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Abstract: An energy management strategy (EMS) is important for hybrid electric vehicles (HEVs)
since it plays a decisive role on the performance of the vehicle. However, the variation of future
driving conditions deeply influences the effectiveness of the EMS. Most existing EMS methods
simply follow predefined rules that are not adaptive to different driving conditions online. Therefore,
it is useful that the EMS can learn from the environment or driving cycle. In this paper, a deep
reinforcement learning (DRL)-based EMS is designed such that it can learn to select actions directly
from the states without any prediction or predefined rules. Furthermore, a DRL-based online learning
architecture is presented. It is significant for applying the DRL algorithm in HEV energy management
under different driving conditions. Simulation experiments have been conducted using MATLAB
and Advanced Vehicle Simulator (ADVISOR) co-simulation. Experimental results validate the
effectiveness of the DRL-based EMS compared with the rule-based EMS in terms of fuel economy.
The online learning architecture is also proved to be effective. The proposed method ensures the
optimality, as well as real-time applicability, in HEVs.

Keywords: hybrid electric vehicle; energy management strategy; deep reinforcement learning;
online learning

1. Introduction

An energy management strategy (EMS) is one of the key technologies for hybrid electric vehicles
(HEVs) due to its decisive effect on the performance of the vehicle [1]. The EMS for HEVs has been
a very active research field during the past decades. However, how to design a highly-efficient and
adaptive EMS is still a challenging task due to the complex structure of HEVs and the uncertain
driving cycle.

The existing EMS methods can be generally classified into the following three categories:
(1) Rule-based EMS, such as the thermostatic strategy, the load following strategy, and electric assist
strategy [2,3]. These methods rely heavily on the results of extensive experimental trials and human
expertise without the a priori knowledge of the driving conditions [4]. Other related control strategies
employ heuristic control techniques, with the resultant strategies formalized as fuzzy rules [5,6].
Though these rule-based strategies are effective and can be easily implemented, their optimality
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and flexibility are critically limited by working conditions and, consequently, are not adaptive to
different driving cycles. (2) Optimization-based EMS: some optimization methods employed in control
strategy are either based on the known driving cycles or predicted future driving conditions, such as
dynamic programming (DP) [7–9], sequential quadratic programming (SQP), genetic algorithms
(GA) [10], the Pontryagin minimum principle (PMP) [11], and so on. Usually, these algorithms can
manage to determine the optimal power split between the engine and the motor for a particular
driving cycle. However, the obtained optimal power-split solutions are only optimal with respect
to a specific driving cycle. In general, it is neither optimal nor charge-sustaining for other cycles.
Unless future driving conditions can be predicted during real-time operation, there is no way to imply
these control laws directly. Moreover, these methods suffer from the “curse of dimensionality” problem,
which prevents their wide adoption in real-time applications. Model predictive control (MPC) [12]
is another type of optimization-based method. The optimal control problem in the finite domain is
solved at each sampling instant and control actions are obtained based on online rolling optimization.
This method has the advantages of good control effect and strong robustness. (3) Learning-based
EMS: some strategies can learn from the historical data or use the previous driving data for online
learning or application [13,14]. Some researchers propose that traffic information and cloud computing
in intelligent transportation systems (ITSs) can enhance HEV energy management since vehicles
obtain real-time data via intelligent infrastructures or connected vehicles [15,16]. Regardless of the
learning from historical data or predicted data, these EMS methods also need complex control
models and professional knowledge from experts. Thus, these EMS methods are not end-to-end
control methods. Reinforcement learning-based control methods have also been used for HEV energy
management [17,18]. However, reinforcement learning must be able to learn from a scalar reward
signal that is frequently sparse, noisy, and delayed. Additionally, the sequence of highly-correlated
states is also a large problem of reinforcement learning, in addition to the data distribution changes,
as the algorithm learns new behaviors in reinforcement learning.

