
applied  
sciences

Article

An Automatic Navigation System for Unmanned
Surface Vehicles in Realistic Sea Environments

Xiaojie Sun ID , Guofeng Wang *, Yunsheng Fan, Dongdong Mu ID and Bingbing Qiu

School of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China;
xjsun.phd@gmail.com (X.S.); yunsheng@dlmu.edu.cn (Y.F.); ddmu.phd@gmail.com (D.M.);
bbqiu.dmu@gmail.com (B.Q.)
* Correspondence: gfwangsh@163.com; Tel.: +86-0411-8472-5623

Received: 30 December 2017; Accepted: 23 January 2018; Published: 28 January 2018

Abstract: In recent years, unmanned surface vehicles (USVs) have received notable attention because
of their many advantages in civilian and military applications. To improve the autonomy of USVs,
this paper describes a complete automatic navigation system (ANS) with a path planning subsystem
(PPS) and collision avoidance subsystem (CAS). The PPS based on the dynamic domain tunable
fast marching square (DTFMS) method is able to build an environment model from a real electronic
chart, where both static and dynamic obstacles are well represented. By adjusting the Saturation, the
generated path can be changed according to the requirements for security and path length. Then it is
used as a guidance trajectory for the CAS through a dynamic target point. In the CAS, according to
finite control set model predictive control (FCS-MPC) theory, a collision avoidance control algorithm
is developed to track trajectory and avoid collision based on a three-degree of freedom (DOF) planar
motion model of USV. Its target point and security evaluation come from the planned path and
environmental model of the PPS. Moreover, the prediction trajectory of the CAS can guide changes
in the dynamic domain model of the vessel itself. Finally, the system has been tested and validated
using the situations of three types of encounters in a realistic sea environment.

Keywords: unmanned surface vehicle; automatic navigation system; path planning; dynamic domain;
fast marching square; collision avoidance; model predictive control

1. Introduction

In line with the growing interest in the ocean for civilian and military applications, there has
been an increasing demand for the autonomy of unmanned surface vehicles (USVs) with advanced
automatic navigation systems (ANSs) [1]. USVs are intelligent unmanned platforms which perform
tasks independently in a variety of cluttered sea environments and have highly nonlinear dynamic
characteristics [2]. The development of USVs has brought many advantages, such as improved
personnel safety and reduced operation costs, as well as increased autonomy and flexibility in
sophisticated environments [3,4]. However, now only semi-autonomous USVs are used rather than
fully-autonomous USVs. This is due to the complex and hazardous sea environments [5]. The ANS
in this paper is designed for fully-autonomous USVs in order to minimize both the need for human
control and the effects due to human error. To ensure that a fully-autonomous USV travels in a realistic
sea environment, the ANS is composed of a path planning subsystem (PPS) and a collision avoidance
subsystem (CAS). The PPS can generate a shorter path according to the current environment in a
collision-free and smooth manner. In the local environment, the CAS not only follows the reference
path points, but also has the control capacity to avoid collision in a timely manner.

In terms of USVs, there are an increasing number of algorithms in the research focusing on
path planning as a fundamental aspect of ANSs. These include Dijkstra’s algorithm [6], A* [7,8],
Theta* [9], the Voronoi diagram [10], particle swarm optimization (PSO) [11], ant colony optimization
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(ACO) [12,13], the genetic algorithm (GA) [14], and so on. Recently, considering the turning
capacity of USVs, Yang and Tseng used the finite Angle A* algorithm (FAA*), which is used to
determine safer and suboptimal paths for USVs on satellite thermal images [7]. Kim put forward
the angular rate-constrained Theta* algorithm with considerations of vehicle performance based
on the Theta* algorithm [9]. However, all of these algorithms search the optimal path in a static
environment. Hence, path re-planning (collision avoidance) is proposed to meet the demands of
real-time planning or avoidance under dynamic environments. These algorithms include the rolling
windows method [11], artificial potential field (APF) [6,12], velocity obstacle (VO) [15,16], local reactive
obstacle avoidance [17], optimal reciprocal collision avoidance [18], dynamical virtual ship (DVS) [19],
and so on. Although these algorithms have good real-time performance, they are difficult to use
in complex and irregular environments. To solve this problem, some scholars use the hierarchical
structure to combine global path planning and local path re-planning [6,11,12], and some try to improve
the traditional path planning algorithm, using for example Rule-based Repairing A* [8]. Liu et al.
selected the fast marching method (FMM)-based path planning algorithm [20]. The advantage of the
FMM is that it is capable of fast generating optimal and smooth trajectories in a complex environment,
which enables it to be applied in dynamic and static environments. Hence, the PPS of this paper is
based on the FMM algorithm.

In addition, although many works in the literature (see e.g., [6,7,9]), use satellite maps for
environmental information, this method is incomplete for describing the invisible sea environment,
such as reefs, ocean depths, and so on. Thus in this paper, environmental information is obtained from
the electronic chart, which can display this invisible information in detail.

