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Abstract: Fresh water is one of the most precious resources for our society. As a cause of oxygen
depletion, organic pollutants released into water streams from industrial discharges, fertilizers,
pesticides, detergents or consumed medicines can raise toxicological concerns due to their long-range
transportability, bio-accumulation and degradation into carcinogenic compounds. The Stockholm
Convention has named 21 persistent organic pollutants (POP) so far. As opposed to other separation
techniques, adsorption, typically performed with activated carbons, offers opportunities to combine
low operation costs with high performance as well as fast kinetics of capture if custom-designed with
the right choice of adsorbent structure and surface chemistry. Nanofibers possess a higher surface
to volume ratio compared to commercial macro-adsorbents, and a higher stability in water than
other adsorptive nanostructures, such as loose nanoparticles. This paper highlights the potential
of nanofibers in organic pollutant adsorption and thus provides an up-to-date overview of their
employment for the treatment of wastewater contaminated by disinfectants and pesticides, which
is benchmarked with other reported adsorptive structures. The discussion further investigates the
impact of adsorbent pore geometry and surface chemistry on the resulting adsorption performance
against specific organic molecules. Finally, insight into the physicochemical properties required for
an adsorbent against a targeted pollutant is provided.

Keywords: nanofibers; adsorption; organic pollution; persistent organic pollutant POP; adsorption
mechanisms; adsorbent characteristics; surface chemistry; pesticides; disinfectants; phenol

1. Introduction

Organic water pollution from synthesized chemical pesticides has been increasing over the past
50 years [1]. As a counter-measure, 21 non-polar organic molecules have been classified as persistent
organic pollutants (POPs) by the Stockholm Convention (2001, 2017), to be banned or restricted
globally [2]. Organochlorines (OCs) account for a large group of POPs, including aldrin or DDT
pesticides, but also industrial chemicals such as the family of polychlorinated biphenyls (PCBs), as well
as byproducts [1]. The list of POPs also includes several organophosphorus (OPs) pesticides, and
among recently added compounds, flame retardants and polyaromatic hydrocarbons (PAHs) [1,2].

The release of POPs is associated with major toxicity concerns for both the environment and
human health [3,4]. Their partial degradability affects the chemical oxygen demand (COD) of streams,
causing oxygen depletion by consuming oxygen at a greater rate than its replenishment [4]. For some
POPs, such as Heptachlor, it is the compound formed after reaction in water, Heptachlor epoxide, that
causes threat to human life [5]. The persistency of POPs in the environment can be measured by their
half-life duration (DT50). For instance, organochlorine DDT pesticide has a DT50 that, depending
on the environment, ranges from 2 to 15 years [6]. The presence of POPs in the environment also
affects human health, through the ability of POPs to bio-accumulate in organisms and bio-magnify
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throughout the food chain [3]. Exposure of humans to POP can eventually occur through drinking
water, via the leaching of pollutants from treated soil into aquifers. Detected levels of POPs in human
blood were shown to lead, in some scenarios, to reproductive disorders, immune system alteration,
and/or increased risk of cancer [3].

Long-range transportability is another concern associated with POPs [7–9]. As most POPs are
semi-volatile compounds, they are able to cycle among air, water and soil [8]. Characteristics such as
subcooled liquid vapour pressure and octanol-water (log Kow) partition coefficients, the latter defining
the molecule hydrophilicity as well as temperature of condensation, enable the determination of the
mobility of a persistent pollutant through a transportation cycle in the atmosphere, ocean or soil [7,8].
Warm temperatures, as experienced in tropical regions, enable the evaporation of POPs, while colder
temperatures, at higher latitudes, enable the deposition of POPs from the atmosphere onto the ocean or
continent [7]. POPs emitted in tropical to temperate regions may therefore be transported to one of the
Earth poles, via successive evaporation–deposition cycles, also called the grasshopper phenomenon,
determined by seasonal temperature changes at temperate latitudes. POPs emitted at high latitudes,
however, are less subject to mobility due to lower temperatures [7]. Polar regions therefore act as an
environmental sink for POP compounds [7,9]. However, as global warming is strongly affecting the
polar climate, the possibility of a reverse in the deposition cycle of POP raises concerns [9].

To limit the environmental sink effect, local removal techniques must be put in place to remove
pesticides from water. Advanced oxidation processes (AOP), including ozonation, enzyme digestion or
catalysis, have been sought after to combine efficiency and fast kinetics [10–12]. These processes offer to
date the most efficient alternative to conventional treatments, in terms of reduction of the total organic
carbon (TOC) count in contaminated effluents. Several reviews cover the organic pollutant water
decontamination via AOPs and provide a performance benchmark for this study [11,12]. The main
roadblock to the implementation of AOPs is the increase of the effluent toxicity after treatment.
For instance, the catalytic degradation of the triazine molecule Atrazine may release carcinogen amine
groups in water [13]. Adsorption has been considered an alternative method of capture and removal
of pesticide molecules from wastewaters [4]. Even though lower decreases in water TOC have been
obtained by adsorption compared to AOPs, the effluent toxicity after treatment is still undetermined.
However, there is a need for a specific adsorbent material able to combine over 95% removal efficiency,
fast kinetics, recyclability and low fabrication cost.

Among common materials, activated carbons have been widely used against organic compounds
and showed high adsorption capacities for a range of initial contamination varying between 15 µg/L
and 80 mg/L as reported in the literature [4,14,15]. However, alternatives are being sought to yield more
cost-effective adsorbents. Biomass as an inexpensive but abundant material source for biosorption has
been considered, yet the biosorbent non-regenerability and pollutant disposal is of a concern [4,16–18].
Over the past decade, nanomaterials have been tested for organic adsorption [19–21]. Their high surface to
volume ratio reduces the required adsorbent dose and favours surface reactivity and therefore adsorption
kinetics [19]. Nanofiber webs have been designed as a novel adsorptive material solution for water
remediation, to benefit from the increased surface reactivity, with an easy handling and water-stable
behaviour, as opposed to free nanotubes and nanoparticles, respectively [22]. Furthermore, electrospinning
as a nanofiber web fabrication route ensures a high fiber diameter homogeneity and offers versatile web
morphologies design [23].

This paper reviews the employment of nanofibers in the adsorption of selected organic
pollutants. The first section is dedicated to common pesticides of moderate hydrophobicity, for water
contamination levels over 1 mg/L. Selected pesticides are Alachlor, Atrazine, Chlorpyrifos and
Diazinon. The second section concerns the adsorption of disinfectants such as phenol and selected
chlorophenols, namely 2- and penta-. As phenol adsorption has been widely reported in the literature,
phenol has been included in this study to benchmark the performance of nanofibers in the adsorption
of phenolic compounds. Furthermore, this inclusion allows for the investigation of the impact of the
molecule chlorine number onto the adsorbent uptake. The last section deals with persistent pollutants,
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highly hydrophobic, including most of the POPs selected for this study. The pesticides reviewed in
this section are aliphatic alicyclic organochlorines Aldrin, Dieldrin, Endrin, Chlordane, Heptachlor,
Heptachlor epoxide, and Toxaphene 8. Other types of POP selected include polychlorinated biphenyls
(PCBs) 2-, 3-, 4-, 5-, 6-, 28-, 77-. Polyaromatic hydrocarbon (PAH) Phenantrene was also considered in
this section for performance comparison.

Compared to other pesticide removal by adsorption reviews, the present paper gives exhaustive
and up-to-date insight into the performance of nanofibers for the removal of several contaminants
of different classes [4,24,25]. This study aims to help with the design of an efficient adsorbent for
a targeted organic pollutant. Therefore, the influence of adsorbent physicochemical properties and
adsorption conditions on the resulting performance was investigated in order to determine a specific
range of adsorbent surface properties and advantageous test conditions to favour pollutant capture.
Finally, a comparison of the adsorptive performance pondered by the proportion range order between
adsorbent dose and initial contaminant concentration was made here to help with the design of
a cost-efficient material solution.

Adsorbents’ surface properties, performance and test conditions are reported in Section 2.3,
Section 3.3 and Section 4.3 for the adsorption of moderately hydrophobic pollutants, phenolic
compounds and highly hydrophobic pollutants, respectively. When either adsorption capacity
or removal efficiency was not reported, it has been calculated from the reported performance
result. When room temperature was reported, a temperature of 22 ◦C was chosen. Langmuir and
Freundlich were considered among the isotherm models. Concerning kinetic models, pseudo first-
and second-order, intra-particle diffusion and linear models were here reported.

2. Moderately Hydrophobic Pesticides

In this section, the adsorptive performance of nanofiber-based adsorbents is reviewed and
benchmarked against other reported adsorbents for Alachlor, Atrazine, Chlorpyrifos and Diazinon
pesticides. After presenting the adsorbate molecules’ characteristics, an analysis of the adsorbent
structure-performance relationships will be given. First, the influence of adsorbent specific and contact
surface area as well as pore volume will be reviewed. Then, the range order between adsorbent dose,
initial concentration and obtained adsorption capacity will be highlighted.

2.1. Adsorbate Properties

Table 1 presents the molecular characteristics of the four pesticides considered in this section,
namely Alachlor, Atrazine, Chlorpyrifos and Diazinon. Both Alachlor and Atrazine are organochlorine
pesticides (OCPs). Alachlor is composed of an aniline aromatic structure, bound to an oxoacid and
a chloroacetamide group via a central nitrogen group. Atrazine possesses a chlorotriazine aromatic
structure, bound to two dimethylamine groups on the aromatic carbon atoms. Although Chlorpyrifos
also possesses chlorine terminal groups, it is commonly classified with Diazinon as organophosphorus
pesticides (OPPs). Chlorpyrifos aromatic structure is made of a ring of trichloropyridine, with
attachment of the three chlorine groups on three of the ring’s carbon atoms. To form Chlorpyrifos,
the chloropyridine is bound to an organophosphate structure, composed of a modified phosphate
group, which is double-bonded to a sulphur atom, also called phosphorothioate. Diazinon shares
the same sulphur–phosphate structure, which is here bound to a pyrimidine or 1,3-diazine aromatic
ring [26].
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Table 1. Characteristics of Alachlor, Atrazine, Chlorpyrifos and Diazinon [26].

Name
Molecular

Log Kow
Solubility in Water

(mg/L, 25 ◦C) 2D Structure
H Bound Count

Weight
(g/mol) Formula Donor Acceptor

Alachlor 269.769 C14H20ClNO2 3.52 240
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The reported molecular weights range from 216 g/mol for Atrazine up to 351 g/mol for
Chlorpyrifos, with each of the pesticides carrying a different molecular configuration. In terms
of molecular size, Atrazine followed by Alachlor are smaller than organophosphates Chlorpyrifos and
Diazinon, which is of interest for the study of the molecule diffusion in an adsorbent material with
reported pore features.

Hydrogen bond acceptor and donor counts are reported here to discuss the influence of
chemisorption by H-bonding on the pesticide uptake by nanofiber adsorbents. Both Alachlor and
Atrazine have an H-bond acceptor count of 2 due to their longer carbon chains. Atrazine, Chlorpyrifos
and Diazinon have an H-bond donor count of 5, 5 and 6, respectively. H-bond donor groups are
formed by amide and nitrogen groups in the case of Atrazine, and by nitrogen groups, as well as
sulphur and oxygen atoms from the organophosphate backbone, as in the case of Chlorpyrifos and
Diazinon. As each of the adsorbate molecules possesses an aromatic structure, adsorption by electron
interaction through π–π stacking between the adsorbent surface unsaturated bonds and the molecule
aromatic ring is believed to play a significant role in the pesticide uptake here [26,27].

Finally, the octanol-water partition coefficients are reported to point out the less hydrophobic
character of the selected pesticides compared to persistent-classified pesticides, such as the here
reviewed aliphatic organochlorines. Solubility in water at ambient temperature was also reported to
give an insight into the maximum levels of water contamination achievable by these pesticides.

2.2. Nanofibers for Pesticide Adsorption

2.2.1. Impact of Adsorbent Specific and Contact Surface Area

Figure 1 shows the impact of the adsorbent specific surface area (BET) on the adsorption removal.
The removal percentage was overall found to decrease with increasing adsorbent specific surface area
for both Alachlor and Diazinon, yet was found to increase in the case of Atrazine removal.
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Figure 1. Adsorption removal (%) related to adsorbent specific surface area for different adsorptive
structures and for different adsorbent compositions against Alachlor (A,B), Atrazine (C,D) and
Diazinon (E,F).

