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Abstract: This study aims to orchestrate a less restrictive learning controller by using the
iteration-varying function, the so-called iterative learning controller (ILC), to synchronize two
nonlinear systems with free time delay and couple free. The mathematical theories are proven
rigorously and controllers are developed for system synchronization, and then an example is forged
to demonstrate the effectiveness of synchronization by the designed ILC. The ILC is designed
with a feed-forward based by the error dynamics between the two considered nonlinear drive and
response systems. The stability of the synchronization facilitated by the designed ILC is ensured by
rendering the convergence of an error dynamics that satisfied the Lyapunov function. The Lorenz
system within a drive-response system is considered as one system that drives another for the
demonstration of the effectiveness of the designed ILC to achieve synchronization and verified initial
conditions. Simulations are conducted for the controlled Lorenz system, and the results validated
well the expected capability of the designed ILC for synchronization and matched the proposed
mathematical theory.

Keywords: synchronization; chaos; Lorenz system; Iterative Learning Control (ILC); Lyapunov
function; error convergent

1. Introduction

The method of Iterative Learning Control (ILC) was applied to mechanical robots in 1984 for
performance improvement. The improvement is made possible by designing an on-line iterative
learning scheme based on a classical linear system that approximates well the original nonlinear system
of the robots. The approach of this on-line-learning ILC is of course very different from other known
approaches, such as repetitive control, adaptive control, and the neural network [1,2]. The essence
of on-line learning lies in the attribute of the controller that adapts its controller effort continuously
based on the error feedback from the output of the system in an on-line fashion [2–4]. This ILC
control method is applicable to many industrial systems for manufacturing, robotics, and assembly
line in mass production [2,3]. Recently, the ILC theory was employed for chaos synchronization to
stabilize communication protocols of encrypting and decrypting a message using dynamical filters,
which are bi-directional over unidirectional coupling schemes of Bernoulli units, towards the tap-proof
transmission of information via chaotic laser systems [5,6]. Due to the aforementioned value, the ILC
for chaos synchronization was also intensively studied by academics [5,6]. Different types of controllers
were developed, such as a proportional-integral-derivate (PID)-type ILC applied for improved robotic
operations [3,7]. Also, ILC was employed for dynamical system synchronization based on classical
linear system theory [8–11].

The Lyapunov criterion that served to guarantee the designed slave system in asymptotical
synchronization with the master system in [12] is a common strategy that is used to study the stability
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of a control system. The principle of the learning operator is described in Hauser [13], and the
Lyapunov function of the synchronization system pursues the method by Zhou [14] for stability.
The Lyapunov function exhibited in [15–21] forms the criteria of the restrictive system with couple and
time-delay to synchronize, the existence and stability conditions of two different continuous chaotic
systems, and the synchronization manifold of two unidirectional systems, respectively.

The synchronized system analyzing was similar to the generalized Lorenz systems by coupling
linear state error feedback control with coupling matrix to eliminate the given chaotic dynamics
synchronization [22]. The controller is considered the linear combination of error dynamics feedback
without the coupling matrix and previous learning rule to approach chaos synchronization [23].
The stable synchronization of a multi-chaotic network system was a single direction of the response
system with error feedback non-coupling and was dependent on the eigenvalues of different time-delay
coupling matrices between systems in [24]. The Iterative Feedback Tuning (IFT) method [25–27] was
addressed to approach the optimization of the parameters of the controller and avoid replacing the
bias information of the signal of the system. Therefore, the isochronal phenomenon of the non-linear
secure communication system synchronization has been investigated in, along with several activities
in nature [25].

This article employed an ILC law to design the controller, which is similar to adding a filter before
the input of the system, and to synchronize two nonlinear systems with a distinct initial condition.
The feed-forward control signal is an appropriate tracking reference that could achieve a low tracking
error between systems to approach the synchronization of systems. The ILC method has only been
applied to trace the trajectory of the robotic system and academic field over the past few decades.