After planning the path, according to the guidance, navigation, and control (GNC) system
structure [1] the next step is to control the USV following the path. Some works have discussed this
problem after generating the path. The authors of [10,20,21], for instance, employed the line-of-sight
(LOS) guidance algorithm to convert the path following the course control of USVs. Zhang used a robust
neural control algorithm to follow the path generated by the DVS [19]. Woo adopted a double-loop
indirect track-keeping control structure with the Proportional-Integral-Derivative (PID) control
algorithm [22]. Nevertheless, these studies focused solely on path-following or trajectory-tracking
algorithms, and these algorithms assume the impossibility of collisions during the tracking process [5].
The failure or delay of the guidance system will cause the USV to lose the collision avoidance ability.
In consequence, it is important for USVs to adopt the collision avoidance control algorithm in the CAS.
To date, the collision avoidance control algorithm has been developed in mobile robots [23], unmanned
vehicles [24,25], and unmanned aerial vehicles (UAVs) [26], but there are few studies on USVs. A CAS
for USVs emerged in relevant literature [8], in which the fuzzy estimator method was developed for
collision avoidance control. The method is able to avoid collision with a change of course. However,
collision avoidance not only needs to change the course, but also the speed needs to be adjusted.
Model predictive control (MPC), which combines path planning with on-line stability and convergence
guarantees, is increasingly being applied to collision avoidance problem [27]. One significant study
can be found in the work undertaken by Johansen [28], who applied MPC in the CAS of ship with
a simple external environment. However in contrast to ordinary ships, considering that USVs have
the characteristics of high speed and smaller volume, the CAS needs shorter computation times and
stronger robustness. Finite control set model predictive control (FCS-MPC) is used as the collision
avoidance control algorithm, and has advantages such as fast dynamic response, optimal control of
multiple objectives, inherent decoupling, and easy inclusion of nonlinear constraints [29].

To improve the autonomy of USVs, an ANS with a PPS (dynamic domain tunable fast marching
square, DTFMS) and CAS (FCS-MPC) is proposed in this paper. The main contributions of this paper
can be summarized in five main points. Firstly, the proposed DTFMS method is able to construct a
potential map from a real electronic chart, where both static and dynamic obstacles are well represented.
To represent the dynamic obstacles, the algorithm adds the dynamic domain models of own and target
vessels into the planning space, and the domain models can be changed according to vessel motion
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states and updated environment times. Secondly, the proportion of the safe area in potential maps can
be adjusted by Saturation to assess security and path length. Thirdly, using the potential map from the
DTFMS method, a collision-free smooth path can be generated which can be used as dynamic target
points of the CAS. Fourthly, a fast and safe CAS is proposed based on FCS-MPC, and it has the ability
for trajectory tracking and local collision avoidance for underactuating USVs. Meanwhile, to fully
evaluate the safety of the predicted trajectories, its security evaluation comes from the potential map
of the DTFMS method. Finally, the simulations are undertaken in a realistic sea environment with
three types of encounter situations, and the target vessels have the possibility of changing their course,
which is similar to the practical context.

The rest of the paper is organized as follows. Section 2 introduces the structure of the USV system.
Section 3 describes the static environment modeling and path planning method. Section 4 establishes
the mathematical model of the USV and designs the CAS based on FCS-MPC. In Section 5, the DTFMS
method is proposed for path re-planning in a dynamic environment. In Section 6, the ANS is verified in
the simulation and real environments, and their results are compared in the dynamic and static cases.
Finally, Section 7 gives the conclusions on the system and identifies future works on the ANSs of USVs.

2. The Overview of Unmanned Surface Vehicle System

The overall structure of the USV system has been systematically described in Figure 1, which
illustrates the system with its three major subsystems (the state awareness system, executive system,
and autonomous navigation system (ANS)) and the information flow between them. In the paper,
the Lanxin USV, which is a small intelligence equipment platform of Dalian Maritime University [30],
is used as the research object. The USV is a pod propulsion vessel, so its executive system command
is composed of thruster speed and propulsion angle. The environmental information is divided into
static information and dynamic information. The static environmental information can be obtained by
electronic charts or satellite images. The surrounding dynamic information mainly comes from state
awareness systems through on-board equipment (global positioning system (GPS), radars, cameras,
and sonar) and the sharing of information with other vessels using radio, automatic identification
system (AIS), and network communication. The two kinds of information are applied to global path
planning and local path re-planning, respectively.

Figure 1. The overall structure of the unmanned surface vehicle (USV) system. DTFMS: dynamic
domain tunable fast marching square; FCS-MPC: finite control set model predictive control; GPS: global
positioning system; AIS: automatic identification system.
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As observed from the USV system structure, the autonomous navigation system plays an
important role as it connects both the state awareness system and the execution system. It contains
two components, i.e., the PPS and CAS. The PPS can model the static and dynamic environment and
generate optimized reference path points by path planning and re-planning and provide them to the
CAS. The CAS generates control commands to the executive system that enables the USV to follow the
reference path points and complete the local dynamic obstacle avoidance. Meanwhile, the predicted
movement information of the USV from the CAS can provide reference for path re-planning. Detailed
descriptions of the ANS are given in Sections 3–5. In order to realize the autonomous navigation of the
USV, we make following assumptions:

• The state information of the obstacle is known exactly.
• We have real-time detection of the USV’s position, heading, and velocity.
• Global information comes from the electronic chart.
• The mathematical model of the USV can be used to predict future trajectories to evaluate the

effect of control commands.

The proposed structure implies that collision avoidance and control functionality are integrated
together. This leads to a more concise structure whereby the controller can directly implement the
collision avoidance function, and reliability and safety can be ensured by the structure.