The learning-based EMS is an emerging and promising method because of its potential ability
of self-adaption according to different driving conditions, even if there are still some problems.
In our previous research, online learning control strategies based on neural dynamic programming
(NDP) [19], fuzzy Q-learning (FQL) [20], were proposed. These strategies do not rely on prior
information related to future driving conditions and can self-tune the parameters of the algorithms.
A back propagation (BP) neural network was used to estimate the Q-value which, in turn, tuned the
parameter of fuzzy controller [20]. However, it also requires designing the fuzzy controller, as well as
professional knowledge.

Deep reinforcement learning (DRL) has shown successful performance in playing Atari [21] and
Go games [22] in recent years. The DRL method is a powerful algorithm to solve complex control
problems and handle large state spaces by establishing a deep neural network to relate the value
estimation and associated state-action pairs. As a result, the DRL algorithm has been quickly applied in
robotics [23], building HVAC control [24], ramp metering [25], and other fields. In the automotive field,
DRL has been used for lane keeping assist [26], autonomous braking system [27], and autonomous
vehicles [28]. However, motion control of autonomous vehicles needs very high precision from our
perspective. The mechanism of DRL has not been explained very deeply and may not meet this
high requirement.

Nevertheless, DRL is a powerful technique that can be used in HEV EMS in this research as it
concerns the fuel economy compared to the control precision. A DRL-based EMS has been designed
for plug-in hybrid electric vehicles (PHEVs) [29]. This is the first time DRL has been applied to a
PHEV EMS. However, there are several problems in this study: (1) The learning process is still offline,
which means that the trained deep network can only work well in the same driving cycle, but would
not be able to obtain good performance in other driving conditions. As a result, this method can be
used in buses with fixed route however it is not acceptable for vehicles with route variation; (2) The
immediate reward is important as it affects the performance of DRL. The optimization objective is
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the vehicle fuel economy, but the reward is a function based on the power supply from the engine.
The relationship between fuel economy and engine power is complex and the paper lacks the ability
to justify this phenomena; (3) The structure of deep neural network can be well designed by fixing the
Q targets network, which can make the algorithm more stable.

In this research, an energy management strategy based on deep reinforcement learning is
proposed. Our work achieves good performance and high scalability by (1) building the system model
of the HEV and formulating the HEV energy management problem; (2) developing a DRL-based
control framework and an online learning architecture for a HEV EMS, which is adapted to different
driving conditions; and (3) facilitating algorithm training and evaluation in the simulation environment.
Figure 1 illustrates our DRL-based algorithm for HEV EMS. The DRL-based EMS can autonomously
learn the optimal policy based on data inputs, without any prediction or predefined rules. For training
and validation, we use the HEV model built in ADVISOR software (National Renewable Energy
Laboratory, Golden, CO, USA). Simulation results reveal that the algorithm is able to improve the fuel
economy while meeting other requirements, such as dynamic performance and vehicle drivability.
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Figure 1. Deep reinforcement learning (DRL)-based framework for HEV EMS. 

The proposed DRL-based EMS uses a fixed target Q network which can make the algorithm 
more stable. The immediate reward is a function directly related to fuel consumption. More 
importantly, a DRL-based online learning architecture is presented. It is a critical factor to apply the 
DRL algorithm in HEV energy management under different driving conditions. 

The rest of this paper is organized as follows: Section 2 introduces the system model of HEV 
and describes the mathematics formulation of HEV EMS. Section 3 explains our deep reinforcement 
learning-based control strategy, including offline learning and online learning application. The 
experimental results are given in Section 4, followed by the conclusions in Section 5. 

2. Problem Formulation 

The prototype vehicle is a single-axis parallel HEV, the drivetrain structure of which is shown 
in Figure 2. The drivetrain integrates an engine, an electric traction motor/generator, Ni-Hi batteries, 
an automatic clutch, and an automatic/manual transmission system. The motor is directly linked 
between the auto clutch output and the transmission input. This architecture provides the 
regenerative braking during deceleration and allows an efficient motor assist operation. To provide 
pure electrical propulsion, the engine can be disconnected from the drivetrain by the automatic 

Figure 1. Deep reinforcement learning (DRL)-based framework for HEV EMS.