The goal of this paper was not only to study the characteristics of the parameters in the
synchronization process of the system, but also to apply the results into a secure communication system,
as well as a traced robotic movement. This paper emphasized the “Learning” process and the behavior
of parameters in the synchronization system. The “Learning” process in this article was to avoid too
much matrix computing such as the linear matrix inequalities (LMI) method, to make it easy to find
the controller for the system, and to adjust the fault-tolerant of the system, but differently from the
iterative control process of the other studies, which emphasized periodic control. The proposed concept
was verified by an identical drive-response system with a different initial condition. The rigorous
proof and relevant mathematical theory was to prove the non-increasing bounded ILC law, the
stable error dynamical system, and the convergent tracking error between systems. The results of
the example in this paper indicated the behavior of the parameters in the synchronization process.
The generalized Lorenz system, as a numerical synchronization example of nonlinear drive-response
systems, is discussed in [22,27–29]. The chaos synchronization with undistinguished input and the
reconstructing chaotic system by evolutionary algorithm also used the Lorenz system in [30,31].

The relevant studies herein include the following: (1) generic synchronization systems formulation;
(2) proposing the related mathematical theory and the scheme of ILC; and (3) the simulation results by
example to verify the proposed theory and exhibit the performance of the ILC algorithm. Finally, this
paper derives a conclusion and a recommendation for future works.

2. The Iterative Learning Control (ILC) Problem Formulation

2.1. System Description

The drive and response systems are chaotic systems to synchronize with zero-time delay and
couple free. The general formulas of systems are described by Equations (1a) and (1b), respectively.

.
xm(t) = f (xm, t) = A

(
xi

m
)
xm(t),

ym(t) = Cmxm(t),
(1a)
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The response system adjusts the error between the drive and tracking systems to synchronization
by the control input Bu(k).

.
x(k)s (t) = f

(
x(k)s , t

)
+ Bu(k)(t) = A

(
xi

m
)
x(k)s (t) + Bu(k)(t),

y(k)
s (t) = Csx(k)s (t),

(1b)

The state vectors xm(t) and x(k)s (t) and the outputs ym and y(k)
s are of the drive-response systems in

the state space of Rn, respectively. Originally, f(xm, t) and f
(

x(k)s , t
)

weresimilar systems. The response

system includes the iterative control input signal of Bu(k)(t) and the output y(k)
s , after the k-th learning

of iteration. The Cm, Cs, and B = BT are non-singular constant matrices with appropriated dimensions
and some entries of the nonsingular polynomial matrix A

(
xi

m
)

are replaced by the i-th component of
xm(t),which is the factor of system synchronization, in which i = 1, 2, 3. The input signal sequence{

u(k)(t)
}

k=1, 2,...
in Rm is the control learning law after the k-th iterative learning for the response

system synchronizing the drive system.

∆(k) =
(

xm − x(k)s

)T
is the synchronization error and the output error of the drive-response

system is given ym − y(k)
s = Cmxm − Csx(k)s . The output error is equal to the synchronization error

when Cm = Cs = 1 is set.The dynamical system synchronization error between the drive-response
systems is described in Equations (1a) and (1b).

.
∆
(k)

=
.
xm(t)−

.
x(k)s (t) = A

(
xi

m

)(
xm − x(k)s

)T
+ Bu(k)(t) = A

(
xi

m

)
∆(k) + Bu(k)(t), (2)

The appropriate Bu(k)(t) is given and subtracted in Equation (2) to beabsorbed by B. The limitation

of synchronization error must approach zero, that is, lim
n→∞

∆(k) =
(

x(k)s − xm

)T
= 0, and the error

dynamics should be less than or equal to zero, that is,
.
∆ 5 0, when the iteration learning procedure is

applied to the response system to track the drive system in the time interval [0, T] after a sufficiently
large iterative number, k.