Indeed, for Alachlor, as shown in Figure 1A, the maximum reported removal performance
reached 80% for acid-activated beideillite clay particulates grafted with organosilanes for a BET
of 221 m2/g (Table 2, N5). In comparison, the largest specific surface area of 608 m2/g of an
activated charcoal adsorbent removed 40% of Alachlor (Table 2, N4). Nanofiber adsorbents made
of alumina with surface-grafted organosilanes showed the second best performance with 58% removal
for a specific surface area of 252 m2/g (Table 2, N1). The higher performance of organosilane-grafted
clays and alumina nanofibers suggests that there is competition between adsorption via hydrophobic
interactions and via electrostatic interactions as the most efficient mechanism for Alachlor uptake [28,29].
Indeed, organosilane grafting provides the adsorbent with a hydrophobic surface more amenable
to pesticides [28]. Each adsorbent reported in this study for the adsorption of Alachlor differs in
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both structure and composition. Figure 1B shows the different compositions of Alachlor adsorbents,
revealing here a lower performance for carbon-based adsorbents (Table 2, N3) followed by biomass
adsorbents made of kernels and leaves (Table 2, N6–N15). Several factors may explain the lower
performance of activated charcoal, such as unsuitable surface pore characteristics not reported in the
literature. A different structure than crystalline honeycomb carbon adsorbent may also impact the
arrangement and coordination of adsorbate molecules on the charcoal surface, virtually decreasing
the proportion in active sites compared to nitrogen adsorption, as well as discourage adsorption
by electron interaction due to the absence of unsaturated bonds. Biomass adsorbents had a specific
surface area between 275 and 394 m2/g, with vegetal-based adsorbents of a lower BET than kernel
or stone-based adsorbents (Table 2, N13, N7). The lower BET and fibrous aspect of leaf material,
allowing for a better diffusion of the pesticide, may contribute to the increased performance compared
to kernel particulates.

A similar decreasing trend can be observed in the case of Diazinon removal in Figure 1C, although
not enough data has been reported in the literature to accurately analyse the impact of adsorbent
specific surface area on removal capacity. Adsorbents with lower specific surface areas such as
208 m2/g for iron oxide and silica nanocrystals were able to completely remove Diazinon, for an initial
contamination of 400 µg/L and adsorbent dose of 6 g/L (Table 3, N4). The differences in levels of
initial contamination and dose of adsorbents may impact the adsorptive performance comparison.
Nanofiber adsorbents such as activated carbon nanofibers with manganese and alumina nanoparticles
of a respective BET of 550 m2/g and 600 m2/g showed average removal around 55% (Table 3, N1,
N2). The highest BET of the reported materials at 1112 m2/g for activated carbons led to the lowest
adsorption performance amongst the series at 16.3% (Table 3, N6). Most of the adsorbent reported
fitted the Langmuir isotherm model and the pseudo-second-order kinetic model well, which suggests
a homogenous monolayer surface adsorption process that is rate-limited by chemisorption, and hence
surface saturation [30]. Figure 1D presents different adsorbent compositions, showing the preferential
adsorption of Diazinon on ceramic surfaces over ceramic–carbonaceous adsorbents.
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Table 2. Nanofibrous adsorbent properties and adsorption conditions for the removal of Alachlor. BET: specific surface area.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions

Removal (%) Ref.
BET (m2/g)

Pore Volume
(cm3/g)

Pore Diameter
(nm)

Initial P
Concentration

(µg/L)

Adsorbent
Dose (g/L) pH Temperature (◦C) Eq. Time (h) Kinetic Model Isotherm

Model

1 Organosilane-grafted
alumina nanofibers 252 1 11.4 5.8 10,000 1 23 2.6 58 [28]

2 Organo/layered double
hydroxide nanohybrids 113 94,000 0.67 25 2.5 80.5 [31]

3 Activated carbon 1110 0.7 90 100 5 [32]

4 Activated charcoal 608 0.16 40,000 100 35 Langmuir 39.7 [33]

5
Organosilane-grafted

acid-activated
beidellite clay

221 0.36 6.44 16 10,000 0.5 23 24 80 [29]

6 Bamboo canes 381 0.000018 0.5 10 6 40 7 Pseudo I order Freundlich 35.7 [16]

7 Date stones 394 0.000012 0.5 10 6 40 7 Pseudo I order Freundlich 24.0 [16]

8 Olive stones 379 0.000027 0.5 10 6 40 7 Pseudo I order Freundlich 54.9 [16]

9 Peanut shells 368 0.000014 0.5 10 6 40 7 Pseudo I order Freundlich 27.6 [16]

10 Avocado stones 342 0.000023 0.5 10 6 40 7 Pseudo I order Freundlich 46.7 [16]

11 Eucalyptus gomphocephala 289 0.000021 0.5 10 6 40 7 Pseudo I order Freundlich 41.5 [16]

12 Raphanus raphanistrum 296 0.000022 0.5 10 6 40 7 Pseudo I order Freundlich 45.4 [16]

13 Nerium oleander 275 0.000022 0.5 10 6 40 7 Pseudo I order Freundlich 45.2 [16]

14 Origanum compactum 306 0.000022 0.5 10 6 40 7 Pseudo I order Freundlich 43.7 [16]

15 Cistus landaniferus 311 0.000027 0.5 10 6 40 7 Pseudo I order Freundlich 54.4 [16]

Table 3. Nanofibrous adsorbent properties and adsorption conditions for the removal of Diazinon.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions

Removal (%) Ref.BET
(m2/g)

Pore Volume
(cm3/g) pHZPC

Initial P
Concentration

(µg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C) Eq. Time (h) Kinetic
Model

Isotherm
Model

1
Activated carbon

nanofibers with MgO
nanoparticles

600 0.9 0.11 200 1 0.5 55 [34]

2
Activated carbon

nanofibers with Al2O3
nanoparticles

550 0.9 0.1 200 1 0.5 50 [34]

3 Sodalite zeolite coated
with Cu2O nanoparticles 29.15 50,000 0.3 6 20 2 Pseudo

II order Langmuir 97.2 [35]

4 Fe3O4/SiO2 nanocrystals 208 2.8 28 400 6 6 25 0.8 Pseudo
II order Langmuir 100 [36]

5 NH4Cl modified activated
carbon 97.5 20,000 0.3 7 0.5 Langmuir 97.5 [37]

6 Activated carbon
modified with Fe particles 1112 0.663 4.01 65 40,000 0.1 6.5 25 2 Pseudo

II order Langmuir 16.3 [38]
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Table 4. Nanofibrous adsorbent properties and adsorption conditions for the removal of Atrazine.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions
Removal

(%) Ref.
BET (m2/g)

Fiber Diameter
(nm)

Pore Volume
(cm3/g) pHZPC

Initial P
Concentration

(µg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C) Eq. Time (h) Kinetic
Model

Isotherm
Model

1 Carbon nanofibers 110 160 0.11 2.2 10,784 0.5 7 1 10.2 [39]

2 Polystyrene nanofibers 0.095 500 1 Lang. 19.0 [40]

3 Nylon/Polypyrrole core shell
nanofibers 2.77 10,000 1 7 25 5 Pseudo II

order Freund. 27.7 [41]

4 Acid-modified polyacrylonitrile
nanofibers 180 2.02 10,000 1 25 0.5 20.2 [41]

5 Polyacrylonitrile nanofibers 160 1.6 10,000 1 25 0.5 15.8 [41]

6 Carbon nanofiber/carbon nanotube
composites 310 100 0.25 19.5 10,784 0.5 7 1 90.4 [39]

7 Carbon nanotubes 300 40 0.79 4.1 105 30,000 0.1 7.8 30 6 Lang. 35.0 [42]

8 Multi-walled carbon nanotubes 174 29 0.7 3.9 0.2 15 0.007 Freund. [14]

9 Single-walled carbon nanotubes 406 2 1.11 130 1 25 [21]

10 Nano-graphene platelets 624 5000 2.69 9.5 1.99 15 0.007 Freund. 92.9 [14]

11 Superfine powdered activated
carbon 773 240 1.01 5.7 1.78 15 0.007 Freund. 83.1 [14]

12 Powdered activated carbon 900 37,000 0.46 6.1 2.21 15 0.007 Freund. 99.9 [14]

13 Modified activated carbon 2135 0.919 6.6 62 30,000 0.5 25 4 99.9 [43]

14 Polyacrylic acid modified
mesoporous carbon 25 15,000 0.5 5 30 83.3 [44]

15 Cellulose/graphene composites 0.32 1000 3 9 25 0.2 Lang. 96.0 [45]

16 Bamboo canes 381 0.000025 0.5 10 6 40 7 Pseudo I
order Freund. 49.8 [16]

17 Date stones 394 0.000033 0.5 10 6 40 7 Pseudo I
order Freund. 65.6 [16]

18 Olive stones 379 0.000046 0.5 10 6 40 7 Pseudo I
order Freund. 91.8 [16]

19 Peanut shells 368 0.000013 0.5 10 6 40 7 Pseudo I
order Freund. 25.9 [16]

20 Avocado stones 342 0.000050 0.5 10 6 40 7 Pseudo I
order Freund. 99.9 [16]

21 Eucalyptus gomphocephala 289 0.000017 0.5 10 6 40 7 Pseudo I
order Freund. 33.7 [16]

22 Raphanus raphanistrum 296 0.000044 0.5 10 6 40 7 Pseudo I
order Freund. 88.9 [16]

23 Nerium oleander 275.02 0.000012 0.5 10 6 40 7 Pseudo I
order Freund. 24.4 [16]

24 Origanum compactum 306.28 0.000018755 0.5 10 6 40 7 Pseudo I
order Freund. 37.5 [16]

25 Cistus landaniferus 311.42 0.000044605 0.5 10 6 40 7 Pseudo I
order Freund. 89.2 [16]
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Concerning Atrazine removal, as represented in Figure 1E, the lower BET value reported at
110 m2/g for carbon nanofibers reached the least adsorption performance with a removal of 10.2%
(Table 4, N1). Carbon nanotube–nanofiber composites and carbon nanotubes, however, reached
a removal of 90.4% and 35% for a specific surface area of 310 m2/g and 300 m2/g, respectively (Table 4,
N6, N7). Higher specific surface areas of 2235 m2/g for activated carbons led to complete contaminant
removal (Table 4, N13). As carbon-based materials are among the highest-performing adsorbents,
this suggests that π–π electron interactions and electrostatic interactions are preferential adsorption
mechanisms for the removal of Atrazine. Figure 1F shows the Atrazine adsorbents’ composition and
other carbon-based structures; biomass absorbance has been reported in this form or extracted from
shells, kernels and leaves. For a similar range of specific surface area, kernel and shell adsorbents
here showed better performance compared to their leaf counterparts, with over 99% and 89% highest
removal percentages, respectively (Table 4, N20, N25). This difference in performance suggests that
the adsorbent structure can significantly influence the Atrazine adsorption. Furthermore, all biomass
adsorbents fitted the Freundlich isotherm and pseudo-first-order kinetic models well (R2 > 0.85),
suggesting a heterogeneously distributed adsorption on the biosorbent surface and physisorption as
the reaction rate-limiting step [30]. This may suggest that Atrazine could not diffuse as much nitrogen
into the adsorbent surface pores or between fibers’ interstitial spaces.

The different trends of performance increase for Alachlor and Diazinon and decrease for
Atrazine with increasing specific surface areas may be explained by the molecular geometry of the
adsorbates and preferential adsorption mechanisms. Indeed, both Alachlor and Diazinon are planar
molecules, while Atrazine is non-planar. Molecule planar geometry may favour the alignment of
an adsorbate molecule onto an adsorptive site, while allowing other pesticide molecules to diffuse;
a non-planar molecule when adsorbed might in a certain configuration form a blockage to other
pesticide molecules. In such a scenario, a lower density of functional sites and consequently a lower
specific surface area can result in improved adsorptive performance. Pesticide molecule polarity could
also influence the localized adsorption on the adsorbent surface, limiting adsorption performance via
hydrophobic interactions.