The proposed DRL-based EMS uses a fixed target Q network which can make the algorithm more
stable. The immediate reward is a function directly related to fuel consumption. More importantly,
a DRL-based online learning architecture is presented. It is a critical factor to apply the DRL algorithm
in HEV energy management under different driving conditions.

The rest of this paper is organized as follows: Section 2 introduces the system model of
HEV and describes the mathematics formulation of HEV EMS. Section 3 explains our deep
reinforcement learning-based control strategy, including offline learning and online learning
application. The experimental results are given in Section 4, followed by the conclusions in Section 5.

2. Problem Formulation

The prototype vehicle is a single-axis parallel HEV, the drivetrain structure of which is shown in
Figure 2. The drivetrain integrates an engine, an electric traction motor/generator, Ni-Hi batteries,
an automatic clutch, and an automatic/manual transmission system. The motor is directly linked
between the auto clutch output and the transmission input. This architecture provides the regenerative
braking during deceleration and allows an efficient motor assist operation. To provide pure electrical
propulsion, the engine can be disconnected from the drivetrain by the automatic clutch. We have
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adopted the vehicle model from our previous work [19,20] for this research. The key parameters of
this vehicle are given in Table 1.
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Table 1. Summary of the HEV parameters.

Part or Vehicle Parameters Value

Spark Ignition
(SI) engine

Displacement: 1.0 L
Maximum power: 50 kW/5700 r/min

Maximum torque: 89.5 Nm/5600 r/min

Permanent magnet motor Maximum power: 10 kW
Maximum torque: 46.5 Nm

Advanced Ni-Hi battery
Capacity: 6.5 Ah

Nominal cell voltage: 1.2 V
Total cells: 120

Automated manual transmission 5-speed
GR: 2.2791/2.7606/3.5310/5.6175/11.1066

Vehicle Curb weight: 1000 kg

In the following, key concepts of the DRL-based EMS are formulated:

System state: In the DRL algorithm, control action is directly determined by the system states.
In this study, the total required torque (Tdem) and the battery state-of–charge (SOC) are selected to form
a two-dimensional state space, i.e., s(t) = (Tdem(t), SOC(t))T , where Tdem(t) represents the required
torque at time t, and SOC(t) represents the battery state of charge at time t.

Control action: The decision-making on the torque-split ratio between the internal combustion
engine (ICE) and battery is the core problem of the HEV energy management strategy. We choose the
output torque from the ICE as the control action in this study, denoted as A(t) = Te(t), where t
is the time step index. Te(t) should be discretized in order to apply the DRL-based algorithm,
i.e., the entire action space is A =

{
A1, A2, ..., An}, where n is the degree of discretization. In this

research, we consider n as 24. The motor output torque Tm(t) can be obtained by subtracting Te(t)
from Tdem(t).

Immediate Reward: Immediate reward is important in the DRL algorithm because it directly
influences the parameters tuning of the deep neural network (DNN). The DRL agent is always
trying to maximize the reward which it can obtain by taking the optimal action at each time step.
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Therefore, the immediate reward should be defined according to the optimization objective. The control
objective of the HEV EMS is to minimize vehicle fuel consumption and emissions along a driving
mission. Meanwhile, the vehicle drivability and battery health should be satisfied. In this work,
we focus more on fuel economy of the HEV; the emissions are not taken into consideration. Keeping
this objective in mind, the reciprocal of the ICE fuel consumption at each time step is defined as the
immediate reward. A penalty value is introduced to penalize the situation when the SOC exceeds the
threshold. Immediate reward is defined by the following equations:

ra
ss′ =



1
CICE

CICE 6= 0∩ 0.4 ≤ SOC ≤ 0.85
1

CICE+C CICE 6= 0∩ SOC < 0.4 or SOC > 0.85
2

MinCICE
CICE = 0∩ 0.4 ≤ SOC

− 1
C CICE = 0∩ SOC < 0.4

(1)

where ra
ss′ is the immediate reward generated when state changes from s to s′ by taking action a;