The characteristics between the drive and response systems are that the drive system is a reference
system and the tracking system is a response system in the synchronization procedure, respectively.
The response system traces the trajectory of the drive system by employing the output information
of the drive system. To achieve the goal of synchronization and search a system whose trajectory
is close to the drive system, it is necessary to find an estimated system similar to the drive system.
The estimated system in [21] can be defined by the measuring system of the drive system as shown in
Equation (3).

.
xm(t) = H(x, t) + ε = A

(
xi

m

)
x̂m(t) + ε, (3)

The nonlinear problem has no general solution. The perturbation and linearization techniques
will be applied to Equation (3). The least square linear estimation is familiar to minimize the errors in
measurement processes. The error criteria of Equation (3) is defined as

E(ε) = εTε =
( .

xm(t)−A
(

xi
m

)
x̂m(t)

)T( .
xm(t)−A

(
xi

m

)
x̂m(t)

)
, (4)

The minimization of E is to differentiate E with respect to the state vector x̂m and equal to the results:

∂E
∂x̂m

= −2
( .
xm

T(t)A
(

xi
m
))

+ 2
(

x̂m(t)
TA
(

xi
m
)TA

(
xi

m
))

= 0,

x̂m(t) =
(

A
(
xi

m
)TA

(
xi

m
))−1

A
(
xi

m
)T .

xm
T ,

(5)

The parameter x̂m(t) is the minimum value of the scale of error E.
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The design of the Lyapunov function reaches the synchronization of the chaotic system in which
the manifold xm = x(k)s must be stable [14–18].This fact indicates the system’s synchronization of
Equations (1a) and (1b) through the ILC procedure so that the error dynamics Equation (2) are stable
by the Lyapunov criteria and the local Lipschitz condition is satisfied during the period of the system.

Lemma 1. Equation (2) has a trivial solution by the ILC procedure f (xm, t) Equation (1a) and f
(

x(k)s , t
)

in
Equation (1b) are satisfied by the local Lipschitz condition in the interval [0, T].

Proof. By the ILC procedure, there is a trivial solution ∆(k) =
(

xm − x(k)s

)T
= 0 , which implies

δ > 0 for all ε > 0 and k = 0, 1, 2, . . . such that || f (xm, t)− f
(

x(k)s , t
)
|| < ε as ||xm − x(k)s || < δ ,

which means the condition || f (xm, t)− f
(

x(k)s , t
)
|| < ε||xm − x(k)s || isheld. The f (xm, t) isconvergent

to f
(

x(k)s , t
)

when ∆(k) =
(

xm − x(k)s

)T
approaches zero. The consequence of this lemma implies that

|| f (xm, t)− f
(

x(k)s , t
)
|| < εδ→ 0 .

The convergence of the synchronization error, ∆(k), indicates the error dynamics
.
∆
(k)

as

non-increasing, that is
.
∆
(k)
≤ 0, and is dependent on the iterative learning control law, u(k)(t) in

Equation (1a) is chosen as:

u(k)(t) = B1u(k−1)(t) + B2

(
∆̂m + ∆̂

(k)
s

)
= B1u(k−1)(t) + B2∆(k), (6)

in which B1 and B2 are appropriate constant matrices and symmetry. The learning law u(k−1) is prior

to u(k).∆̂m = (xm − x̂m)
T , and ∆̂

(k)
s =

(
x̂m − x(k)s

)T
are the errors between the estimated state vectors

and the state vectors of xm and x(k)s , respectively.

The sum of errors of Equation (6) is ∆̂m + ∆̂
(k)
s = ∆(k). If the error dynamics in Equation (2) is

convergent then the iterative learning control law u(k)(t) is decremented. The completed proof is
exhibited in Lemma 2.

Lemma 2. If the error dynamics in Equation (2) are convergent, then the iterative learning control law in
Equation (6) is anon-increasing function.