3. The Static Environment Modeling and Path Planning

3.1. Simulation Environmental

In Figure 2a, the simulation environment includes an irregular coastline and two islands (circular
and pentagram), the dimension of which is 463 pixels × 613 pixels. Each pixel represents 1 m.
According to the improved GoodWin ship domain model by Davis, when the obstacles are extended
by a distance of half the ship’s length, the ship can be seen as a particle [31]. Hence, the simulation
environment is extended by a distance of half the USV’s length, and added to the one-pixel-wide
boundary in Figure 2b.

(a) (b)

Figure 2. The simulation environment. (a) The initial binary map; (b) The expanded map.

Moreover, the system removes all the height information in the environment, i.e., the
three-dimensional (3D) environment is converted to a two-dimensional (2D) planar environment.
According to the above hypothesis, USV can be seen as a particle motion in a 2D planar environment.
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3.2. The Fast Marching Method

The FMM is a level set method proposed by Sethian in 1996 to solve the wave propagation
problem [20]. It can also be used as a kind of the grid search algorithm in path planning with the
continuity and smoothness of the path. This method can be divided into two steps. The first step is the
exploration process, which establishes the optimal cost value (arrival time) of each grid on the whole
map. The last step is the development process. That is, by solving the optimal cost value, the optimal
path is formed from the target to the starting point. The exploration process is very similar to the
expansion of waves. The path of waves from the source point to the target point can be considered as
the optimal path, so we can establish the time function based on the propagation of waves. The FMM
calculates the arrival time T for a wave to reach every point of the space. The wave can be generated
by more than one source point, and each point originates one wave. The corresponding time of the
source point is T = 0. {

t = T(x, y)
T(x0, y0) = 0

(1)

where T(x, y) is the time that the wave interface requires to reach (x, y), and (x0, y0) is the source point.
When Equation (1) is a derivative of t, the inner product of two vectors about∇T(x, y) and speed

V of wavefront can be obtained.

|∇T (x, y)| ·V (x, y) = 1 (2)

That is, at the point (x, y), the motion of the front is described by the Eikonal equation.
The numerical solution of Equation (2) can be obtained via the upwind deferential method when using
the FMM. The solving process of the FMM is similar to Dijkstra’s method but in a continuous way.

Suppose (x, y) needs to be solved and its neighbor is a point set containing four elements
(x + ∆x, y), (x− ∆x, y), (x, y + ∆y), (x, y− ∆y). The discretization of the gradient ∇T(x, y) according
to [32] derives to the following equation:

max
(

D−x
(x,y)T,−D+x

(x,y), 0
)2

+max
(

D−y
(x,y)T,−D+y

(x,y), 0
)2

=
1

V2
(x,y)

(3)

where

D−x
(x,y) =

T(x,y)−T(x−∆x,y)
∆x

D+x
(x,y) =

T(x+∆x,y)−T(x,y)
∆x

D−y
(x,y) =

T(x,y)−T(x,y−∆y)
∆y

D+y
(x,y) =

T(x,y+∆y)−T(x,y)
∆y

(4)

and ∆x and ∆y are the grid spacing in the x and y directions. Substituting (4) in (3) and letting

T = T(x,y)
T1 = min(T(x−∆x,y), T(x+∆x,y))

T2 = min(T(x,y−∆y), T(x,y+∆y))

(5)

the Eikonal Equation can be rewritten for a discrete 2D space as:

max
(

T − T1

∆x
, 0
)2

+max
(

T − T2

∆y
, 0
)2

=
1

V2
(x,y)

(6)
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Consequently Equation (6) can be solved as the following quadratic:

1
V(x,y)

=


√(

T−T1
∆x

)2
+
(

T−T2
∆y

)2
T ≥ max(T1, T2)

T−T1
∆x T2 ≥ T ≥ T1

T−T2
∆y T1 ≥ T ≥ T2

(7)

Assuming that the velocity is positive (V > 0), T must be greater than T1 and T2, that is, the front
wave passes over the coordinates (x, y) only once.

To further illustrate the FMM algorithm, a simple case representing how to update a 7× 7 grid
map is shown in Figure 3. Figure 3a shows the initial configuration of the algorithm with the middle
point being the algorithm start point. The interface propagating speed is set to be uniform as 1 at each
grip point. When the FMM is being executed, grid points are categorized into three different groups as:

• Dead (marked as red): indicates that the arrival time value (T) of the grid point has been calculated
and determined;

• Open (marked as blue): indicates that the arrival time value (T) of the grid point is an estimated
value and may be changed;

• Far (marked as gray): indicates that the arrival time value (T) of the grid point is unknown.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. The updating process when using the fast marching method (FMM). (a) Initial state;
(b) Iteration 1; (c) Iteration 5; (d) Iteration 13; (e) Iteration 25; (f) Iteration 37; (g) Iteration 45;
(h) Iteration 49.

The arrival time output of one wave source in 50× 50 grid map is shown in Figure 4a. If we
select T as the z axis of the third dimension, the result of the wave expansion is shown in Figure 4b.
In the case of the four wave sources expanding, the same process is applicable. When the waves from
different sources reach each other, the propagation continues as if they were only one wave, as shown
in Figure 4c,d. With one single source, there is only one minima at the source. For more than one
source, there is a minima at each source with T = 0.
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(a) (b) (c) (d)

Figure 4. The fast marching method (FMM) applied over a grid map. (a) One wave source in two
dimensions; (b) One wave source in three dimensions; (c) Four wave sources in two dimensions;
(d) Four wave sources in three dimensions.