CICE is the instantaneous fuel consumption value of the ICE; C is the numerical penalty, as well as the
maximum instantaneous power supply from the ICE; MinCICE is the minimum nonzero value of the
ICE instantaneous fuel consumption value. The SOC variation range is from 40% to 85% in this study.
This definition can guarantee the lower ICE fuel consumption while satisfying the SOC constrains.

Formally, the goal of the EMS of the HEV is to find the optimal control strategy, π∗, that maps
the observed states st to the control action at. Mathematically, the control strategy of the HEV can be
formulated as an infinite horizon dynamic optimization problem as follows:

R =
∞

∑
t=0

γtr(t) (2)

where r(t) is the immediate reward incurred by at at time t; and γ ∈ (0, 1) is a discount factor
that assures the infinite sum of cost function convergence. We use Q∗(st, at), i.e., the optimal value,
to represent the maximum accumulative reward which we can obtain by taking action at in state st.
Q∗(st, at) is calculated by the Bellman Equation as follows:

Q∗(st, at) = E[rt+1 + γmax
at+1

Q∗(st+1, at+1)|st, at] (3)

The Q-learning method is used to update the value estimation, as shown in Equation (4).

Qt+1(st, at) = Qt(st, at) + η(rt+1 + γmax
at+1

Qt(st+1, at+1)−Qt(st, at)) (4)

where η ∈ (0, 1] represents the learning rate. Such a value iteration algorithm converges to the optimal
action value function, Qt → Q∗ as t→ ∞ .

3. Deep Reinforcement Learning-Based EMS

Deep reinforcement learning-based EMS is developed which combines a deep neural network and
conventional reinforcement learning. The EMS makes decisions only based on the current system state
since the proposed EMS is an end-to-end control strategy. This deep reinforcement neural network
can also be called a deep Q-network (DQN). In the rest of this section, value function approximation,
DRL algorithm design, and the DRL-based algorithm online learning application are presented.

3.1. Value Function Approximation

The state-action value is represented by a large, but limited, number of states and actions table,
i.e., the Q table, in conventional reinforcement learning. However, a deep neural network is taken
in this work to approximate the Q-value by Equation (3). As depicted in Figure 3, the inputs of the
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network are the system states, which are defined in Section 2. The rectified linear unit (ReLU) is used
as the activation function for hidden layers, and the linear layer is used for obtaining the action value
at the output layer. In order to balance the exploration and exploitation, the ε− greedy policy is used
for action selection, i.e., the policy chooses the maximum Q-value action with probability 1− ε and
selects a random action with probability ε.
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The Q-value estimation for all control actions can be calculated by performing a forward
calculation in the neural network. The mean squared error between the target Q-value and the inferred
output of neural network is defined as loss function in Equation (5):

L(θ) = E[(r + γmax
at+1

Q(st+1, at+1, θ−)−Q(st, at, θ))
2
] (5)

where Q(stat, θ) is the output of the neural network with the parameters θ. r + γmax
at+1

Q(st+1, at+1, θ−)

is the target Q-value, using parameters θ− from some previous iteration. This fixed target Q network
makes the algorithm more stable. Parameters in the neural network are updated by the gradient
descent method.