Proof. From Equation (5) and Lemma 1, the error in Equation (2) can be rewritten as follows

∆(k) = (xm − x̂m)
T +

(
x̂m − x(k)s

)T
= ∆̂m + ∆̂

(k)
s , (7)

Suppose that (xm − x̂m)
T ≤ εT

1 and
(

x̂m − x(k)s

)T
≤ εT

2 take the ε = Max
{

εT
1 , εT

2
}

; Equation (7)

can be rewritten in detail as ∆(k) = (xm − x̂m)
T +

(
x̂m − x(k)s

)T
= ∆̂m + ∆̂

(k)
s ≤ 2ε. The difference of

iterative learning control law is u(k)(t)− B1u(k−1)(t) = B2∆(k) ≤ B2∆(k) ≤ B2∆(k) = 0, which means
the sequence

{
u(k)(t)

}
k=1,2,...

is non-increasing as the error ∆(k) is convergent to zero.

The analytical approximation of the chaotic systems synchronizing the trajectoryin Equations (1a)
and (1b) is to investigate the Lyapunov stability in [14–18]. The Lyapunov criterion introduced
in Theorem 1 is a positive-definite function with no-time delay and couple free of the system
(Equation (2)).
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Theorem 1. The iterative learning control law is chosen as Equation (6). The Lyapunov function can be defined as

V(k)(t) =
1
2

(
∆(k)

)T(
∆(k)

)
+ µ

tk∫
tk−1

(
u(k)

)T(
u(k)

)
dτ, (8)

(a) When µ = 0, V(k)(t) = 1
2

(
∆(k)

)T(
∆(k)

)
is the Lyapunov function of an estimation system in the

system (Equation (3)).
(b) If V(k)(t) is Lyapunov function of the system (Equation (2)), then the system should bestable.

Proof. The proof of part (a) in the theorem has been proven. The derivative of the function V(k)(t)
along the track of the system (Equation (2)) is in [28], the discussion and written as

.
V
(k)

(t) =
(

∆(k)
)T
(

.
∆
(k)
)

, (9)

By using Lemma 1, Equation (9) has a trivial solution. The derivative of a Lyapunov function is
equal to zero or negative, which implies that the system (Equation (2)) is stable.

Next, the proof of part (b) is a general case of a chaotic system with no time-delay and couple
free. The derivative of the function V(k)(t) along the track of the system (Equation (2)) is introduced
in [14–18] and followed as:

.
V
(k)

(t) =
(

∆(k)
)T
(

.
∆
(k)
)
+ µ

[(
u(k)(tk)

)T(
u(k)(tk)

)
−
(

u(k)(tk−1)
)T(

u(k)(tk−1)
)]

=
(

∆(k)
)T
(

.
∆
(k)
)
+ µ

[(
u(k)(tk)

)2
−
(

u(k)(tk−1)
)2
]

.
(10)

The first term in Equation (10) is proven in Equation (8), and the second term should be equal to
zero or negative when the iterative learning control law is a non-increased function. When the iterative
control learning is divergent, the Lyapunov function of the dynamical system (Equations (1a) and (1b))
would be divergent and the system (Equation (2)) is not stable.

In the proof of the theorem, it is important to determine the learning control law, u(k)(t), in the
Lyapunov function applied in a more complex system. The decision was the most appropriate for
iterative learning control law and parameters B1 and B2 to reduce the divergence of non-linear systems;
this should be discussed and studied for the synchronization of non-linear systems.

2.2. Proposed Algorithm for Iterative Learning Control Law

The iterative learning control algorithm is exhibited in Figure 1. The diagram contains three
systems: drive system, the response system, and the estimated system, with three outputs, namely the
output of the drive system, the output of the response system, and the output of error, respectively.
The initial conditions of the drive system and the response system are different. The iterative learning
control law of the first stage exhibits the error of initial conditions between the drive system and the
response system. The estimation system in Equation (3) provides for the estimated state vectors as
expressed in Equation (4), the drive and response systems, respectively. The drive system and the
response system are closed-loop so that the feedback in the former is its own output of the drive
system, and the feedback in the latter is the result of iterative learning control law as its own output of
the response system.
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The algorithm in Figure 1 examines the learning control input u(k), which is bounded and
convergent, satisfying the criteria of monotonically convergent conditions. The learning control
input u(k) in Equation (6) is concerned with the ability to adjust the feedback error of the response
system and track the trajectory of the drive system. Therefore, the iterative learning control law, u(k),
must be bounded.