Suppose Figure 2b, which is a binary map, represents the planning space (M). Its arrival time
matrix T (shown in Figure 5a) from the end point is calculated by FMM. Then, on the base of the
T, by applying the gradient descent method the optimal path is finally generated and shown as the
magenta line in Figure 5b,c.

(a) (b) (c)

Figure 5. Path planning with the fast marching method (FMM). (a) Output of the FMM, i.e., arrival
time matrix T; (b) Path obtained after applying gradient descent on T; (c) Generated path and arrival
time matrix T in three dimensions.

3.3. The Tunable Fast Marching Square Method

In the Figure 5, the path generated by FMM is too close to obstacles. In the real sea environment,
there are usually shallow water near the islands and coastlines. This is dangerous for USVs. Hence, USVs
should be as far away from obstacles as possible for safety. The literature [33] has proposed a new
algorithm named the fast marching square (FMS) method to tackle this problem, which adds one step
to the conventional FMM algorithm. First, the FMS method generates a security potential map (V) with
the FMM executing from all the points in obstacle area (see Figure 6a) by using the previous planning
space. Its specific principle is multiple wave source expansion of the FMM, as shown in Figure 4c,d.
The potential map V is the arrival time matrix of the wave. Then, with the potential map V as the speed
matrix, the FMM is again applied to generate the arrival time matrix T from the end point in Figure 6b.
The final path generated by the FMS method is shown as the magenta trajectory in Figure 6c,d with
increased safety.
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(a) (b) (c) (d)

Figure 6. Path planning with the fast marching square (FMS) method. (a) The safety potential map V;
(b) The arrival time matrix T; (c) Path obtained after applying gradient descent on T; (d) Generated path
and arrival time matrix T in three dimensions.

However, the path generated by FMS method is the farthest route from the obstacles, i.e., in the
safest area. The farther away from the obstacles, the longer the length of the path. Hence, the tunable fast
marching square (TFMS) method is proposed to tradeoff between security and path length. This method
only changes the potential map (V) of the FMS method. The TFMS method needs to scale the V into
the range of 0 to 1 and V = min(V1, Saturation), where V1 is the scaled potential map and Saturation
describes security from 0 to 1, and then rescales the V into range of 0 to 1. Figure 7 shows the result of
path planning with different Saturation values in the potential map of the TFMS method. The TFMS is
FMS when Saturation is 1.0, and FMM when Saturation is 0.0.

(a) (b) (c) (d)

Figure 7. Path planning with different Saturation values. (a) Saturation 0.9; (b) Saturation 0.7;
(c) Saturation 0.5; (d) Saturation 0.3.

3.4. The Realistic Sea Environment Model

A sea area in Dalian harbor, which as a non-freezing deep-water harbor is one of the busiest
harbors in China, was selected as the sea environment modeling area. Its electronic chart and binary
map are shown in Figure 8a,b. The coastlines and ocean depth are clearly marked in the electronic
chart, so it is clear that both collision area and safe area can be identified. In the electronic chart, the
pixel values of the collision area are replaced by 0. The collision area is shown as black. The safe areas
are replaced by the value 1 shown in white. The final map is the binary map that has only two possible
values (0 or 1) for each pixel. The dimensions of the binary map are 1253 × 1794 pixels with the 1 pixel
= 1 m scale. The results from applying the steps of TFMS method with Saturation 0.9 are shown in
Figure 8c–f for the real sea area.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Steps of the tunable fast marching square (TFMS) method in a real sea area. (a) Electronic
chart of the sea area; (b) Initial binary map; (c) Expanded binary map; (d) Potential map V with
Saturation 0.9; (e) Arrival time matrix T; (f) Path obtained after applying gradient descent on T.

4. Collision Avoidance System

4.1. Finite Control Set Model Predictive Control of the CAS

Based on the USV model, the FCS-MPC for the CAS predicts the possible trajectories by the finite
control behaviors (finite control set), and then judges all these trajectories by the predefined evaluation
function to select an optimal control behavior. Figure 9 illustrates a block diagram of the FCS-MPC for
the CAS.

The design process of the system is as follows: The USV prediction model fp {X, S} first needs to be
established, and can predict the USV’s state quantity X in response to the different control behaviors S.
At time tk, by the USV prediction model, the predictive values Xpi(tk+j) of the state quantity under the
action of Si can be calculated based on the current state quantity X(tk), i.e., Xpi(tk+j) = fp {X(tk), Si},
i = 1, 2, · · · , c. c is the number of all valid control behaviors of USV, j = 1, 2, · · · , tp, and tp is prediction
horizon. Based on the system characteristics concerned, such as attainability, safety, stability, and
rapidity, the evaluation function fe

{
Xpi, Si

}
is constructed. Finally, the selected control command

So(o ∈ {1, · · · , c}) that makes the function fe optimal is used to control the USV.
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Figure 9. Block diagram of finite control set model predictive control (FCS-MPC) for the collision
avoidance subsystem (CAS). USV: unmanned surface vehicle.