The inputs of DQN are total required torque Tdem and battery SOC. The variation range of SOC
is from 0 to 1 and does not need preprocessing. However, the total required torque Tdem can vary
significantly. In order to facilitate the learning process, we scale the total required torque Tdem to the
range [−1, 1] before feeding to the neural network as shown in Equation (6). The minimum and
maximum values for Tdem can be obtained from historical observation:

T′dem =
Tdem −min(Tdem)

max(Tdem)−min(Tdem)
(6)

3.2. DRL Algorithm Design

Our DRL-based EMS control algorithm is presented in Algorithm 1. The outer loop controls the
number of training episodes, while the inner loop performs the EMS control at each time step within
one training episode.
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Algorithm 1: Deep Q-Learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂ with weights θ− = θ

1: For episode = 1, M do
2: Reset environment: s0 = (SOCInitial , T0)

3: For t = 1, T, do
4: With probability ε select a random action at

otherwise select at = max
at

Q(st, a; θ)

5: Choose action at and observe the reward rt

6: Set st+1 = (SOCt+1, Tt+1)

7: Store (st, at, rt, st+1) in memory D
8: Sample random mini-batch of (st, at, rt, st+1) from D
9: if terminal sj+1: Set yj = rj

else set yj = rj + γmax
aj+1

Q̂(sj+1, aj+1; θ_)

10: Perform a gradient descent step on (yj −Q(sjaj; θ))2

11: Every C steps reset Q̂ = Q
12: end for
13: end for

In order to avoid the strong correlations between the samples in a short time period of conventional
RL, experience replay is adopted to store the experience (i.e., a batch of state, action, reward, and next
state:(st, at, rt, st+1)) at each time step in a data experience pool. For each certain time, random samples
of experience are drawn from the experiment pool and used to train the Q network.

We initialize memory D as an empty set. Then we initialize weights θ in the action-value function
estimation Q neural network. In order to break the dependency loop between the target value and
weights θ, a separate neural network Q̂ with weights θ− is created for calculating the target Q value.

We can set the maximum number of episode as M. During the learning process, in step 4,
the algorithm selects the maximum Q value action with probability 1− ε and selects a random action
with probability ε based on the observation of the state. In step 5, action at is executed and reward rt is
obtained. In step 6, the system state becomes the next state. In step 7, the state action transition tuple is
stored in memory. Then, a mini-batch of transition tuples is drawn randomly from the memory. Step 9
calculates the target Q value. The weights in neural network Q are updated by using the gradient
descent method in step 10. The network Q̂ is periodically updated by copying parameters from the
network Q in step 11.

3.3. DRL-Based Algorithm Online Learning Application

In Section 3.2, the DRL-based algorithm is proposed, however, it is an offline learning algorithm
which can only be applied in the simulation environment. More importantly, the training process can
only be applied in limited driving cycles, therefore, the trained DQN only performs well under the
learned driving conditions, which may not provide satisfactory results under other driving cycles.
This is unacceptable in HEV real-time applications. As a result, online learning is necessary for
DRL-based algorithms in HEV EMS applications.

The DRL-based online learning architecture is presented in Figure 4. Action execution and
network training should be separated. There is a controller which contains a Q neural network and
selects an action for the HEV while storing the state action transitions. When the HEV needs to
learn a new driving cycle, the method of action selection will be the ε− greedy method. Otherwise,
the HEV can always select the maximum Q-value action. There is another on-board computer or
remote computing center which is responsible for Q neural network training. The on-board computer
or remote computing center obtains state action transitions from the action controller and trains the
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neural network based on the DRL algorithm. The Q neural network is periodically updated by copying
parameters from the on-board computer or remote computing center.
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The communication mode between the action controller and the on-board computer can be
via CAN bus or Ethernet. If the Q neural network training is completed by a remote computing
center, a vehicle terminal named Telematics-box (T-box) should be installed in the HEV in order to
communicate with the remote computing center through the 3G communication network. A remote
computing center can obtain state action transitions from other connected HEVs, as is shown in Figure 4.
This is useful to train a large Q neural network which can deal with different driving conditions.

The main differences between online learning and offline learning are as follows: (1) online
learning can adapt to varying driving conditions, while offline can only learn from the given driving
cycles; (2) action execution and network training should be separated in online learning because of the
limited on-board controller computing ability; and (3) online training efficiency should be higher than
offline training since the vehicle must learn the optimal EMS with the shortest time. Thus, it is necessary
to cluster the representative state action transitions and use the recent data in the experience pool.