Figure 2 shows the variation in adsorption capacity related to the adsorbent diameter or sheet
thickness, in the adsorption of Atrazine. An exponential-type decreasing trend of the adsorption
capacity for increasing material size can be observed. Indeed, carbon nanotubes of 40 nm diameter
demonstrated a capacity of 105 mg/g (Table 4, N7). On the other hand, granular activated carbon of
37 µm size showed a capacity below 10 mg/g (Table 4, N12). Carbon nanofibers and polyacrylonitrile
nanofibers, both with a mean diameter of 160 nm, showed a capacity of 2.2 mg/g and 1.6 mg/g,
respectively (Table 4, N1, N5). All adsorbents represented here are carbonaceous, and diameters below
200 nm were reported for nanomaterials adsorbents. A higher contact surface area, and hence a lower
diameter, would thus increase the proportion of electron vacancies on the nano-adsorbent surface by
decreasing the volume of bulk material. As carbon-based adsorbents are prone to adsorb by electron
interaction, such as π–π stacking between adsorbent and adsorbate respective unsaturated bonds,
more electron vacancies and hence a lower adsorbent diameter would result in improved performance.
The choice of adsorbent structure does not seem to impact on the performance, suggesting that the
surface chemistry and charge distribution play a major role in the adsorptive performance. In this
study, adsorbent diameters below 100 nm on average led to adsorption capacities over 20 mg/g for the
removal of Atrazine.
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Figure 2. Adsorption capacity (mg/g) related to the adsorbent diameter against Atrazine.
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2.2.2. Impact of Adsorbent Pore Size and Pore Volume

Figure 3 shows adsorption capacity related to the adsorbent pore volume in the removal of
Atrazine. A global trend of increasing capacity for an increased pore volume up to 1.1 cm3/g can be
noticed (Table 4, N9). This overall trend may be explained by the higher number of atrazine molecules
diffusing in a higher number of surface pores across larger pore channels. However, several factors can
imply lower performance for a higher pore volume. Adsorbent surface pore size is a critical factor for
pesticide diffusion. For instance, surface pores twice as large as the adsorbate molecule cross section
could still allow pesticide diffusion if one molecule was adsorbed along one pore wall, and could even
allow two molecules to adsorb side to side. Yet, a larger pore channel would not favour the adsorption
along pore walls due to a lower promiscuity. Furthermore, a higher pore volume could also translate
to a higher proportion of pores with a smaller size distribution falling below the pesticide molecule
size or cross section, hence hindering the adsorbate diffusion. Also, dead-end pores would affect the
determination of pore volume. Nevertheless, the overall trend indicates that a pore volume around
1.0 ± 0.1 cm3/g is preferential for increased performance in the removal of Atrazine.
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Concerning the adsorbent pore size, not enough data were found in the literature to enable a study
of a preferential pore diameter for a specific pollutant among the ones considered in this section. In the
case of Alachlor adsorption, organosilane-grafted beideillite clay and alumina nanofibers were reported
to have a pore diameter of 6.44 nm and 11.4 nm, respectively, and showed an efficiency of 80% and
58% (Table 2, N1, N5) [28,29]. These results may suggest that an 11.4 nm wide pore channel does
not offer enough promiscuity for the adsorption of Alachlor molecules, combined with a possible
decrease in the efficiency of silane grafting along the adsorbent pore walls, thus impeding adsorption
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via hydrophobic interactions. Indeed, organosilane compounds considered for alumina nanofiber
grafting include CPTES (3-chloro-propyl-triethoxysilane) and OTES (octyl-triethoxysilane), both of
a weight comparable to Alachlor, 241 g/mol and 277 g/mol, of single-molecule orientation and longer
carbon chain.

2.2.3. Nanofiber Performance Comparison Regarding Initial Pesticide Concentration and
Adsorbent Dose

Figure 4 shows bar charts representing the adsorption capacity with the corresponding tests
conditions of initial pesticide concentration and adsorbent dose for each pesticide, nanofiber adsorbent
and selected benchmark adsorbents. It can be noticed from all the charts that nanofibers delivered an
adsorption performance on average in the range of other benchmarked adsorbents. Indeed, nanofiber
adsorption capacities ranged from 5.8 to 19.5 mg/g (Table 2, N1 and Table 4, N6), for a similar range
of initial dye concentration around 10 mg/L compared to benchmark materials, yet for an adsorbent
dose on average below 1 g/L. Other macro-adsorbents were reported for a dose on average over 3 g/L.
The lower adsorbent dose required for nano-adsorbents compared to macrostructures should be taken
into consideration when calculating the material fabrication cost and regeneration volumes.

In the case of organochlorines, Organo-layered double hydroxide nanohybrids and single walled
carbon nanotubes showed the highest adsorption capacities of 113 mg/g and 130 mg/g against
Alachlor and Atrazine, respectively (Table 2, N2 and Table 4, N9). However, other ceramic and carbon
adsorptive nanostructures showed a lower performance for the same adsorbate respectively. Indeed,
organosilane/alumina nanofibers demonstrated a capacity of 5.8 mg/g against Alachlor (Table 2,
N1), and carbon nanofiber/carbon nanotube composites showed a capacity of 19.5 mg/g against
Atrazine (Table 4, N6). Other than the action of other adsorption mechanisms, these performance
differences for similar adsorbent sizes and compositions may also be explained by a different adsorbent
pore structure that is hindering the diffusion of the pesticides, as in the case of modified alumina
nanofibers, for example. Nevertheless, the predominant efficiency of carbon and metal oxide
adsorbent surfaces suggests that π–π electron and electrostatic interactions are the most efficient
adsorption mechanisms towards selected pesticides, compared to hydrophobic interactions, which by
comparison reached average performance when serving as the predominant mechanism at stake [29].
Furthermore, carbon nanofibers were reported to show adsorptive affinity for other contaminants,
such as sulfamethoxazole, in a multi-contaminant flow through adsorption test, demonstrating the
versatility of carbonaceous adsorbents towards organic molecules with unsaturated bonds such as
aromatic rings [39]. Polystyrene molecular imprinted nanofibers showed limited performance against
Atrazine and Chlorpyrifos (Table 4, N2 and Table 5, N1). Although polyester is a hydrophobic polymer
and is thus supposed to show affinity to the pesticides studied here, it is suggested that adsorption may
be limited by an unsuitable solution pH, conferring on both adsorbent and adsorbate a similar surface
charge [40]. Nylon-Poly(pyrrole) core-shell nanofibers showed an adsorption capacity of 2.77 mg/g,
corresponding to an efficiency of 27% (Table 4, N3). The aromatic ring of Poly(pyrrole) enables
π–π interaction with the Atrazine triazine ring, while nylon does not have unsaturated bonds [41].
Experiments here were reported for a neutral solution pH. However, the Poly(pyrrole) isoelectric
point has been reported around 10, meaning that at neutral pH both adsorbent and atrazine exhibited
a positive surface charge [41]. It was concluded that a pH slightly above 10 would favour adsorption
with a negative Poly(pyrrole) surface and still slightly protonated atrazine [41].

In the case of organophosphates, benchmark adsorbents tested in similar conditions to nanofiber
adsorbents could rarely be found. For instance, activated carbon nanofibers modified with either
magnesium or aluminium oxide nanoparticles showed a capacity of 0.1 mg/g against Diazinon
(Table 3, N1, N2). Still, against Diazinon, granular activated carbon (GAC) modified with iron oxide
particles reached a capacity of 65 mg/g (Table 3, N6). Although iron oxide would be more reactive than
magnesium or aluminium oxides, the large difference in applied adsorbent dose (1g/L for nanofibers
and 0.1 g/L for GAC) and in initial concentration (200 µg/L for nanofibers and 40 mg/L for GAC)
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would significantly impact on the difference in performance. This influence stems from the equation
used to determine the adsorption capacity. Adsorptive studies carried out on adsorbent dose and level
of contamination in similar conditions to those reported for the polystyrene nanofiber study could not
be found in the literature (Table 5, N1).

It can be noticed from Figure 4 that higher adsorbent doses, above 5 g/L, result on average
in poorer adsorption capacities, falling below 1 mg/g (Table 2, N4). Similarly, for an average
adsorbent dose around 1 g/L, a lower initial dye concentration below 0.5 mg/L tends to result
in a lower adsorption capacity (Table 4, N2). These tendencies can be explained by the theory used to
calculate the adsorption capacity, which will be reduced for higher adsorbent doses or lower initial
dye concentrations, yet have the same removal efficiency. The optimal adsorbent dose required for
a given initial concentration and a target removal efficiency could be more consistently investigated
among the adsorptive studies to enable a rigorous performance comparison.
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Table 5. Nanofibrous adsorbent properties and adsorption conditions for the removal of Chlorpyrifos.

N Adsorbent

Adsorbent
Properties Adsorption Capacity

(µg/g)

Adsorption Conditions

Removal (%) Ref.

BET (m2/g)
Initial P

Concentration
(µg/L)

Adsorbent Dose
(g/L) pH Temperature

(◦C) Eq. Time (h) Kinetic Model Isotherm Model

1 Polystyrene nanofibers 450 500 1 Langmuir 90 [40]

2 Modified
montmorillonite 7760 35,000 5 35 Freundlich 100 [46]

3 Montmorillonite–micelles
composite 5910 35,000 5 20 Freundlich 84.4 [46]

4 Bamboo canes 382 0.032 0.5 10 6 40 7 Pseudo I order Freundlich 63.3 [16]

5 Date stones 394 0.036 0.5 10 6 40 7 Pseudo I order Freundlich 71.63 [16]

6 Olive stones 379 0.047 0.5 10 6 40 7 Pseudo I order Freundlich 93.71 [16]

7 Peanut shells 368 0.030 0.5 10 6 40 7 Pseudo I order Freundlich 60.1 [16]

8 Avocado stones 342 0.049 0.5 10 6 40 7 Pseudo I order Freundlich 97.4 [16]

9 Eucalyptus gomphocephala 289 0.040 0.5 10 6 40 7 Pseudo I order Freundlich 79.94 [16]

10 Raphanus raphanistrum 296 0.044 0.5 10 6 40 7 Pseudo I order Freundlich 88.36 [16]

11 Nerium oleander 275 0.043 0.5 10 6 40 7 Pseudo I order Freundlich 85.74 [16]

12 Origanum compactum 306 0.036 0.5 10 6 40 7 Pseudo I order Freundlich 71.89 [16]

13 Cistus landaniferus 311 0.032 0.5 10 6 40 7 Pseudo I order Freundlich 64.49 [16]
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3. Phenolic Compounds

This section reviews the performance of nanofibers reported in the adsorption of phenol, 2- and
penta-chlorophenol. Other than adsorptive performance relationships with adsorbent specific surface
area and pore characteristics, the influence of the adsorbate chlorine number on adsorption will be
investigated. Finally, test conditions such as pH, initial contamination and adsorbent dose will be
taken into consideration.

3.1. Adsorbate Properties

Table 6 presents the molecular characteristics of Phenol, 2-Chlorophenol and Pentachlorophenol.
Phenol, or carbolic acid, is a base molecule for phenolic compounds, such as explosive nitrophenols
or persistent pentachlorophenol. All three compounds considered in this study have been used
as disinfectants. The phenol molecule is composed of an aromatic ring derived from benzene
and bound to one hydroxyl group. Phenol’s smallest cross section has been calculated at 0.43 nm.
The 2-chlorophenol molecule is derived from phenol, with one chlorine group attachment on the
aromatic ring, at position 2. Pentachlorophenol possesses five chlorine attachments to the aromatic
ring, the sixth being the hydroxyl group, a component of the phenol molecule [26]. All three molecules
possess three unsaturated bonds, conferred by the benzene-like aromatic structure, thus favouring
adsorption via electron π–π stacking, provided on the adsorbent surface chemistry.

Table 6. Characteristics of Phenol, 2-Chlorophenol, and Pentachlorophenol [26].

Name
Molecular Log Kow

Solubility in Water
(mg/L, 25 ◦C) 2D Structure

Weight (g/mol) Formula

Phenol 94.113 C6H6O 1.46 67
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The number of chlorine groups influences not only the molecular weight but also molecule

water solubility, decreasing from 67 to 14 mg/L for phenol and pentachlorophenol, respectively
(25 ◦C). A decrease in water solubility results in an increase in the octanol-water partition coefficient.
The higher chlorine number is also believed to promote the action of hydrophobic interactions on the
capture of chlorophenol molecules, providing more surface area to react with a hydrophobic adsorbent.
Finally, these three molecules possess a hydroxyl termination group as part of the phenol molecule,
meaning each molecule possesses one hydrogen bond donor or acceptor group [26]. As a consequence,
electrostatic interactions between the adsorbent surface and the contaminant hydroxyl group could
also influence the adsorbent adsorption performance.