4.2. Prediction Model of USV

The prediction model of the USV is described by the standard three-degree of freedom (DOF)
planar ship motion model, neglecting the roll, pitch and heave motions [34]. The kinematics of the
system can be written as

η̇ = J(ψ)υ (8)

where η = [x, y, ψ]T represents position and course in the earth-fixed frame, υ = [u, v, r]T includes
surge and sway velocities and yaw rate in the body-fixed frame, and J(ψ) is rotation matrix from
body-fixed to earth-fixed frame. The η and υ together form the state quantity X of USV, which is

X = [x, y, ψ, u, v, r]T (9)

Assume that:

• The environment force can be neglected in the model;
• The inertia, added mass, and damping matrices are diagonal.

The simplified model of vessel can be written as [35,36]
u̇ = m22

m11
vr− d11

m11
u + 1

m11
τu

v̇ = −m11
m22

ur− d22
m22

v + 1
m22

τv

ṙ = m11−m22
m33

uv− d33
m33

r + 1
m33

τr

(10)

with [37,38] 
τu = T cos(δ)
τv = T sin(δ)
τr = T sin(δ)L/2

T =
(
1− tp

)
ρn2D4

pKT

where mii values are given by the vessel inertia and the added mass effects, dii values are given by the
hydrodynamic damping, L is the USV length, T is thrust of thruster, and the inputs of model are the
propulsion angle δ and thruster speed n.

Based on the servo response characteristics of the actual steering process and the actual data
collected from the experimental process, the steering gear response model is processed according to
the second-order link [37,39]

δ̈ + 2ζωn δ̇ + ω2
nδ = Kω2

nδr (11)



Appl. Sci. 2018, 8, 193 11 of 27

Here, δr is the command propulsion angle, and ωn, ζ, and K represent the natural frequency,
damping ratio, and proportionality coefficient, respectively. |δ| ≤ 30◦ is the actual propulsion
angle range.

4.3. Control Behaviors and Prediction of the USV Trajectory

For the USV system, the control behavior S is the combination of propulsion angle δ (which
replaces the command propulsion angle δr later) and thruster speed n. The actuator of the USV has
a lot of limitations, such as maximum value δm and nmax, change rate δ̇, and the ṅ of the two control
behaviors. In the control update interval ∆t, the scope of the control behaviors is

S =

{
(δ, n)

∣∣∣∣∣ δ ∈ [δ− δ̇∆t, δ + δ̇∆t]
n ∈ [n− ṅ∆t, n + ṅ∆t]

}
(12)

and {
|δ| ≤ δm

0 ≤ n ≤ nmax

Then, by the discrete propulsion angle δd and thruster speed nd, the maximum number of control
behaviors is c = (2δ̇∆t/δd)× (2ṅ∆t/nd). With the decrease of δd and nd, the control behaviors will
be more precise, which can improve the performance of the system, but the calculation complexity
will increase accordingly. In terms of the control performance and safety, it is obvious that there
should be as many control behaviors as possible, but from an information processing perspective,
the calculation complexity should be reduced within the computational capacity. Obviously, there
is a tradeoff between the number of the control behaviors and the computational complexity with
respect to time discretization, the control update interval, the prediction horizon, and the computation
time. In addition, a very useful feature of these control behaviors is that they should remain constant
throughout the prediction horizon.

4.4. Evaluation Function

To ensure the CAS meets some requirements, such as attainability, safety, stability and rapidity,
the system proposes the evaluation function fei(Xpi, Si), including four subfunctions i.e., f1(Xpi, Si),
f2(Xpi, Si), f3(Xpi, Si), and f4(Xpi, Si) corresponding to the four demands, respectively. The
normalization method is used to smooth the evaluation function. For instance, the normalized
first subfunction is

f̄1(Xpi, Si) =
f1(Xpi, Si)

∑c
i=1 f1(Xpi, Si)

(13)

Moreover, according to the importance of these demands, evaluation subfunctions can have
different weightings (α, β, γ, λ). The ith evaluation function is

fei(Xpi, Si) = α · f̄1(Xpi, Si) + β · f̄2(Xpi, Si) + γ · f̄3(Xpi, Si) + λ · f̄4(Xpi, Si) (14)

We set the control behavior that can maximize the evaluation function as the optimal control
command. The four subfunctions are defined as follows

4.4.1. Attainability Subfunction f1(Xpi, Si)

The first demand of the CAS is to reach the target point. If the course ψ keeps pointing to the target
point, which is called the navigation angle, the vessel can reach the target point along the shortest path.
Hence, the difference angle θpi between the predicted course ψpi and the navigation angle can be used
to evaluate the attainability of Xpi, as shown in Figure 10.
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Figure 10. Description attainability and safety subfunctions in potential map V with Saturation 0.9.
ψpi: the predicted course; θpi: the difference angle between ψpi and the navigation angle.

The attainability subfunction is

f1(Xpi, Si) = π − θpi (15)

4.4.2. Safety Subfunction f2(Xpi, Si)

The safety of the CAS is extremely important for the USV. The safety subfunction should ensure
that the vessel is away from all obstacles in the surrounding environment. In Section 3, the value of
potential map V, which is generated by the TFMS method, can describe the security of each pixel point
from 0 to 1. Hence, the sum of the potential values Vpk corresponding to all the predicted states Xpi on
ith trajectory is the safety evaluation of the trajectory. The safety subfunction is

f2(Xpi, Si) =
n

∑
k=1

Vpk (16)

where n is the number of states on ith trajectory. Figure 10 explains the safety subfunction in a potential
map V with one obstacle point.