Interestingly, offline learning and online learning can be combined to realize a good effect of EMS.
For instance, we can train the DQN offline under the Urban Dynamometer Driving Schedule (UDDS),
and then apply the online learning under the New European Driving Cycle (NEDC).

4. Experimental Results and Discussion

4.1. Offline Application

4.1.1. Experiment Setup

In order to evaluate the effectiveness of proposed DRL-based algorithm, simulation experiments
are done in MATLAB and the ADVISOR co-simulation environment. The offline learning application
is evaluated firstly and the UDDS driving cycle is used in the learning process. The simulation model
for the HEV mentioned in Section 2 is built in ADVISOR. Meanwhile, the hyper parameters of the
DRL-based algorithm used in the simulations are summarized in Table 2.
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Table 2. Summary of the DRL-based algorithm hyper parameters.

Hyper Parameters Value

mini-batch size 32
replay memory size 1000

discount factor γ 0.99
learning rate 0.00025

initial exploration 1
final exploration 0.2
replay start size 200

In this application, the input layer of the network has two neurons, i.e., Tdem and SOC. There are
three hidden layers having 20, 50, and 100 neurons, respectively. The output layer has 24 neurons
representing the discrete ICE torque. All these layers are fully connected. The network is trained with
50 episodes and each episode means a trip (1369 s).

We evaluate the performance of DRL-based EMS by comparing them with the rule-based EMS
known as “Parallel Electric Assist Control Strategy” [20]. The initial SOC is 0.8.

4.1.2. Experimental Results

Firstly, we evaluate the learning performance of DRL-based algorithm. The track of average loss
is recorded in Figure 5. It is clear that the average loss decreases quickly along the training process.
Figure 6 depicts the track of the total reward of one episode along the training process. Even though
the curve is oscillating, the overall trend of the track is rising. There are also some dramatic drops in
the total reward during the training process. This is because of the adding of a large penalty when the
algorithm selects actions that results in the violation of the SOC constraint.
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Then, the simulation results of the trained DRL-based EMS for the UDDS driving cycle are shown
in Figure 7. In order to evaluate the performance and effectiveness of the trained DRL-based EMS,
comparison results are listed in Table 3. Power consumption is converted to fuel consumption; equivalent
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fuel consumption is obtained by adding the converted power consumption and fuel consumption.
As shown by the results of Table 3, fuel consumption is improved significantly compared to the
rule-based control strategy, as fuel consumption is decreased by 10.09%. Meanwhile, the equivalent fuel
consumption is also decreased by 8.05%. The DRL-based EMS achieves good performance. Notably,
the rule-base EMS is designed by the experts while the DRL-based EMS only learns from the states and
historical data.
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Table 3. Comparison of the results under UDDS.

Control Strategy Fuel Consumption (L/100 km) Equivalent Fuel Consumption (L/100 km)

Rule-Based 3.857 3.861
DRL-based 3.468 3.550

4.2. Online Application

4.2.1. Experiment Setup

The DRL-based online learning architecture is presented in Section 3.2. In order to evaluate the
online learning performance conveniently, we also use ADVISOR software to simulate the online
learning working process. In the online learning application, the neural network setting is the same
as the offline application. Two different kinds of simulations are performed. In the first scenario,
the neural network parameters are random at the beginning and, in the second one, the neural network
is pre-trained offline under the existing driving cycle before the online learning process. In the first
case, the online learning simulation without any pre-training under the NEDC driving cycle is done.
In the second case, we pre-train the neural network offline under the UDDS driving cycle firstly, and
then apply the online learning under the NEDC driving cycle.

4.2.2. Experimental Results

In the first case, we trained the neural network 50 times under the NEDC driving cycle with the
same initial condition. Unlike the offline learning, this process is online and simulates the vehicle
running under the NEDC driving cycle.