Corollary 1. The learning control input u(k) in Equation (6) is a non-increasing and bounded function.

Proof. The learning control law in Equation (5) is an updated law to refresh the input of the system
(Equation (1b)) proposed. The sequence

{
u(k)(t)

}
k=1,2, ···

is a non-increasing sequence such that the

condition Max
{

u(k)(t)
}

k=1,2,, ···
= u(0)(t) ≤ M is held with an upper bounded M of the real number

in Lemma 2.
The appropriate matrices B, B1, and B2 making the sequence

{
u(k)(t)

}
k=1,2, ···

, being strictly

decreasing are important. The ILC law
{

u(k)(t)
}

k=1,2, ···
can be expanded in the initial learning

law u(0)(t) by induction as follows:

u(k)(t) = (B1)
ku(0)(t) + (B1)

k−1B2∆(1) + (B1)
k−2B2∆(2) + · · ·+ B2∆(k), (11)

The learning operator L in this research follows the method of Hauser [13] as:

L ≡
(

BBk
1

)
(12)

||I− LB2|| ≤ δ < 1. (13)

The consequence is from the monotonically decreasing sequence
{

u(k)(t)
}

k=1,2,, ···
of the ILC rule.

The u(0) is the maximum in the monotonically decreasing sequence
{

u(k)(t)
}

k=1,2,...
and ||LB2|| ≤ 1 in

Equation (13). Theses matrices can be found by the Linear Matrix Inequality (LMI) method, but were
not the object in this research.

3. Example Illustration and Demonstrated Results

The chaotic system reconstruction of unknown inputs has been developed in [32]. The ILC
method could also be employed to track the trajectory between systems unknown reference [1–3].
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The example in this article has two identical Lorenz systems; one of them is a reference system and
another one is a tracking system. The generalized Lorenz systems have been the most studied under
various conditions such as a standard Lorenz system, Chen system, Lü system, and unified chaotic
system [22]. The Lorenz system has been widely introduced as a possible way to investigate chaotic
dynamics and synchronization [27–29,31]. Therefore, the Lorenz system is capable of reconstructing
chaotic systems by an evolutionary algorithm and verifying the chaos synchronization simulated by
secure communications with unknown inputs [30,31].

The example in this section demonstrates the results of the synchronization approach, investigated
to synchronize the non-linear drive-response systems with free time-delay and non-couple. A drive
system was expressed by a Lorenz system following [28], and the response system is shown as another
with the ILC input. In the synchronization approach, the ILC information was from the error dynamics
of the desired-response system. The controller was designed by the ILC rule after collecting previous
information. The Lyapunov function provided sufficient conditions for convergence to approach
synchronization systems. The tracking error between the systems was an asymptotically stable system
and a bounded function was constructed by a Lyapunov function. Next, the synchronization approach
is shown.

3.1. The Example of Iterative Learning Algorithmto Decide Learning Law

To exhibit the synchronization of two non-linear systems and verify the algorithm of iterative
learning control law in Figure 1, the drive-response systems with non-identical initial conditions are
given by the following:

.
xm(t) = f (xm, t) = A

(
x1

m
)
xm(t),

=

 −10 10 0
30 −1 −x1

m
0 x1

m − 8
3

xm(t),

ym(t) = xm(t), xm0(t = 0) = (0.02, 0.01, 0.03),

(14)

and
.
x(k)s (t) = f

(
x(k)s , t

)
+ Bu(k)(t) = A

(
x1

m
)
x(k)s (t) + Bu(k)(t)