4.4.3. Stability Subfunction f3(Xpi, Si)

In order to enable the USV to be as stable as possible, the propulsion angle δ should be smaller or
zero. Thus, the stability subfunction is

f3(Xpi, Si) = δm − |δi| (17)

4.4.4. Rapidity Subfunction f4(Xpi, Si)

The rapidity of the USV can be described by its speed U as

f4(Xpi, Si) = Upi (18)
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4.5. Stop Distance and Hazard

According to the USV dynamics, stop distance dstop also needs to be considered. The stop distance
varies with the current state of the USV, that is, at the current speed, as much as possible to reduce the
speed, the distances generated in this process are calculated by

di
stop = Upi

2/(2 · U̇pi) (19)

where U and U̇ are the speed and acceleration of USV. When the stop distance di
stop is larger than the

minimum distance doi between the vessel and the z obstacle points in a search range of radius dmax,
the ith control behavior Si is ineffective. The minimum distance doi is

doi =


z

min
k = 1

{∣∣Xpi − Xok
∣∣} if

∣∣Xpi − Xok
∣∣ ≤ dmax

dmax else
(20)

where the Xok represent the the state quantity of the kth obstacle point. If Xpi is replaced with X, the do
is hazard value of current state X.

4.6. Dynamic Target

For the above four subfunctions, we can adjust their weights according to their importance.
The system selects the optimal control command So in the range that the predicted trajectory can cover.
However, when there is a concave obstacle, the algorithm can easily to fall into the local optimum,
as shown in Figure 11. A dynamic target method is introduced to solve the problem.

Considering that the path planning system can generate the global optimal path point, if its path
point closest to the prediction range is selected as a dynamic target (DT), the USV can be far away from
the local optimal area, as verified in Section 6. Because the path planning process requires a certain
computation time which results in an information updating delay, the update time Tupd should be
considered. The distance dDT of DT on the optimal path is

dDT = Umax × tp + U × Tupd (21)

Using this method, the USV can not only follow the global optimal path point, but also have the
local collision avoidance functionality.

Figure 11. The unmanned surface vehicle falling into the local optimum in a static simulation environment.
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5. Dynamic Environment Modeling and Path Re-Planning

In the dynamic environment, there are dynamic obstacles to the vessel itself, which can affect the
optimal path generated. Hence, a method named the dynamic domain tunable fast marching square
(DTFMS) method is proposed to establish the domain model for the own vessel and target vessel. The
own vessel can makes collision avoidance actions and the target vessel does not take any collision
avoidance actions.

5.1. The Dynamic Domain Tunable Fast Marching Square Method

5.1.1. Own Vessel Dynamic Domain Model

Even though the trajectory provided by the TFMS method is smooth and safe, motion
characteristics of the USV are ignored, which causes the trajectory to have a lesser role in navigation.
The USV is a kind of underactuated vehicle, so its surrounding area can be divided into reachable and
unreachable areas. In the previous literature [20], the domain of the vessel itself was only considered
as fixed, and ignored the dynamic movement of the USV. Thus, the DTFMS method is used to solve
this problem based on the TFMS and FCS-MPC. Because the FCS-MPC can continuously update the
reachable set of the vessel, when the control commands are updated, a series of vessel trajectories can
be predicted, as the green lines show in Figure 12. In order to achieve a shape of reachable set that
is easy to calculate in environment model, Figure 12a shows the dynamic domain model of the own
vessel. It is composed of two parts,: the bow part is a semi-circle and the stern part is a semi-ellipse.
The domain model changes its shape according to the speed U of the vessel; the shape tends to be
circular when vessel is traveling at low speeds and semi-circular at high speeds. So that the domain
contains a reachable set with update time Tupd, the radius Rbow of the bow part is the farthest distance
from the predicted position to the current position, and the semi-major axis Rstern of stern is same as
the radius of the bow.

The Rbow and Rstern are {
Rbow = U × Tupd + rmin
Rstern = rmin

(22)

with
rmin = L/2 + dsa f e

where rmin is minimum radius of domain model, which can be calculated by the length L of USV
and safe distance dsa f e. The domain model is divided into two (reachable and unreachable) areas.
In Figure 12a, the reachable area is the white sector, including 2× θ angles which are determined by
the current course ψ, predicted course ψpi, and minimum angle θmin, that is

θ = θmin + max(|max(ψpi)− ψ|, |min(ψpi)− ψ|) (23)

The own vessel domain can change dynamically with the speed and reachable set from the
FCS-MPC. Figure 12b–e shows the own vessel domain with different speeds and included angles in
the updated time Tupd = 4 s. In Figure 12b–d, the initial propulsion angle of the vessel is 0◦, but the
angle is 10◦ in Figure 12e, which better shows the relationship between the predicted trajectories of the
FCS-MPC and included angles of the own vessel dynamic domain model.
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(a)

(b) (c)

(d) (e)

Figure 12. The own vessel dynamic domain model. (a) Schematic of the own vessel dynamic domain
model; (b) The pixel image of domain model with speed 2.5 m/s and included angle of reachable area
2× θ = 29.0◦; (c) Speed 10 m/s and 2× θ = 44.5◦; (d) Speed 5 m/s and 2× θ = 33.5◦; (e) Speed 5 m/s
and 2× θ = 57.0◦. 2× θ: the included angle of reachable area.