3.2. Nanofibers for Disinfectant Adsorption

3.2.1. Impact of Adsorbent Specific and Contact Surface Area

Figure 5 shows the adsorption performance of phenol and chlorophenols related to the adsorbent
specific surface area. A near-linear trend of increase in the adsorption capacity for increasing adsorbent
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specific surface area can be observed in the case of phenol adsorption, as shown in Figure 5A.
This near-linearity can be bound to a near-homogeneous surface saturation process, with a higher
proportion in adsorptive sites, i.e., BET proportionally corresponding to a higher adsorption capacity.
In over 80% of the reported kinetic and isotherm studies for phenol adsorption, adsorbents were found
to follow pseudo-second order and Langmuir models, translating into a surface monolayer adsorption
reaction that is limited by chemisorption, hence further suggesting homogeneous surface saturation
(Table 7). Plain carbon nanofibers and iron-oxide-decorated carbon nanofibers demonstrated a capacity
of 0.842 and 1.684 mg/g for a specific surface area of 40.7 and 72.4 m2/g, respectively (Table 7, N17,
N18). However, activated carbon nanofibers showed a higher performance of 256.1 mg/g for a higher
BET of 2921 m2/g (Table 7, N20). Figure 5B details the adsorbent composition used for phenol capture,
showing a majority of carbon or carbon-based adsorbents following the near-linear adsorption trend.
An explanation of this adsorption performance trend formed by carbonaceous adsorbents relies on
the donor–acceptor electron complex adsorption mechanism. Actors in the electron interaction for
adsorption are the carbonyl groups on the carbon-adsorbent surface (electron donor), the proportion
of which influences the specific surface area, and the phenol compound aromatic ring (electron
acceptor) [4].
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Figure 5. Adsorption capacity related to adsorbent specific surface area for different adsorptive
structures and different adsorbent compositions against Phenol (A,B); 2-Chlorophenol (C,D) and
Pentachlorophenol (E,F).

The observed preference for the Langmuir isotherm model can further be linked to the role of
π–π dispersion forces between the aromatic rings of phenol and activated carbon. Indeed, a process
of localized monolayer adsorption could signify that each site is accommodating a single molecule
with repulsive interactions between adsorbed molecules [4]. Ceramic and clay adsorbents, although
less reported, also showed to follow the adsorption trend. Therefore, adsorbent structure rather
than composition is affecting the performance for a given BET. Styrene divinylbenzene particles,
here reported under polymer adsorbents and not following the trend, have a particle size in the
macro-range, and offered a capacity of 8.83 mg/g for a BET of 1000 m2/g (Table 7, N32). In the case
of carbon nanotubes, which do not fit the global performance trend, their capacity of 166.58 mg/g
for a BET of 357 m2/g (Table 7, N25) may be explained by their hollow structure. Variations in test
conditions may also significantly affect the adsorbent performance for a given specific surface area.
For instance, temperature was shown to act as a catalyst for phenol adsorption on doped cryptomelane
manganese nanofibers, with faster metal oxide surface hydroxylation reported for temperatures from
140 ◦C (Table 7, N19). The created surface hydroxyl groups can bind to phenol and form phenolic
complexes, thus enhancing the adsorption capacity even for a relatively low specific surface area of
40 m2/g, impeded by the higher density of metals compared to carbon atoms [47].

On the other hand, no clear trend can be pulled out in the case of 2- and pentachlorophenol
adsorption, presented in Figure 5C–F respectively. Although fewer data are available, it can be seen
that the higher the chlorine number on the adsorbate, the smaller the range of obtained adsorption
capacities. Carbon nanofibers with a BET of 2326 m2/g showed the maximum capacity of 167 mg/g for
2-chlorophenol adsorption (Table 8, N1). In the case of pentachlorophenol, carbon black with a specific
surface area of 511 m2/g was reported to show a capacity of 250 mg/g (Table 9, N6). However,
over 90% of the adsorbents showed a capacity between 44.7 and 98 mg/g for a BET ranging from
3.7 to 958 m2/g for the capture of pentachlorophenol (Table 9, N1, N5, N12). The gradual decrease
in observed performance for an increasing number of chlorine groups on the phenol molecule can
be explained by the larger structure and the modified surface polarity of the molecule. Indeed,
the chlorine group, being an electron-withdrawing group, lowers the aromatic ring electron density,
or deactivates the ring, thus potentially hindering adsorption onto carbon or metal oxide surfaces by
electron interaction and hindering hydrophobic interactions.
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Table 7. Nanofibrous adsorbent properties and adsorption conditions for the removal of Phenol.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions

Ref.
BET (m2/g)

Fiber Diameter
(nm)

Pore Volume
(cm3/g)

Pore Diameter
(nm)

Initial P
Concentration

(mg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C)
Eq. Time

(h)
Kinetic
Model

IsoT.
Model

1 Commercial Activated Carbon 596 0.57 30 6.8 20 6 Pseudo II
order Freund. [48]

2 Activated carbon extracted from
agro-waste (Hemidesmus indicus) 627 1.04 30 6.8 20 5 Pseudo II

order Freund. [48]

4 Activated carbon extracted from tea
industrial waste 1066 0.58 2.18 96.5 400 2 6 4 Pseudo II

order Lang. [49]

6 Activated carbon extracted from
Miswak root treated with KMnO4

1204 142.15 100 1 5 30 2 Freund. [50]

7 Activated carbon produced from
sludge 319.5 4 12 100 6 5.5 25 8 Pseudo II

order Freund. [51]

8 Iron modified granular activated
carbon 95 0.083 7.2 50 10 6.5 30 4 Pseudo I

order Lang. [52]

9 Ammonia-treated coal reject 190 0.78 26.1 240 5 6 25 [53]

10 Powdered activated carbon 1149 0.644 136 200 30 [54]

11 Zeolite X/activated carbon
composites 872 0.59 27.06 240 6 6.5 25 5 Pseudo II

order [55]

12 PET-based activated carbons 1850 0.743 0.8 178 150 5 24 1 Pseudo II
order Lang. [56]

13 Ammonia-treated activated carbon
microfibers 275 100 0.6 38 0.5 Freund. [57]

14 Sawdust 5.5 100 10 5.8 22 3 [58]

15 Porous clay 305.5 3.7 14.5 450 8 5.5 25 Lang. [59]

16
Activated carbon

microfibers/carbon nanofibers
composite

970 0.537 150 100 0.6 38 0.5 Freund. [57]

17 Carbon nanofibers decorated with
ferric oxide nanoparticles 72.4 1.684 2 7 Lang. [60]

18 Carbon nanofibers 40.7 0.842 2 7 Lang. [60]

19 Doped hydrophobic Cryptomelane
type manganese oxide nanofibers 40 0.19 2060 5000 1 25 2 [47]

20 Activated carbon nanofibers 2921 2.7 0.43 256.1 300 0.5 38 1.3 Pseudo II
order Freund. [61]

21 Hydroxyapaxite nanopowders 43.75 10.33 400 1 6.4 60 2 Pseudo II
order Freund. [62]

22 Ni/Cu MOF composites 1042.1 0.6241 39.47 50 1 5 30 [63]

23 Magnetic and cationic surfactant
diatomite nanocomposite 55.7 15 2 10 0.5 Lang. [64]

24 NiFe2O4 nanoparticles aggregated
on powdered activated carbon 33 200 0.6 8 25 5 Pseudo II

order Lang. [65]

25 Carbon nanotubes 357 0.142 166.58 500 2.5 23 96 Freund. [66]

26 Chitosan/Carbon nanocomposite
particles 409 800 5 30 1 Pseudo II

order Freund. [67]
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Table 7. Cont.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions

Ref.
BET (m2/g)

Fiber Diameter
(nm)

Pore Volume
(cm3/g)

Pore Diameter
(nm)

Initial P
Concentration

(mg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C)
Eq. Time

(h)
Kinetic
Model

IsoT.
Model

27 Carbon nanotubes/MIL-68 (Al)
composites 1407 109.9 500 1 30 [68]

28 Multi-walled carbon nanotubes 270 64.6 50 2 4.65 1 Pseudo II
order Freund. [69]

29 Ethanol and heat treated carbon
nanotubes 55.4 0.18 6.39 50 0.5 25 [70]

30 3D graphene aerogels—mesoporous
silica frameworks 1000.8 0.93 1.87 6.95 4.4 2 25 2 Pseudo II

order Freund. [71]

31 Commercial Styrene divinylbenzene
particles—Dowex Optipore L493 1100 4.6 8.97 38 10 25 1 Pseudo II

order Freund. [72]

32 Commercial Styrene divinylbenzene
particles—Diaion SP825 1000 12 8.83 38 10 25 5 Pseudo II

order Freund. [72]

33
Commercial Brominated styrene
divinylbenzene particles—Diaion

SP207
650 10.5 8.63 38 10 25 5 Pseudo II

order Freund. [72]

Table 8. Nanofibrous adsorbent properties and adsorption conditions for the removal of 2-chlorophenol.

N Adsorbent

Adsorbent Properties Adsorption
Capacity

(mg/g)

Adsorption Conditions

Removal (%) Ref.
BET (m2/g)

Fiber
Diameter (nm)

Pore Volume
(cm3/g) pHZPC

Initial P
Concentration

(mg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C)
Eq. Time

(h)
Kinetic
Model

Isotherm
Model

1 Carbon nanofibers 2326 500 1.36 4.4 167 10 0.05 6.5 25 5 84 [73]

2 Powdered activated
carbon 800 0.8 149 200 1 25 75 [74]

3 Granular activated
carbon 850 1.19 137 200 1 25 69 [74]

4 Powdered activated
carbon 1075 0.78 2.8 25.7 10 0.05 6.5 25 5 13 [73]

5 Zeolite 46.1 65 1 9.3 25 2 Pseudo II
order 71 [75]

6 Modified graphene oxide 198 79 50 0.6 5.5 25 Freund. 97 [76]

7 Cu-nano zeolite 890 0.18 24.7 50 0.6 6 2.5 Pseudo II
order Freund. 95 [77]
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Table 9. Nanofibrous adsorbent properties and adsorption conditions for the removal of Pentachlorophenol.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions

Ref.
BET (m2/g)

Pore Volume
(cm3/g)

Pore
Diameter

(nm)

Initial P
Concentration

(µg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C)
Eq. Time

(h)
Kinetic
Model

Isotherm
Model

Removal
(%)

1 Encapsulated horseradish
peroxidase in PEO-PPO nanofibers 3.73 44.7 10,000 0.5 3 25 Pseudo II

order 83 [78]

2 Activated carbon fiber 175 300,000 0.5 12 25 Intra.
diffusion Langmuir 29.2 [79]

3 H2O2-oxidised multi walled carbon
nanotubes 144 3.5 1200 0.2 35 58.2 [80]

4 Magnetic powdered activated
carbon 743.6 64 80,000 1 5.75 20 1 Pseudo II

order Langmuir 80.0 [15]

5 Powdered activated carbon 958 58 80,000 1 5.75 20 1 Pseudo II
order Langmuir 72.5 [15]

6 Carbon black 511 1.42 250 700,000 7 20 Langmuir [81]

7 Zero valent iron ZVI magnetic
biochar composites 101 0.079 4.78 49.3 10,000 0.2 7 8 84 [82]

8 Ni-ZVI magnetic biochar
composites 168 0.087 2.32 49 10,000 0.2 6 25 1 Pseudo I

order 98 [83]

9 Hexagonal mesoporous silicas HMS 755 0.84 3.2 190 6 25 Freundlich 4 [84]

10 Aminopropyl-modified HMS 706 0.4 3.6 190 6 25 Freundlich 25 [84]

11 Hydrophobically modified thermo
sensitive hydrogels 2.3 2663 1.67 3 25 5 Pseudo II

order Langmuir 95 [85]

12 Bentonite 29 0.072 3.81 92 300,000 5 25 Langmuir 100 [86]

13 Almond shell residue 13 0.005 100 10 30 24 93 [87]

14 Fungal biomass 1.4 0.094 1000 10 5 20 2 Pseudo II
order Langmuir 94 [88]
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3.2.2. Impact of Adsorbent Pore Size

The impact of adsorbent pore size on the adsorption capacity against phenol is illustrated on
Figure 6. There is a noticeable trend, characterised by an exponential-type decrease in the adsorption
capacity with the increase of adsorbent pore size.
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Figure 6. Phenol adsorption capacity related to the pore size of different adsorbent structures (A) and
compositions (B).

