the ER dominates the
resonance at the wavelength at 1360 nm in spite of very small coupling of the ER to the MR response.
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In order to further study the resonance properties, the wavelength dependences of ER and MR
on the geometric parameters (the length and the width) of dielectric rod are calculated in Figure 4.
Both the ER and MR resonances show red-shift as the rod’s length or width increases. Linear fits of
the dip wavelength versus the geometric parameters are shown in Figure 4b,d, which confirm that
the wavelength of the ER is sensitive to both the rod’s length and width, whereas the wavelength
of the MR is more sensitive to the rod’s width, which is mainly due to the displacement current
loop covers a larger area in the x-z plane for larger value of the rod’s width. And the spectral
width of the MR is wide (low Q ~10) and insensitive to the rod parameters due to its fundamental
mode of the rods and easy excitation property, however, it is interestingly found that this is just
opposite for the ER, i.e., the Q-factor of the ER is not only very high, but also very sensitive to the
rod parameters. The Q-factor of the sharp ER with respect to the rod’s length a is calculated and
shown in Figure 5 when the rod’s widths are b = 300 nm and b = 260 nm, while the height is fixed
at h = 200 nm. As the rod length increases from 680 nm to 800 nm, the Q value of the ER increases
steadily, then a dramatic rise is observed and reaches 4500 when a = 840 nm, b = 260 nm. By further
increasing the rod’s length, the Q value of over tens of thousands can be expected. However, this kind
of growth is not unlimited, since the ER will vanish when the length of the rectangular rod resonators
is too close to the period of Py = 900 nm. Not to mention it is expensive or even impossible to fabricate
the proposed metasurface when a > 840 nm. Simulation results also indicate that the Q value of the
ER increases as the rod width or height decreases. For example, it reaches 25,300 when a = 840 nm,
b = 230 nm, h = 200 nm, and further decreasing the rod width or height will result in disappearance of
the ER. Based on our simulations, we can conclude that different from a single silicon rod resonator,
there exists a critical condition or boundary of the rod’s geometric parameters for the excitation of
high order TE12δ in rod arrays, and less coupling efficiency of the incident light to this resonator mode
or higher Q resonance can be obtained near the boundary. And the rod’s length contributes much
more to the high Q ER resonance than the rod’s width or height. Although high order ER or MR
resonances have been reported [6,41], strong resonance with high Q over several hundreds has not yet
been calculated in silicon metasurfaces without asymmetrical structure. Fortunately, the wavelength
of the ER discussed above is beyond the diffraction of periodically arranged rod arrays, while this is
not the case for the MR with limited applications [43]. Moreover, we should mention here that in the
case of oblique incidences, when the angle of incidence plane wave is less than 10 degrees, the Q-factor
of the ER will not be changed according to our simulations.

High Q resonance is usually accompanied with the near field enhancement which is useful for
nonlinear interactions [7,38] or sensing applications [5,6,36,37]. As the Q value of the ER is more
sensitive to the rod’s length, the electric and magnetic field enhancement at the wavelength of the ER
and the coupling of adjacent rods in the y-direction with respect to the rod’s length are calculated and
shown in Figure 6. It is clearly to see the typical TE12δ resonator mode inside the rectangular rods and
mode hybridization in the surrounding rods. And the magnetic field is well confined inside the rods,
while the electric energy is mainly distributed both inside and surrounding the rods. When the rod’s
length increases from 680 nm to 840 nm, the electric field enhancement factors both inside the rods
(zone 1© in Figure 6) and surrounding the rods (zone 2© in Figure 6) increases exponentially as shown
in Figure 7. The field enhancement factors in zone 1© and 2© can reach 48.5 and 67.5, respectively,
which are comparable to plasmonic nanostructures [36]. Moreover, as the rod length increases, the gap
between adjacent rods in the y-direction decreases, the local field coupling between the adjacent rods
becomes stronger, leading to the depression of resonance radiation into free space, hence the Q value
of the resonance is improved. However, due to the weak mode coupling between the neighboring rods
in the x-direction, the decrease of the distance will not improve the resonance Q.
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3. Conclusions

In summary, sharp electric resonance with extremely high Q-factor over several thousands are
achieved in a simple all-dielectric silicon rod arrays without asymmetric structure. In the mean
time, large electric field enhancement both inside and surrounding the rods is observed. A plane
wave with its electric field polarized perpendicular to the rod (instead of parallel) illuminates on
the metasurface, hence strong high order ER (TE12δ) with high Q value is excited. The electric field
coupling between adjacent rods is enhanced by increasing the length of the rod, thus the radiation loss
of the ER is significantly depressed, which further explains the source of the high Q value. The resonant
wavelength, the Q value and the field enhancement factors versus various geometrical parameters are
calculated. The proposed all-dielectric metasurface has many advantages, such as low loss, simple
structure, and CMOS-compatible. This structure can be widely used in applications, such as label-free
bio-chemical sensing, narrowband filters, optical modulations and nonlinear interactions.
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