5.1.2. Target Vessel Dynamic Domain Model

In the field of autonomous navigation, the concept of ship domain is often introduced, which is
the area around the target vessel that prevents other moving objects from entering. The shape of the
ship domain is usually circular, and its center is located at the instantaneous position of the target [31].
However, when the target vessel speed is high, the collision risk of bow direction is greater than in the
abeam and stern directions. Hence, it is reasonable to build the ship domain according to the speed
of the target vessel. Referring to ship domain of Tam [40], the domain model of the target vessel can
be established in Figure 13a, and also changed by the two parameters Rbow and Rstern. They are
given by 

Rbow = U × Tupd + rmin

Rstern=

{
rstern if rstern ≥ rmin
rmin else

(24)

with
rstern =

{
U × Tupd + rmin if U ≤ ULim
(2×ULim−U)× Tupd + rmin else

Referring to Figure 14, Rbow and Rstern are equal at low speed (until the speed reaches ULim);
at high speed, Rstern gradually reduces to rmin, while Rbow increases in proportion to U, as more
emphasis is placed on the direction of travel of the target vessel at high speeds.

In Figure 13b–f, the domain model of the target vessel changes its shape according to the different
speeds. The shape tends to be circular when vessel is traveling at low speeds so that the collision risks
are equally allocated near the vessel. However, at high speeds the bow part is more at-risk than the
other parts, and this part increases proportionally with speed.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Target vessel dynamic domain model. (a) Schematic of the target vessel dynamic domain
model; (b) The pixel image of domain model with speed 2.5 m/s; (c) Speed 5 m/s; (d) Speed 6 m/s;
(e) Speed 8 m/s; (f) Speed 10 m/s.

Figure 14. The outputs of target vessel domain model for increasing speed U with Tupd = 4 s,
rmin = 20 m, and ULim = 5 m/s. The dotted line represents the output for the bow section, and
the solid line represents the stern section of the target vehicle. rmin: minimum radius of the domain
model; ULim: the boundary value of speed; Rbow: the semi-major axis of the bow part; Rstern: the
radius of stern part.

5.2. The Process of Path Re-Planning

The process of path re-planning with the DTFMS method is described in Figure 15. First, the
dynamic domain models need to be added to the potential map V. For example, Figure 15a adds one
own vessel and two target vessels, and each addition time is of 0.08 s. The updated V is acquired by
the TFMS method within 0.20 s in Figure 15b. Then the arrival time matrix T and path are generated
within 0.20 s, as shown in Figure 15c,e. Figure 15d,f shows the impact of removing a target vessel on
the path. As we can see, the path is updated according to the changes of the environment. Affected
by the domain model, the new path can follow the current course and stay away from target vessels.
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Similarly, an actual environment example of path re-planning using the DTFMS method is shown in
Figure 16.

(a) (b) (c) (d)

(e) (f)

Figure 15. The process of path re-planning. (a) Addition of domain models to potential map V (time
0.08 s); (b) New potential map V′ by tunable fast marching square (TFMS; time 0.20 s); (c) Generated
path and arrival time matrix T (time 0.22 s); (d) Generated path and arrival time matrix T with a
single target vessel domain model; (e) Generated path and arrival time matrix T in three dimensions;
(f) Single target vehicle domain model in three dimensions.

(a) (b) (c)

Figure 16. Path re-planning in an actual environment. (a) Addition of domain models to potential
map V (time 0.30 s); (b) New potential map V′ by tunable fast marching square (TFMS; time 1.80 s);
(c) Generated path and arrival time matrix T (time 1.80 s).

In terms of computation time, the simulation environment (463 pixels × 613 pixels) by the DTFMS
method requires 0.50 s to explore the space, whereas the realistic environment takes 3.80 s with dimensions
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of 1253 × 1794 pixels. Because the realistic environment needs to explore more space, it takes more time.
Therefore, the update time Tupd we choose should be longer than the computation time of the algorithm.

6. Simulation Study and Discussion

The section discusses and analyses the proposed ANS of the with the DTFMS and FCS-MPC in two
different environments. The first simulation is to validate the algorithm in a simulation environment,
and two different test scenarios are designed: (1) the USV runs in a static environment; and (2) the USV
operates in a dynamic obstacle environment. The second simulation is designed to test the algorithm
in a realistic sea environment with static and dynamic environments. The modeling of the simulation
and real environments has been described in Sections 3 and 5. The parameters of the USV and the
algorithm from Table 1 is used in all cases.

Table 1. Parameter information about the automatic navigation system (ANS) of the unmanned surface
vehicle (USV).

Parameter Value Units

USV

Size of the USV (length, breadth) (7.02, 2.60) m
Initial course of the USV 90.0 ◦

Initial speed of the USV 0.0 (0.0) m/s (kn)
Initial thruster speed 0.0 r/min

Maximum thruster speed 66.7 (4000) r/s (r/min)
Change rate of thruster speed 6.7 r/s2

Discrete thruster speed 1.7 (100) r/s (r/min)
Initial propulsion angle 0.0 ◦

Maximum propulsion angle 30.0 ◦

Change rate of propulsion angle 5.0 ◦/s
Discrete propulsion angle 1.0 ◦

Algorithm

Saturation 0.9 –
Search range 100.0 m

Prediction horizon 8.0 s
Control update interval 1.0 s

Weight of evaluation function (1.50, 1.50, 0.01, 2.00) –

The algorithm is coded in Matlab and simulations are run on the computer with a Core i7 3.6 GHz
processor and 4 GB of RAM. The simulation results are given by time-dependent motion sequences.
The following symbols and color codes in motion sequence diagram are applied:

• The start and end points for the USV are marked as blue and red ‘∗’ markers. The end point
can be enlarged to a red circular area, and if the USV enters the area, it can be considered to be
finished. Moreover, the dynamic target is marked as yellow ‘∗’ marker.