For phenol capture, adsorbent pore size was reported from 0.43 nm (activated carbon nanofibers,
Table 7, N20) to 15 nm (diatomite nanocomposites, Table 7, N23), corresponding to an adsorption
capacity of 256.1 and 2 mg/g, respectively, being the maximal and minimal capacities here reported.
Maximum adsorption capacities were observed for a pore size in a range between 0.43 and 2.2 nm
(Table 7, N20, N4). The optimum pore size range of the adsorbent can be linked to the kinetics of pore
blocking (i.e., phenol diffusion rate), adsorbent pore geometry and the single orientation of the phenol
molecule (Table 6). Considering that the smallest cross section of the phenol molecule is 0.43 nm,
mesopores (from 2 to 50 nm) may insufficiently promote adsorbent/adsorbate contact, thus resulting
in a potentially lower performance depending on the adsorption mechanisms at stake (Table 7, N7,
N32). On the other hand, activated carbon nanofibers were shown to possess an open pore structure
and a dual pore size repartition of 0.43 nm and 0.8 nm, allowing the penetration of one or two phenol
molecules, respectively (Table 7, N20). Dual pore size distribution on adsorbent surfaces can be further
advocated by the fitting of the adsorption reaction to a Freundlich isotherm.

Furthermore, average adsorbent pore size has been calculated from a Barrett-Joyner-Halenda
(BJH) method, and may not accurately reflect the adsorbent pore size distribution, depending on the
actual pore tortuosity. However, a pore size calculated by BJH method and falling in the optimal
range defined above may suggest an increased volume of micropores enhancing phenol adsorption.
Using a BET/BJH method, the presence of micropores leads to an isotherm of type I, with increased
nitrogen adsorption at low pressures [53]. Similarly to a Langmuir isotherm, the height of the plateau
on the isotherm would reflect the volume of micropores, also called micropore capacity at the adsorbent
surface. The extension of the isotherm hysteresis to relatively low pressures would give an indication
of the micropores’ diameter [53].

Beside the adsorbent morphology, voids between the nanofibers in the case of fibrous mats
could also impact the diffusion of the phenol molecules; however, over 95% of the studies reported
a nanofiber web fabrication by a solution blowing or electrospinning process, hence ensuring webs of
high porosity and of suitably large pore sizes to enable phenol diffusion. This last aspect is critical
as the hydrodynamics of the solution diffusion, and therefore the impact of the webs’ wettability, is
critical to the design of nanofibrous adsorbents.



Appl. Sci. 2018, 8, 166 21 of 40

3.2.3. Impact of Adsorbent Surface Charge and Solution pH

Adsorbent isoelectric point (IEP) corresponds to the pH at which the adsorbent carries no net
electrical charge and is used to determine adsorbent global surface charge in an aqueous medium in
function of the solution pH. As phenol and phenolic compounds are polar molecules, the adsorbent
surface charge can significantly enhance the phenolic compound adsorptive performance with the
attraction of two opposite charges between adsorbent and adsorbate. Phenol adsorption up to pH 7 has
been experimented on with carbon nanofibers, resulting in a 31% removal capacity [89]. Nevertheless,
the adsorbent IEP was not reported. Considering that phenol is a weak acid with a pKa of 9.95
(Table 6), an iso-electric point between pH 4 and pH 6.5 would be ideal to get the phenol molecule
to bind to a carbon adsorbent surface for a reaction pH slightly below the adsorbent theoretical
IEP and the phenol pKa. Adsorption studies at a reaction pH superior to the adsorbate pKa have
been carried out for meta-aramid/polyacrylic acid nanofibers on another phenol compound, namely
2,4-dichlorophenol [90]. It was reported that the phenol compound dissociated into chlorophenolate
anions, thus impeding the adsorption performance, given the electrostatic repulsion between identical
charged target molecules and fiber active sites [90]. Solution pH therefore plays a determinant role
in the efficiency of adsorption by electrostatic interaction. Ionic strength also has an impact on the
adsorption process. Indeed, electrical double layers can form on the adsorbent surface [41]. In a case
of a neutral pH, when falling below the adsorbent isoelectric point the adsorbent surface would carry
a positive charge, and would therefore attract the anions present in the solution to the interface to
form what is called a stern layer. The protonated contaminant would also carry a positive surface
charge and would be found in the diffuse layer, attracted by anions in the stern layer. The thickness of
the electrical double layers can prevent the adsorption reaction. However, when the ionic strength
increases, the electrolyte will compress the electrical double layer and thus influence electrostatic
interactions between adsorbate and adsorbent [41].

Figure 7 shows the variation in adsorption performance in function of the solution pH. It can
be seen from all graphs that, starting from a solution pH of 6, the performance decreases with
increasing pH. A solution pH between 4.5 and 6 seems to be the optimal window for metal oxide- and
carbon-based adsorbents, confirming the theory explained above. The microfiber/nanofiber carbon
composite adsorbent was surface-functionalized with ammonia [57]. It was reported that the inclusion
of nitrogen groups on the adsorbent surface increased the adsorbent basicity, thus facilitating phenol
adsorption at a close to neutral pH [57].
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Figure 7. Adsorption performance related to the adsorption test pH for several adsorbents
compositions, against Phenol (A); 2-Chlorophenol (B); and Pentachlorophenol (C).

Horseradish peroxidase immobilized on polymer nanofibers was tested in the adsorption of
Pentachlorophenol in several solution pH conditions (Table 9, N1). Sorption capacities were reported
of 15.27 mg/L, 14.33 mg/L and 11.85 mg/L for an increasing pH of 2, 3, and 4, with no sorption
occurring at pH 5 [78]. This direct proportion to solution acidity can be related to the protonation degree
of Pentachlorophenol [78]. Since the hydrophobicity of Pentachlorophenol was found to influence
the sorption rate, hydrophobic interactions can be identified as a significant capture mechanism.
Other mechanisms reported π–π electron interactions between the Pentachlorophenol benzene ring
and π electrons of the ketone group from the polymer molecular skeleton, as well as hydrogen bonding
between the polymer ketone groups and Pentachlorophenol hydroxyl group [78].

3.2.4. Kinetic Performance of Nanofiber Adsorbents

Figure 8 shows the relationship between adsorption capacity and reaction equilibrium time
for different adsorptive structures against phenol. These graphs aim to show the average shorter
equilibrium times (under 5 h) reported for nanostructures compared to macro-adsorbents, as can be
noticed in Figure 8A, as well as the yield of higher adsorption capacities for nanofibers compared to
other nano-structures, with, for instance, activated carbon nanofibers reaching a capacity of 256.1 mg/g
after 1.3 h (Table 7, N20). The difference in adsorptive performance and kinetics can be explained by the
stability of nanofibers in water, while nanoparticle adsorbents tend to agglomerate under the effect of
surface interactions such as Van der Waals, hence hindering the adsorption reaction. The difference in
kinetics between nanofibers and macro-structures can be the result of the higher surface to volume ratio
of nanofibers. Figure 8B details the composition of the reported adsorbents, revealing a combination
of faster kinetics and higher performance for carbonaceous adsorbents, hence suggesting electron
interaction as the most efficient predominant adsorption mechanism in the capture of phenol [91].
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Figure 8. Adsorption performance related to the adsorption test equilibrium time against Phenol, for
several adsorbents structures (A) and compositions (B).

3.2.5. Nanofiber Performance Comparison Regarding Initial Contaminant Concentration and
Adsorbent Dose

Figure 9 shows bar charts representing the adsorption capacity with the corresponding test
conditions of initial disinfectant concentration and adsorbent dose for each nanofiber adsorbent
and selected benchmark adsorbents. Comparatively to relatively hydrophilic pesticides, nanofiber
adsorbents demonstrated an adsorption capacity in the range of the one performed by activated carbon
adsorbents, yet for a lower adsorbent dose. For instance, in the case of phenol capture, activated carbon
treated with potassium permanganate demonstrated a capacity of 142.15 mg/g for a contamination
of 100 mg/L and a dose of 1 g/L (Table 7, N6). For the same initial contamination, activated carbon
microfiber–nanofiber composites showed a capacity of 150 mg/g for a dose of 0.6 g/L (Table 7, N16).
It can be seen from all charts that carbon-based adsorbents are amongst the best against phenol
and chlorophenols.
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Figure 9. Relationship between adsorbent dose (blue column, left scale), initial pesticide concentration
(green column, middle right scale) and adsorption capacity (red scatter, far left scale) in the adsorption
of Phenol (A); 2-Chlorophenol (B) and Pentachlorophenol (C).
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4. Persistent Organic Pollutants

In this section, the adsorptive performance of nanofiber-based adsorbents is benchmarked and
reviewed for the capture of selected aliphatic organochlorines, and selected aromatic compounds
from the PCBs and PAHs families. Adsorbate molecules considered in this section are classified POPs
(persistent pesticides) and industrial products. Characteristics of the adsorbate shall first be discussed,
followed by reported adsorbent structure-performance relationships.

4.1. Aliphatic Organochlorines

4.1.1. Adsorbate Properties

Table 10 shows the physico-chemical characteristics of selected aliphatic organochlorines in this
review, namely Aldrin, Dieldrin, Endrin, Chlordane, Heptachlor, Heptachlor epoxide, and Toxaphene
8. Drin pesticides possess an alicyclic structure with 6 chlorine groups. The Aldrin molecule is formed
by reaction of norbornadiene, a bicyclic hydrocarbon, and hexachlorocyclopentadiene, also called
C-56. In specific conditions, such as in living organisms, Aldrin can be oxidised to form Dieldrin.
Endrin is a stereoisomer of Dieldrin, differing in the spatial orientation of the oxygen group, as well as
one hydrogen and one chlorine bond. Cyclodiene compounds selected in this study also comprise
Chlordane and Heptachlor. Also derived from hexachlorocyclopentadiene, Chlordane and Heptachlor
have eight and seven chlorine atoms, respectively, surrounding the polycyclic organic structure.
It has been observed that when Heptachlor penetrates the soil, it can be turned into Heptachlor
epoxide by soil microorganisms in an epoxy reaction. Toxaphene is another polycyclic organochlorine
compound, formed by the chlorination of camphene, usually by chlorine gas. Also called camphechlor
or polychlorocamphene, Toxaphene 8 possesses eight chlorine groups [26].

Except for Toxaphene, all molecules present one unsaturated bond, enabling adsorption via π–π
stacking of electrons with suitable adsorbents. Dieldrin and Endrin present three chlorine groups at
proximity, while other molecules show two chlorine groups, except for Aldrin, which does not show
any hydrophobic group near the unsaturated bond.

Selected organochlorine POPs are of a similar weight, ranging from 365 g/mol for Aldrin to
414 g/mol for Toxaphene; however, they differ in their spatial orientation. Apolar molecules have
a solubility in water below 0.6 mg/L, with octanol-water partition coefficients over 5. Dieldrin,
Endrin and Heptachlor epoxide are only slightly polar molecules due to the presence of one oxygen
group (an electron acceptor group), which significantly improves their water affinity (0.019 mg/L
for Aldrin and 0.19 mg/L for Dieldrin) and is believed to improve binding with adsorbents by
electrostatic interaction.

Table 10. Characteristics of Aldrin, Dieldrin, Endrin, Chlordane, Heptachlor, Heptachlor epoxide,
Toxaphene 8 [26].

Name
Molecular Log Kow

Solubility in Water
(mg/L, 25 ◦C) 2D Structure

H Bound Count

Weight (g/mol) Formula Donor Acceptor

Aldrin 364.896 C12H8Cl6 5.6 0.027
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4.1.1. Adsorbate Properties  

Table 10 shows the physico-chemical characteristics of selected aliphatic organochlorines in this 
review, namely Aldrin, Dieldrin, Endrin, Chlordane, Heptachlor, Heptachlor epoxide, and 
Toxaphene 8. Drin pesticides possess an alicyclic structure with 6 chlorine groups. The Aldrin 
molecule is formed by reaction of norbornadiene, a bicyclic hydrocarbon, and 
hexachlorocyclopentadiene, also called C-56. In specific conditions, such as in living organisms, 
Aldrin can be oxidised to form Dieldrin. Endrin is a stereoisomer of Dieldrin, differing in the spatial 
orientation of the oxygen group, as well as one hydrogen and one chlorine bond. Cyclodiene 
compounds selected in this study also comprise Chlordane and Heptachlor. Also derived from 
hexachlorocyclopentadiene, Chlordane and Heptachlor have eight and seven chlorine atoms, 
respectively, surrounding the polycyclic organic structure. It has been observed that when 
Heptachlor penetrates the soil, it can be turned into Heptachlor epoxide by soil microorganisms in 
an epoxy reaction. Toxaphene is another polycyclic organochlorine compound, formed by the 
chlorination of camphene, usually by chlorine gas. Also called camphechlor or polychlorocamphene, 
Toxaphene 8 possesses eight chlorine groups [26]. 