=

 −10 10 0
30 −1 −x1

m
0 x1

m − 8
3

xs(t) + Bu(k)(t),

y(k)
s (t) = x(k)s (t), x(0)s0 = (5, 10, 15),

(15)

From the drive-response system, the dynamical error system is expressed as

.
∆
(k)

= A
(

xi
m
)(

xm − x(k)s

)T
= A

(
xi

m
)
∆(k) + Bu(k)(t),

=

 −10 10 0
30 −1 −x1

m
0 x1

m − 8
3

∆(k) + (−1)Bu(k)(t),
(16)

In this example, given Cm = Cs = 1, the output error is ym − y(k)
s = ∆(k) =

(
xm − x(k)s

)T
in

R3. The parameters are explained as xm = (xm1, xm2, xm3)
T , x(k)s =

(
x(k)s1 , x(k)s2 , x(k)s3

)T
, and

.
∆
(k)

=( .
xm(t)−

.
x(k)s (t)

)T
. The x1

m in polynomial matrix A
(
x1

m
)

is the first component of the state vector in the

drive system. The state vector in the estimation system is x̂m(t) =
(

A
(
x1

m
)TA

(
x1

m
))−1

A
(
x1

m
)T .

xm
T and

the iterative learning law with the initial condition u(0)(t = 0) = ∆(0)(t = 0) =
(

xm0 − x(0)s0

)T
.
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The u(k)(t) in Equation (6) and the Lyapunov equation are respectively shown as Equations (6)
and (8).The matrices B1 and B2 in the ILC rule of Equation (6) are:

B1 =

 0.0034 0.0345 0
0.0140 0.0085 −0.0022
0.0151 0.0056 −3.75

 and B2 =

 −10 10 0
30 −1 0
0 0 − 8

3

, (17)

The matrix B2 is from the decomposition of the coefficient matrix of the system in (Equation (14))
and the matrix B1 = (M)k(B2)

−2.The parameters 0 ≤ k ≤ 1 and the matrix M is in [33]. The matrix
B in Equation (1b) is to select the identity matrix. The results were simulated by MATLAB (R2013b,
Math Works, Natick, MA, USA, 2013) to verify the performance of the ILC rule. The drive system used
the ode45 function in Simulink of MATLAB, and the response system used the Euler method with the
estimated state vectors in Equation (5).The relevant simulation results are shown in the next section.

3.2. Simulation Results and Discussion

Figure 2 shows that the trajectories in the two-dimensional x1, x3-spaceofthe drive system are in
the red line; the response system as the tracing system is in blue.
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Figure 2. The trajectories in two-dimensional x1, x3-space of systems.

The drive system with initial condition, xm0 = (0.02, 0.01, 0.03), differs from the response system,
xs0 = (5, 10, 10). The difference between the drive and response systems was larger than in other
articles in which the initial condition alteration of a drive-response system was closed or not mentioned
as in [12–18]. The trajectory of the response systems quickly approached that of the drive system
after their initial condition and the approximation nearby the drive system, just as the iterative
learning-controlled law containing the information from the drive system dominated the response
system along the trajectory of the drive system.

According to Equation (2) and Lemma 2, the convergent error dynamics
.
∆
(k)

should be less than

or convergent to zero, and the behavior is demonstrated in Figure 3. The components in
.
∆
(k)

were
convergent to zero with averages of [−0.01341, −0.0122, and −0.1796] for each state of the system,
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respectively, satisfying the error convergent criterion. Three state vectors of error dynamics were
vibration in the bounded interval as well, to verify the bounded error of each iteration and to design
an appropriate controller by the ILC rule in Equation (2) and Lemma 2.
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Figure 3. The simulation of each component of the error dynamics system
.
∆
(k)

.