The track of loss is depicted in Figure 8. The loss also decreases quickly along the training process
in the online application. Figure 9 depicts the track of total reward and the fuel consumption of one
driving cycle along the training process, and the overall trend of the total reward is the same as the
offline application. This reveals the proposed DRL-based online learning architecture is effective.
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As we can see from Figure 9, the trend of the total reward and the fuel consumption is nearly opposite.
This reflects that the definition of the reward is suitable.
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Simulation results of the online trained DRL-based EMS for the NEDC driving cycle are shown
in Figure 10. The comparison of the results are listed in Table 4. Fuel consumption is also improved
compared to the rule-based control strategy, as fuel consumption is decreased by 10.29%, while the
equivalent fuel consumption is decreased by 2.57%.
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Table 4. Comparison of the results under NEDC.

Control Strategy Fuel Consumption (L/100 km) Equivalent Fuel Consumption (L/100 km)

Rule-Based 3.877 3.892
DRL-based 3.478 3.792

In the second case, the neural network was pre-trained offline under the UDDS driving cycle,
such that the DRL-based EMS can adapt to the UDDS driving cycle but have no a priori knowledge
about the NEDC driving cycle. The comparison of the results between the offline trained DRL-based
EMS under the UDDS driving cycle for the NEDC driving cycle and other control strategies are listed
in Table 5. It is obvious that the offline-trained EMS under the UDDS driving cycle does not adapt well
to the NEDC driving cycle.

Table 5. Comparison of the results under NEDC.

Control Strategy Fuel Consumption (L/100 km) Equivalent Fuel Consumption (L/100 km)

Rule-Based 3.877 3.892
DRL-based EMS trained under NEDC online 3.478 3.792

DRL-based EMS only pre-trained under UDDS offline 3.690 3.872

Based on the offline pre-trained EMS under the UDDS driving cycle, we can apply the online
learning process under the NEDC driving cycle. We trained the pre-trained neural network 20 times
under the NEDC driving cycle with the same initial conditions. After the training process, we tested
the trained EMS under the NEDC driving cycle. The simulation results are shown in Figure 11.
The comparison of the results are listed in Table 6. The results show that the pre-training process can
contribute to effectively decrease the online training time. This is because the DRL-based EMS learns
some of the same features between different driving conditions.
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Figure 11. Simulation results under NEDC of the online trained EMS which was pre-trained
under UDDS.

Table 6. Comparison of the results under NEDC.

Control Strategy Fuel Consumption (L/100 km) Equivalent Fuel Consumption (L/100 km)

DRL-based EMS trained under NEDC online 3.478 3.792
DRL-based EMS only pre-trained under UDDS offline 3.690 3.872
DRL-based EMS which pre-trained offline and trained

under NEDC online 3.440 3.795
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Figure 12 depicts the track of the total reward and the fuel consumption of one driving cycle
along the training process, the curves are smoother than the curves without pre-training. This also
reveals that pre-training offline can improve the online learning efficiency even though the driving
condition is different.
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5. Conclusions

This paper presents a deep reinforcement learning-based data-driven approach to obtain an
energy management strategy of a HEV. The proposed method combines Q learning and a deep neural
network to form a deep Q network which can obtain action directly from the states. Key concepts of
the DRL-based EMS have been formulated. Value function approximation and DRL algorithm design
have been described in detail in this paper. In order to adapt to varying driving cycles, a DRL-based
online learning architecture has been presented. Simulation results demonstrate that the DRL-based
EMS can obtain better performance than the rule-based EMS in fuel economy. Furthermore, the online
learning approach can learn from different driving conditions. The future work will focus on how to
improve the online learning efficiency and testing on a real vehicle. Another important issue is how to
output continuous actions. In this paper, the output actions are discretized and this may leads to the
violent oscillation of the ICE output torque. A deep deterministic policy gradient (DDPG) algorithm
can output the continuous actions and may solve this problem. This will be a future work. However,
DDPG is also based on DRL. The contribution of this paper will speed up the application of deep
reinforcement learning methods in energy management of HEVs.
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