Except for Toxaphene, all molecules present one unsaturated bond, enabling adsorption via π–
π stacking of electrons with suitable adsorbents. Dieldrin and Endrin present three chlorine groups 
at proximity, while other molecules show two chlorine groups, except for Aldrin, which does not 
show any hydrophobic group near the unsaturated bond. 

Selected organochlorine POPs are of a similar weight, ranging from 365 g/mol for Aldrin to 414 
g/mol for Toxaphene; however, they differ in their spatial orientation. Apolar molecules have a 
solubility in water below 0.6 mg/L, with octanol-water partition coefficients over 5. Dieldrin, Endrin 
and Heptachlor epoxide are only slightly polar molecules due to the presence of one oxygen group 
(an electron acceptor group), which significantly improves their water affinity (0.019 mg/L for Aldrin 
and 0.19 mg/L for Dieldrin) and is believed to improve binding with adsorbents by electrostatic 
interaction. 

Table 10. Characteristics of Aldrin, Dieldrin, Endrin, Chlordane, Heptachlor, Heptachlor epoxide, 
Toxaphene 8 [26]. 
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Molecular 

Log 
Kow 

Solubility in Water 
(mg/L, 25 °C) 

2D Structure 
H Bound Count

Weight 
(g/mol) 

Formula Donor Acceptor 

Aldrin 364.896 C12H8Cl6 5.6 0.027 

 

0 0 

Dieldrin 380.895 C12H8Cl6O 5.4 0.19 

 

0 1 

Endrin 380.895 C12H8Cl6O 5.2 0.23 

 

0 1 

0 1

Endrin 380.895 C12H8Cl6O 5.2 0.23
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Table 10. Cont.

Name
Molecular Log Kow

Solubility in Water
(mg/L, 25 ◦C) 2D Structure

H Bound Count

Weight (g/mol) Formula Donor Acceptor

Chlordane 409.758 C10H6Cl8 5.16 0.1
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15, N6). These results show that although adsorbent specific surface area and pore channels could be 
adapted to improve the adsorptive performance, activated carbons yield removal efficiencies over 
95%. However, compared to nanomaterial adsorbents, a large adsorbent dose is required. 

Acid-treated date and olive stones showed a significantly improved performance over non-
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4.1.2. Nanofibers for Pesticide Adsorption

Figure 10 shows the relationship between adsorption capacity and test conditions of initial
contaminant concentration and adsorbent dose for Aldrin, Dieldrin, Endrin pesticides plus Heptachlor
and its epoxide. Polystyrene (PES) nanofibers decorated with titania nanoparticles showed limited
adsorptive performance for these pesticides, as well as against Chlordane, showing a capacity of
0.02 mg/g (Table 11, N1) [92]. Adsorbent surface properties were not reported, yet the poor affinity
of hydrophobic polyester for hydrophobic organochlorines could have impacted the performance,
with adsorption reaction localized on the titania surface. In the case of Dieldrin removal, bromopropyl
functionalised silica nanofibers revealed an adsorption capacity of 0.19 mg/g for contamination and
adsorbent dose of 20 µg/L and 0.1 g/L, respectively (Table 12, N1). In comparison, untreated silica
nanofibers achieved a capacity of 0.014 mg/g (Table 12, N2). The addition of a dense bromopropyl
layer on silica nanofibers produced a hydrophobic adsorbent surface, with chemical affinity with
pesticide chlorine groups.

Concerning Aldrin removal, vegetal activated carbon showed a relatively high performance with
a capacity of 0.38 mg/g for a contamination of 2 mg/L, yet for a relatively large dose of 5 g/L (Table 13,
N2). Vegetal activated carbon performed a similar role in the case of Dieldrin adsorption, in the same
conditions (Table 12, N8). Against Heptachlor epoxide, the vegetal activated carbon was reported to
show a capacity of 0.42 mg/g for a contamination of 2.2 mg/L for a similar dose of 5 g/L (Table 14,
N7). Finally, in the case of Endrin, powdered activated carbon was reported to show a capacity of
0.085 mg/g for a contamination of 0.8 µg/L, and a relatively large dose of 0.2 g/L (Table 15, N6). These
results show that although adsorbent specific surface area and pore channels could be adapted to
improve the adsorptive performance, activated carbons yield removal efficiencies over 95%. However,
compared to nanomaterial adsorbents, a large adsorbent dose is required.

Acid-treated date and olive stones showed a significantly improved performance over non-treated
biomass adsorbents. For instance, acid-treated date stones showed a capacity of 0.45 mg/g in the
removal of Aldrin, while untreated date stones yielded 0.05 µg/g for conditions of contamination
and adsorbent dose of respectively 500 µg/L, 1 g/L and 0.5 µ g/L and 10 g/L (Table 13, N9, N12).
Date stones were thermally treated with hydrochloric acid, thus creating a hydrophobic layer on
the adsorbent surface, and facilitating the anchorage of organochlorines [93]. In the adsorption of
Dieldrin and Endrin, acid-treated date stones showed a capacity of 0.44 mg/g and 0.40 mg/g, in
the same conditions as Aldrin capture (Table 12, N18 and Table 15, N10). The lower performance
in the adsorption of Endrin compared to Dieldrin can be explained by the spatial organization of
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the Endrin molecule, with several orientations. The similar adsorption capacities of Aldrin and
Dieldrin indicate that the pesticide oxide groups of Dieldrin and Endrin do not significantly influence
the adsorption reaction, meaning electrostatic interactions played a minor role in the capture of
these pesticides. Finally, cellulose nanofibers modified with manganese oxide have been reported to
yield 96.5% removal against Toxaphene 8, highlighting the potential of metal oxide-based nanofiber
adsorbents (Table 16, N1).
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Figure 10. Relationship between adsorbent dose (blue column, left scale), initial pesticide concentration
(green column, middle right scale) and adsorption capacity (red scatter, far left scale) in the adsorption
of Aldrin (A); Dieldrin (B); Endrin (C); and Heptachlor/epoxide (D). Insufficient data reported for
Chlordane and Toxaphene.
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Table 11. Nanofibrous adsorbent properties and adsorption conditions for the removal of Chlordane.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions
Removal

(%) Ref.
BET (m2/g)

Pore Volume
(cm3/g)

Pore
Diameter

(nm)

Initial P
Concentration

(µg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C)
Eq. Time

(h)
Kinetic
Model

Isotherm
Model

1 TiO2 nanowires/Polystyrene
nanocomposites 0.021 57 2 73.7 [92]

Table 12. Nanofibrous adsorbent properties and adsorption conditions for the removal of Dieldrin.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions
Removal

(%) Ref.
BET (m2/g)

Pore Volume
(cm3/g)

Pore
Diameter

(nm)

Initial P
Concentration

(µg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C)
Eq. Time

(h) Kinetic Model Isotherm
Model

1 Bromopropyl–silica nanofibers 0.19 20 0.1 25 8 Freundlich 91.0 [94]

2 Silica nanofibers 0.014 20 0.1 25 8 20.9

3 TiO2 nanowires/Polystyrene nanocomposites 0.013 29 2 89.7 [92]

4 Lecithin–Cellulose acetate fibers 0.096 50 0.5 10 96 [95]

5 Graphene oxide–iron oxide nanoparticles 0.00005 1 15 4 25 0.5 Pseudo II order Langmuir 74 [96]

6 Commercial granulated activated carbon 0.073 20 0.1 25 8 38.7 [94]

7 Triolein embedded activated carbon 721 0.0019 10 10 10 [97]

8 Commercial vegetal activated carbon 0.38 2000 5 20 0.3 Freundlich 95.3 [98]

9 Cyclodextrin-modified nanoporous carbon 890 1.35 5.1 0.03 100 1 Freundlich 30 [99]

10 Cellulose acetate/triolein spheres 0.00095 10 10 25 13 95 [100]

11 Cerasome forming lipid 0.23 160 0.6 7 25 Langmuir 84.4 [101]

12 Cerasome forming lipid with Fe3O4 nanoparticles 0.25 160 0.7 7 25 Langmuir 99.9 [101]

13 Bacterial cells adsorbed to magnetite 0.097 20 0.185 0.25 89.9 [102]

14 Hydrophylic silica aerogel 547 2.4 17.6 0.054 150 0.67 25 22 21.5 [103]

15 Hydrophobic silica aerogel 907 2.95 21 0.021 150 0.67 25 6 Freundlich 92.3 [103]

16 Xerogel 988 0.64 3.2 0.0067 150 0.67 25 22 3.0 [103]

17 Cactus pear leaves 0.0001 10 60 7 23 0.15 60 [104]

18 Acid-treated date stones 421 0.44 500 1 25 4.2 Pseudo II order Freundlich 87.2 [93]

19 Acid-treated olive stones 479 0.44 500 1 25 5 Pseudo II order Langmuir 87.6 [105]

20 Montmorillonite 18.5 0.00099 5 5 1 25 2 Pseudo II order Freundlich 99 [106]

21 Bamboo canes 3818 0.000044 0.5 10 6 40 7 Pseudo I order Freundlich 86.2 [16]

22 Date stones 394.3 0.000041 0.5 10 6 40 7 Pseudo I order Freundlich 83.9 [16]

23 Olive stones 379.1 0.000047 0.5 10 6 40 7 Pseudo I order Freundlich 94.9 [16]

24 Peanut shells 367.8 0.00004 0.5 10 6 40 7 Pseudo I order Freundlich 80.4 [16]

25 Avocado stones 342.2 0.000048 0.5 10 6 40 7 Pseudo I order Freundlich 95.8 [16]

26 Eucalyptus gomphocephala 289.5 0.000025 0.5 10 6 40 7 Pseudo I order Freundlich 49.9 [16]

27 Raphanus raphanistrum 296.2 0.000045 0.5 10 6 40 7 Pseudo I order Freundlich 89.4 [16]

28 Nerium oleander 275.0 0.000037 0.5 10 6 40 7 Pseudo I order Freundlich 72.8 [16]

29 Origanum compactum 306.3 0.000043 0.5 10 6 40 7 Pseudo I order Freundlich 87.4 [16]

30 Cistus landaniferus 311.4 0.000045 0.5 10 6 40 7 Pseudo I order Freundlich 90.9 [16]
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Table 13. Nanofibrous adsorbent properties and adsorption conditions for the removal of Aldrin.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions
Removal

(%) Ref.
BET (m2/g)

Pore Volume
(cm3/g)

Pore
Diameter

(nm)