The behaviors of the ILC rule in Figure 4 show that the three components were always
non-increasing and approached zero, and exhibited that the components were zero-central vibration in
a bounded interval with average [–0.00919, 0.00171, −0.00469]. According to Equation (6), when the
tracking error is an approximation to zero, the ILC law should approach zero in Lemma 2 and be
a non-increasing and bounded function in Corollary 1. The simulation results of Equation (6) have
already examined Lemma 2 and Corollary 1. The behaviors were not always identical to different
ILC rules as shown in Figure 5. It is an important issue and challenges to select an eligible ILC rule.
In Figure 5a, the B1 in Equation (6) was chosen as the identity matrix, and B1 in Figure 5b as a diagonal
matrix [0.1, 0.1, 0.92]. In both Figure 5a,b, one of the components rose sharply and continued to vibrate
in a bounded interval. Although the other components gradually decreased in the previous ILC rule,
the ILC rule still makes the response system under an unpredictable situation.

The behavior of the derivative of the Lyapunov function is demonstrated in Figure 6 and
corroborates both Theory 1 and Lemma 2 by Equations (11) and (12). The data in Table 1 is the
derivative of the Lyapunov function to count the number in which the value of the Lyapunov function
in this article was zero or negative. The number in Table 1 was the closed relative to the different
parameters µ in Equation (10). From the average in the table, most of the values of the Lyapunov
function tended to be negative. Hence, the average of values of the Lyapunov function became positive
when µ < 0. The most significant phenomenon was to regard the ILC rule to find an appropriate
linear combination in Equation (6), and the derivative of the Lyapunov functionin Equation (10) was
negative. The Lyapunov function is a non-increasing function by the conditions of Lemma 2 and the
corollary, as seen in Figure 6, which shows the consequences and proves Theorem 1. The curve in
Figure 7 demonstrates the behavior of the learning operator of the ILC rule by using the formula in
Equation (12) in the blue line is the criterion of learning operator as Equation (13). Figure 6 shows the
operator decreases rapidly to stability and verifies both Equations (12) and (13).
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Figure 5. The different behaviors of IL Care chosen as the worst learning law and listed as (a) B1 is
identity matrix; and (b) B1 = Dig [0.1, 0.1, and 0.92].

Next, Figure 8 shows the synchronization error for each component of the systems in
Equations (15) and (16). The synchronization error of each component indicated that it was convergent
to zero and vibrated in the neighborhood of zero. The average of the synchronization errors in 12,000
time steps were (–0.00049, –0.00077, and –0.00199) for each component. The exhibition of vibration in
Figure 8 matched all components in Figure 3, in which the error dynamics should be convergent to
zero when the tracking error approaches zero.

On the other hand, the situation of Figure 8 exhibits that the chosen ILC rule may be improved
to reduce the vibration in the future so that the synchronization error maintains no vibration,
but the synchronization error results were better than the other papers [4,14–19] and at least as good
as [12,26,27]. This example has not only verified the concept in this paper, but it has also demonstrated
the simulation results of the parameters in non-linear system control fields, providing the average of
each parameter, which has not yet been completely discussed in other papers.
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4. Conclusions

This research exhibited the design of an iterative learning controller and the results of the
simulation with an example to prove the mathematical theory of the chaotic system synchronization
via the iterative learning control law. The demonstrations verified the mathematical theory as able
to approximate the synchronization between systems. The ILC method is a convenient method to
trace the trajectory of systems, but is not a perfect tracking for all situations. In addition, the iterative
learning control law should be conditionally dependent on the system and would not be unique to the
specific system. It was a significant challenge to find coefficient matrices that were the combination of
the previous ILC law and the trajectory error in this research, respectively. Finally, the example in this
article has not only verified the theory and concept in this paper, but also demonstrated the behavior
of parameters in non-linear system control fields, which has not yet been completely discussed in
other papers. The ILC method could be used for the anon-linear system with time-delay and couple to
adjust the learning control law, and the process should apply to adaptive control, sliding mode control,
and fuzzy control. The primary research is essential for tracking systems such as robotic systems,
secure communication systems, image identification systems, and many others, which are part of
future developments and applications.
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