Initial P
Concentration

(µg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C)
Eq. Time

(h) Kinetic Model Isotherm
Model

1 TiO2 nanowires/Polystyrene
nanocomposites 0.011 34 2 64.7 [92]

2 Commercial vegetal activated carbon 0.38 2000 5 20 0.3 95.3 [98]

3 Cyclodextrin modified nanoporous carbon 890 1.35 5.1 0.02 85 1 Freundlich 23.5 [99]

4 Cellulose acetate/triolein spheres 0.001 10 10 25 3 99.9 [100]

5 Bacterial cells adsorbed to magnetite 0.10 20 0.185 0.25 92.9 [102]

6 Montmorillonite 18.5 0.045 5 0.1 6 25 3.75 Pseudo II order Freundlich 90 [106]

7 Clinoptilolite 0.0023 25 10 25 Pseudo II order Freundlich 95 [107]

8 Cactus pear leaves 0.0001 10 60 7 23 0.15 60 [104]

9 Acid-treated date stones 421 0.45 500 1 25 4.2 Pseudo II order Freundlich 90.2 [93]

10 Acid-treated olive stones 479 0.46 500 1 25 5 Pseudo II order Langmuir 91.7 [105]

11 Bamboo canes 381.8 0.000047 0.5 10 6 40 7 Pseudo I order Freundlich 93.7 [16]

12 Date stones 394.3 0.000048 0.5 10 6 40 7 Pseudo I order Freundlich 95.9 [16]

13 Olive stones 379.1 0.000049 0.5 10 6 40 7 Pseudo I order Freundlich 98.5 [16]

14 Peanut shells 367.7 0.000047 0.5 10 6 40 7 Pseudo I order Freundlich 94.9 [16]

15 Avocado stones 342.2 0.000049 0.5 10 6 40 7 Pseudo I order Freundlich 97.4 [16]

16 Eucalyptus gomphocephala 289.5 0.000047 0.5 10 6 40 7 Pseudo I order Freundlich 93.3 [16]

17 Raphanus raphanistrum 296.2 0.000045 0.5 10 6 40 7 Pseudo I order Freundlich 90.5 [16]

18 Nerium oleander 275.0 0.000047 0.5 10 6 40 7 Pseudo I order Freundlich 93.0 [16]

19 Origanum compactum 306.3 0.000046 0.5 10 6 40 7 Pseudo I order Freundlich 92.3 [16]

20 Cistus landaniferus 311.4 0.000046 0.5 10 6 40 7 Pseudo I order Freundlich 91.4 [16]

Table 14. Nanofibrous adsorbent properties and adsorption conditions for the removal of Heptachlor and Heptachlor epoxide.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions
Removal

(%) Ref.
BET (m2/g)

Pore Volume
(cm3/g)

Pore
Diameter

(nm)

Initial P
Concentration

(µg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C)
Eq. Time

(h) Kinetic Model Isotherm
Model

Heptachlor

1 Activated carbon from wheat straw 176 0.631 0.48 1000 2 7 22 22 Pseudo II order Langmuir 96.6 [108]

2 Bacterial cells adsorbed to magnetite 0.11 20 0.185 0.25 90.8 [102]

3 Lecithin–Cellulose acetate fibers 0.098 50 0.5 10 98 [95]

4 Montmorillonite 18.5 0.00096 5 5 1 25 2 Pseudo II order Freundlich 96 [106]

5 Pine bark 0.0038 20 5 20 1.5 Freundlich 93.6 [109]

Heptachlor epoxide

6 TiO2 nanowires/Polystyrene
nanocomposites 0.037 74 2 99.9 [92]

7 Commercial vegetal activated carbon 0.42 2200 5 20 0.3 96.4 [98]

8 Cellulose acetate/triolein spheres 0.0009 10 10 25 13 90 [100]
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Table 15. Nanofibrous adsorbent properties and adsorption conditions for the removal of Endrin.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions
Removal

(%) Ref.
BET (m2/g)

Pore Volume
(cm3/g)

Pore
Diameter

(nm)

Initial P
Concentration

(µg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C)
Eq. Time

(h) Kinetic Model Isotherm
Model

1 TiO2 nanowires/Polystyrene
nanocomposites 0.014 39 2 71.8 [92]

2 Lecithin–Cellulose acetate fibers 0.094 50 0.5 10 93.5 [95]

3 Oxidized carbon nanotubes 0.082 0.8 0.2 6 20 Linear 99.9 [20]

4 Carbon nanotubes 110 0.09 0.8 0.2 6 20 Linear 99.9 [20]

5 Graphene oxide- iron oxide nanoparticles 0.0057 99 15 4 25 0.5 Pseudo I order Langmuir 86 [96]

6 Powdered activated carbon 742.9 0.085 0.8 0.2 6 20 Linear 99.9 [20]

7 Cellulose acetate/triolein spheres 0.0009 10 10 25 20 90 [100]

8 Montmorillonite 18.5 0.00084 5 5 1 25 2 Pseudo II order Freundlich 84 [106]

9 Montmorillonite 14.1 0.038 10.9 0.1 1 6.4 20 24 Linear [110]

10 Acid-treated date stones 421 0.40 500 1 25 4.2 Pseudo II order Freundlich 80.8 [93]

11 Acid-treated olive stones 479 0.40 500 1 25 5 Pseudo II order Langmuir 80.2 [105]

12 Bamboo canes 381 0.000042 0.5 10 6 40 7 Pseudo I order Freundlich 83.0 [16]

13 Date stones 394. 0.000035 0.5 10 6 40 7 Pseudo I order Freundlich 69.3 [16]

14 Olive stones 379 0.000046 0.5 10 6 40 7 Pseudo I order Freundlich 92.9 [16]

15 Peanut shells 368 0.000039 0.5 10 6 40 7 Pseudo I order Freundlich 78.8 [16]

16 Avocado stones 342 0.000048 0.5 10 6 40 7 Pseudo I order Freundlich 95.9 [16]

17 Eucalyptus gomphocephala 289 0.000039 0.5 10 6 40 7 Pseudo I order Freundlich 78.5 [16]

18 Raphanus raphanistrum 296 0.000041 0.5 10 6 40 7 Pseudo I order Freundlich 81.9 [16]

19 Nerium oleander 275 0.000025 0.5 10 6 40 7 Pseudo I order Freundlich 49.3 [16]

20 Origanum compactum 306 0.000030 0.5 10 6 40 7 Pseudo I order Freundlich 60.7 [16]

21 Cistus landaniferus 311 0.000037 0.5 10 6 40 7 Pseudo I order Freundlich 73.4 [16]

Table 16. Nanofibrous adsorbent properties and adsorption conditions for the removal of Toxaphene 8.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions
Removal

(%)
Ref.

BET (m2/g)
Pore Volume

(cm3/g)

Pore
Diameter

(nm)

Initial P
Concentration

(µg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C)
Eq. Time

(h) Kinetic Model Isotherm
Model

1 MnO2/Cellulose fiber nanocomposites 87 0.965 5000 5 3 25 0.5 Pseudo II order Langmuir 96.5 [111]
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4.2. Polychlorinated Biphenyls (PCBs) and Polyaromatic Hydrocarbons (PAHs)

4.2.1. Adsorbate Properties

Table 17 presents the different molecular structures for the selected polychlorinated biphenyls
PCBs in this study, which are namely 2 to 6 -PCB, PCB 28 and PCB 77. PCBs are polycyclic aromatic
organochlorines of chemical formula C12H10−xClx. The PCB structure is composed of two benzene
rings, thus sharing the aromatic structure of phenols molecules, and decorated by a number of chlorine
groups. PCBs 2 and 3, also called 2- and 3-chlorobiphenyls, possess one chlorine group attached on
position 2 and 3, respectively, on one of the benzene rings. Sharing a molecular weight of 188.7 g/mol,
water solubility was determined at 1.45 mg/L (25 ◦C), corresponding to a Log Kow of 4.54. PCBs 4–6
possess two chlorine groups, for a weight of 223.1 g/mol. Their chemical names are 2,2′- 2,3- and
2,3′-dichlorobiphenyls, respectively, corresponding to the chlorine groups’ respective positions on one
or both benzene rings. PCB 28, called 2,4,4′-trichlorobiphenyl, possesses three chlorine groups for
a weight of 257.5 g/mol. PCB 77, called 3,3′,4,4′-tetrachlorobiphenyl, possesses four chlorine group for
a weight of 292.0 g/mol. Compared to monochloro-biphenyls, PCB 77 water solubility decreased to
0.18 mg/L (25 ◦C, log Kow 6.72). All molecules are apolar.

Table 17. Molecular structure of PCB 2, PCB 3, PCB 4, PCB 5, PCB 6, PCB 28, and PCB 77 (obtained
from PubChem).

2-PCB 3-PCB 4-PCB 5-PCB 6-PCB 28-PCB 77-PCB
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Table 18 presents selected characteristics of the Phenantrene molecule, non-POP-classified, from 
the family of polycyclic aromatic hydrocarbon compounds. Of a molecular weight in the same order 
as monochlorinated biphenyls, its water solubility was determined to be 1.15 mg/L (25 °C). An apolar 
molecule, Phenantrene is composed of three fused benzene rings.  

Table 18. Characteristics of Phenantrene (obtained from PubChem). 

Name Formula M (g/mol) Log Kow Solubility in Water (mg/L, 25°C) Structure 

Phenantrene C14H10 178.234 4.46 1.15 

4.2.2. Nanofibers for Pesticide Adsorption 

Figure 11 shows the adsorption capacity related to the adsorbent dose and initial contamination 
for adsorbents of PCBs and Phenantrene. Oriented porous magnetite nanofibers were tested in the 
adsorption of PCB 77 and showed a capacity of 0.18 mg/g in hexane for a contamination of 30 µg/L 
and a dose of 0.15 g/L (Table 19, N8). However, activated carbon showed the largest adsorption 
capacity of 649 mg/g for a contamination of 4 mg/L and a relatively small dose of 0.015 g/L (Table 19, 
N1). To study the influence of the adsorbate aromatic structure on the adsorption performance, 
Phenantrene, with three aromatic cycles, has been considered here. Cellulose acetate unmodified 
nanofibers showed limited performance in the capture of Phenantrene, which could be due to the 
hydrophilic nature of cellulose acetate; they are thus poorly adapted for the adsorption of apolar 
compounds [112]. Cyclodextrin-grafted cellulose acetate nanofibers were tested for the capture of 
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Table 18 presents selected characteristics of the Phenantrene molecule, non-POP-classified, from 
the family of polycyclic aromatic hydrocarbon compounds. Of a molecular weight in the same order 
as monochlorinated biphenyls, its water solubility was determined to be 1.15 mg/L (25 °C). An apolar 
molecule, Phenantrene is composed of three fused benzene rings.  

Table 18. Characteristics of Phenantrene (obtained from PubChem). 

Name Formula M (g/mol) Log Kow Solubility in Water (mg/L, 25°C) Structure 

Phenantrene C14H10 178.234 4.46 1.15 

4.2.2. Nanofibers for Pesticide Adsorption 

Figure 11 shows the adsorption capacity related to the adsorbent dose and initial contamination 
for adsorbents of PCBs and Phenantrene. Oriented porous magnetite nanofibers were tested in the 
adsorption of PCB 77 and showed a capacity of 0.18 mg/g in hexane for a contamination of 30 µg/L 
and a dose of 0.15 g/L (Table 19, N8). However, activated carbon showed the largest adsorption 
capacity of 649 mg/g for a contamination of 4 mg/L and a relatively small dose of 0.015 g/L (Table 19, 
N1). To study the influence of the adsorbate aromatic structure on the adsorption performance, 
Phenantrene, with three aromatic cycles, has been considered here. Cellulose acetate unmodified 
nanofibers showed limited performance in the capture of Phenantrene, which could be due to the 
hydrophilic nature of cellulose acetate; they are thus poorly adapted for the adsorption of apolar 
compounds [112]. Cyclodextrin-grafted cellulose acetate nanofibers were tested for the capture of 
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Table 18 presents selected characteristics of the Phenantrene molecule, non-POP-classified, from 
the family of polycyclic aromatic hydrocarbon compounds. Of a molecular weight in the same order 
as monochlorinated biphenyls, its water solubility was determined to be 1.15 mg/L (25 °C). An apolar 
molecule, Phenantrene is composed of three fused benzene rings.  

Table 18. Characteristics of Phenantrene (obtained from PubChem). 

Name Formula M (g/mol) Log Kow Solubility in Water (mg/L, 25°C) Structure 

Phenantrene C14H10 178.234 4.46 1.15 

4.2.2. Nanofibers for Pesticide Adsorption 

Figure 11 shows the adsorption capacity related to the adsorbent dose and initial contamination 
for adsorbents of PCBs and Phenantrene. Oriented porous magnetite nanofibers were tested in the 
adsorption of PCB 77 and showed a capacity of 0.18 mg/g in hexane for a contamination of 30 µg/L 
and a dose of 0.15 g/L (Table 19, N8). However, activated carbon showed the largest adsorption 
capacity of 649 mg/g for a contamination of 4 mg/L and a relatively small dose of 0.015 g/L (Table 19, 
N1). To study the influence of the adsorbate aromatic structure on the adsorption performance, 
Phenantrene, with three aromatic cycles, has been considered here. Cellulose acetate unmodified 
nanofibers showed limited performance in the capture of Phenantrene, which could be due to the 
hydrophilic nature of cellulose acetate; they are thus poorly adapted for the adsorption of apolar 
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Figure 11 shows the adsorption capacity related to the adsorbent dose and initial contamination
for adsorbents of PCBs and Phenantrene. Oriented porous magnetite nanofibers were tested in
the adsorption of PCB 77 and showed a capacity of 0.18 mg/g in hexane for a contamination
of 30 µg/L and a dose of 0.15 g/L (Table 19, N8). However, activated carbon showed the largest
adsorption capacity of 649 mg/g for a contamination of 4 mg/L and a relatively small dose of 0.015 g/L
(Table 19, N1). To study the influence of the adsorbate aromatic structure on the adsorption performance,
Phenantrene, with three aromatic cycles, has been considered here. Cellulose acetate unmodified
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nanofibers showed limited performance in the capture of Phenantrene, which could be due to the
hydrophilic nature of cellulose acetate; they are thus poorly adapted for the adsorption of apolar
compounds [112]. Cyclodextrin-grafted cellulose acetate nanofibers were tested for the capture of
Phenantrene via molecular filtration, by inclusion–complexation of the hydrophobic contaminants in
the apolar cyclodextrin cavity [112]. Hydrophobic interactions led to a contaminant removal of 97%
(Table 20, N2). Cross-linking of cellulose acetate nanofibers with benzene rings by polybenzoxazine
provided a hydrophobic adsorptive structure [113]. The adsorbent benzene rings further enabled π–π
interactions with Phenantrene aromatic rings, thus leading to 98.5% contaminant removal (Table 20, N1).
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Figure 11. Graphs showing the proportion between adsorbent dose (blue column, left scale), initial
pesticide concentration (green column, middle right scale) and adsorption capacity (red scatter, far left
scale) in the adsorption of PCBs (A) and Phenantrene (B).

Activated carbons and carbon nanotubes however, demonstrated an adsorption capacity of
85 mg/g for a dose of 4 mg/L (initial concentration was not reported) (Table 20, N7). It can be
suggested that π–π electron interaction between the unsaturated Phenantrene aromatics and the
carbon adsorbent surface is the predominant reaction mechanism; in that sense, a higher carbon
content and full crystalline structure would lead to an increased specific surface area and, for a large
pore volume of adapted size, Phenantrene adsorption. Among the reported carbon-based materials,
granular activated carbon possessed a BET of 706 m2/g and a pore volume of 0.711 cm3/g, yielding the
highest performance. On the other hand, carbon nanotubes with a higher pore volume of 0.818 cm3/g
but a lower BET of 537 m2/g showed a capacity of 75 mg/g (Table 20, N4). Furthermore, activated
carbon fibers with the highest BET of 949 m2/g but the lowest pore volume of 0.381 cm3/g yielded
a lower capacity of 60 mg/g (Table 20, N6), indicating a synergetic effect of pore volume and surface
area (BET).
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Table 19. Nanofibrous adsorbent properties and adsorption conditions for the removal of PCBs.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions

Removal (%) Pesticide Ref.
BET (m2/g)

Pore Volume
(cm3/g)

Pore Diameter
(nm)

Initial P
Concentration

(µg/L)

Adsorbent
Dose (g/L) pH Temperature

(◦C)
Eq. Time

(h)
Kinetic
Model

Isotherm
Model

1 Activated carbon
extracted from coal 986 0.31 649 4000 0.015 25 5 100 PCB 2 [114]

2 Activated carbon
extracted from wood 1747 0.48 987 4000 0.015 25 5 100 PCB 2 [114]

3 Montmorillonite clay in
alginate gel beads 0.0022 10 10 5.5 25 6.5 Pseudo II

order 95 PCB 3 [115]

4 Montmorillonite clay in
alginate gel beads 0.0022 10 10 5.5 25 6.5 Pseudo II

order 84 PCB 4 [115]

5 Montmorillonite clay in
alginate gel beads 0.0019 10 10 5.5 25 6.5 Pseudo II

order 79 PCB 5 [115]

6 Montmorillonite clay in
alginate gel beads 0.0019 10 10 5.5 25 6.5 Pseudo II

order 76 PCB 6 [115]

7
Fe3O4 nanoparticles
grafted on graphene

oxide
145.8 0.71 1470 0.25 25 0.5 Pseudo II

order Linear 12.1 PCB 28 [116]

8 Oriented magnetite
porous nanofibers 123 5 0.18 30 0.15 0.1 90.0 PCB-77 [117]

Table 20. Nanofibrous adsorbent properties and adsorption conditions for the removal of Phenantrene.

N Adsorbent

Adsorbent Properties
Adsorption

Capacity (mg/g)

Adsorption Conditions

Removal (%) Ref.
BET (m2/g)

Diameter
(nm)

Pore Volume
(cm3/g)

Initial P
Concentration

(mg/L)

Adsorbent Dose
(g/L)

Temperature
(◦C)

Equilibrium
Time (h)

Kinetic
Model

1 Cellulose acetate–polybenzoxazine nanofibers 450 0.592 1 1.67 1 Pseudo II
order 98.5 [113]

2 Cyclodextrin-grafted cellulose acetate
nanofibers 1520 0.52 1.8 3.3 8 97 [112]

3 Cellulose acetate nanofibers 675 0.45 1.8 3.3 3 83 [112]

4 Carbon nanotubes 537 0.818 75 0.004 [112]

5 Benzene-, dextran- and cyclodextrin-coated
magnetic nanoparticles 250,000 0.8 25 85 [118]

6 Activated carbon fiber 949 0.381 60 0.004 [112]

7 Granular activated carbon 706 0.711 85 0.004 [112]
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5. Adsorbent Regenerability

Two studies reported the adsorbent desorption and recyclability capacity for further use in the
industry, and are reviewed below.

Nylon 6–Poly(pyrrole) core-shell nanofibers have been investigated for atrazine desorption and
adsorbent regenerability [41]. The desorption procedure consisted of successive washing in methanol
and deionized water for 5 min each to elute atrazine, followed by air-drying of nanofibers at room
temperature. With this procedure, Nylon-Poly(pyrrole) nanofibers demonstrated the same capacity
of 2.77 mg/g over five cycles, with a slight decrease of 0.2 mg/g in adsorption capacity observed
at the 6th cycle (Table 4, N3) [41]. With an adsorption plateau reached after 5 h and a desorption
procedure estimated around 3 h, such an adsorbent has a life-span of 37 h at its maximal efficiency.
Electrostatic interaction and π–π stacking of electrons had been identified as the two adsorption
mechanisms at stake in the uptake of Atrazine by Nylon-Poly(pyrrole) nanofibers [41]. Although
absorption of Atrazine would be a recyclability limitation, the methanol wash procedure might also
imply methanol adsorption.

Manganese oxide–cellulose fiber nanocomposites were investigated for the desorption of
Toxaphene (Table 16, N1). Desorption rates were shown to be of 12%, 13% and 25%, respectively,
at pH 3, 7, and 11 [111]. The preferential affinity for alkaline pH could suggest the reversibility of the
adsorption reaction. Indeed, cellulose and manganese oxide (MnO2) were reported in the literature
to have an isoelectric point of 2.5 and below 5.1, respectively [119,120]. At pH 11, both components
of the adsorbent material therefore carry a strong negative surface charge, while the decreasing
protonation of Toxaphene with increasing pH could suggest that both adsorbent and adsorbate carry
a negative surface charge, hence the desorption. However, the desorption protocol followed was not
reported [111].

6. Recommendations and Conclusions

Nanofiber-based materials showed their fast adsorption kinetics and required low adsorbent
dose compared to benchmark adsorbents in this study. For instance, polyacrylonitrile nanofibers
attained equilibrium after 0.5 h in the adsorption of Atrazine, for an adsorbent dose of 1 g/L (Table 4,
N5) [41]. Regarding the adsorption performance, engineered nanofibers yielded over 95% removal
efficiency with high adsorption capacities comparable to granular activated carbons and acid-treated
biomass. For example, activated carbon nanofibers against Phenol showed a capacity of 256.1 mg/g
(Table 7, N20), and cross-linked cellulose acetate-polybenzoxazine nanofibers demonstrated against
Phenantrene 98.5% removal (Table 20, N1) [61,113]. Such a nanofiber web presented adequate structural
and chemical surface characteristics for the adsorption of organic contaminants.

Essential structural characteristics for a nanofiber adsorbent were found to be surface pores and
density of functional sites. Indeed, the size of pores across the fiber surface was shown to have a major
impact on the saturation of the adsorbent, with pore channels engineered to take into account the size
or cross section of the contaminant showing higher performance. Activated carbon nanofibers for
phenol adsorption present a dual pore repartition of 0.4 nm and 0.8 nm, adapted to the phenol molecule
size, with a smallest cross section of 0.43 nm [61]. Molecular orientation of the contaminant is also
considered to prevent size-exclusion effects when one molecule is already adsorbed along a pore wall,
as highlighted by the performance comparison of Dieldrin and stereoisomer Endrin adsorption [73].
Adsorbent contact surface area ruled by the nanofiber average diameter impacted on the contaminant
capture, with diameters below 150 nm yielding higher performance in the capture of Atrazine [39].
Higher surface specific areas led in general to higher adsorption capacities, provided there was
contaminant diffusion along the surface pore channels. Activated carbon nanofibers demonstrated
a high BET of 2921 m2/g [61].

Regarding adsorbent surface chemistry, a total hydrophobic surface is preferable to show affinity
for adsorption—in the case of surface grafting of hydrophobic groups, adsorption may be impeded
along the pore walls [28]. Compared to hydrophobic interactions, electrostatic interactions and
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foremost electron interactions were shown to be more efficient adsorption mechanisms [41,113]. To this
end, adsorbent isoelectric point should be systematically determined to improve the contribution of
electrostatic interactions in the contaminant capture. Electron interaction in this study happens via π–π
stacking of electrons between adsorbate and adsorbent unsaturated bonds, justifying the high efficiency
of carbon-based adsorbents [61]. Other than pore and surface area characteristics, carbon adsorbent
crystallinity and carbon content are features of interest that could be investigated in order to improve
adsorption by electron interaction. The tuning of the carbon adsorbent surface chemistry to shift its
isoelectric point could also be investigated to improve the contaminant adsorption by electrostatic
interaction contribution. Other structures such as cellulose acetate crosslinked with polybenzoxazine
lead to a highly hydrophobic surface presenting unsaturated bonds, resulting in high performance
in the capture of Phenantrene [113]. Material functionalisation to reach a surface chemistry allowing
the three adsorption mechanism defined above could be the focus of future research in order to yield
complete contaminant removal.

Testing conditions in terms of initial contaminant concentration were found to vary between
0.5 µg/L and 700 mg/L in this study [16,81]. The initial level of contamination should be justified
by the occurrence of the selected contaminant in the environment rather than chosen as a function
of the available solution characterisation technique, as adsorbent performance may be affected by
a significant change in contaminant concentration. Isotherm analysis was found to be in over 80%
of the reported isotherm studies fitted to Langmuir and Freundlich models, with in more than 40%
of cases a report of the Freundlich constant with a correlation coefficient below 0.90 for performance
comparison with other adsorbents. Adsorption isotherms reflecting the adsorption mechanisms at
stake should be more carefully studied to avoid inconsistent performance comparisons.

So far, engineered nanofibers showed the highest performance in the one-off removal of pesticides
and disinfectants. However, these adsorbents also show versatility in the capture of contaminants.
Ways to create selectivity for a target molecule, such as fiber layers of different pore channels and
surface chemistry, could be further investigated. Adsorption being a conventional water treatment
technique, the adsorbent material fabrication and operational costs are critical to the implementation
of any new classes of materials. Industrial applications of nanofiber adsorbent material solutions
should be rigorously assessed and benchmarked against commercially available fabrication routes.
The adsorption kinetics and material dosage are also to be considered when evaluating adsorbent
life cycle and operational costs. Industrial-scale nanofiber fabrication devices by electrospinning or
multi-component fiber extrusion were reported to yield mass output varying between 0.02 kg/h and
0.2 kg/h, and up to 6.5 kg/h, respectively, with a production cost of $2–5/kg [121,122]. Other
competitive techniques such as force-spinning have been developed to simultaneously increase
mass output and fiber quality [123]. Furthermore, to develop a sustainable industry, adsorbent
recyclability must be further investigated. As the best-performing materials in the removal of POP
may not offer the best recyclability, it is critical to systematically investigate the adsorbent hysteresis of
adsorption–desorption. Regeneration of the adsorbent without increasing toxicity concerns linked to
adsorbed contaminants must also be investigated.
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