• There are three curves of the USV in the diagram. The magenta curve is the planned path of the
DTFMS method for the USV. The blue curve represents the track of the USV up to a final time.
The green curves denote the predicted trajectories at the present time. The symbol of the USV is
the blue boat form.

• To make the vessels easy to observe, the symbols of both the USV and the target vessels (TVs) are
enlarged 15 times in terms of size.

• The curves and boat forms with red, orange, and cyan colors represent the tracks and symbols of
TV1, TV2, and TV3, respectively.

6.1. Verification in Simulation Environment with Single Moving Target Vessel

In the first test, the simulation environment is static without any dynamic obstacles. The final result
of the simulation is shown in Figure 17, which is depicted in both a binary map and the corresponding
potential map. It is clear that both the collision area (in black) and safe area (in white) have been
identified. We can see that the USV can travel smoothly and safely into the end area.
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(a) (b)

Figure 17. The simulation final result in a static simulation environment. (a) The binary map; (b) The
potential map.

Then, in order to test the capability of the algorithm to avoid dynamic obstacles, the moving
TV1, which has a similar size (7.00, 3.00) m and speed 10 m/s (19.4 kn) to the USV, is added into
the simulation environment. Generally, there are three types of situations in which the two vessels
encounter each other: overtaking, head-on, and crossing situations. The most dangerous situation is
the head-on situation. So, on the premise of removing the motion information of the USV, the path of
the target vessel given by the TFMS method reaches a head-on situation with the USV. The simulated
target vessel may be hostile or have detection system failure. The simulation results recording the
movement sequences of the vessels are represented in Figure 18. Figure 18a–c shows how the USV
adjusts the course to the end point. As the initial course of the USV is opposite to the direction of
the end point, the planned path of DTFMS method extends a certain distance to the direction of the
course. Figure 18d–f illustrates how the USV avoids TV1. The two vessels form a head-on situation and
starboard side turning is adopted by the USV in Figure 18d. After 43 s, the USV decelerates gradually
and enters the end area in a safe state (Figure 18g,h). In the corresponding safety potential maps, it can
be observed that the USV can stay well outside collision area (including static obstacles and the target
vessel domain), which proves that the ANS is able to guarantee collision-free navigation of the USV.
Figure 18h shows the comparison of the tracks in the dynamic environmental (blue solid curve) and the
static environment (blue dashed curve).

Evaluations of the USV behavior and algorithm performance in the dynamic and static
environments are given in Table 2 and Figure 19. Table 2 describes the results of evaluation index of
two tests. Figure 19a–d shows the control behaviors (thruster speed and command propulsion angle)
and state output (speed and course) of the USV during the whole process. In Figure 19a,c, the USV
and thruster keep at maximum speed during the sailing time, except for a slight decline in collision
avoidance, which illustrates that the algorithm can adjust the speed according to the hazard under the
premise of rapidity. In Figure 19d, at the beginning and the end of process, it is necessary to adjust the
course with the larger command propulsion angle so that the USV can reach the end point. During the
sailing time, the size of command propulsion angle is small at less than 5◦ in a static environment,
and less than 7◦ in a dynamic environment, so the system also satisfies the stability. The update
environment time Tupd is determined by the computation time of the system, which is divided into two
parts, i.e., DTFMS method time 0.40 s and the FCS-MPC time. Figure 19e shows the computation time
of the FCS-MPC. As a result of the maximum computation time of 0.63 s of the FCS-MPC, the Tupd is
set to 2.00 s. Safety is the most important measure for autonomous navigation and should be ensured
during the whole process. Figure 19f shows the distance between the USV and the detected collision
area (the static obstacles after expansion and the target vessel domain). It can be seen that collisions
will be detected at a longer distance in the two tests. The minimum and average distances are 19.8 m
and 51.1 m in the static environment, and 10.4 m and 35.9 m in the dynamic environment, respectively.
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(a) Time 3 s (b) Time 11 s

(c) Time 20 s (d) Time 28 s

(e) Time 31 s (f) Time 34 s

(g) Time 43 s (h) Time 52 s

Figure 18. The motion sequence diagram of the unmanned surface vehicle with single target vessel
in the simulation environment. (a) Time 3 s; (b) Time 11 s; (c) Time 20 s; (d) Time 28 s; (e) Time 31 s;
(f) Time 34 s; (g) Time 43 s; (h) Time 52 s.
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(a) (b)

(c) (d)

(e) (f)

Figure 19. Evaluation results in the simulation environment. (a) Speed of the unmanned surface vehicle
(USV); (b) Course of the USV; (c) Thruster speed; (d) Command propulsion angle; (e) Computation time;
(f) Distance between the USV and collision area.

Table 2. Results of evaluation index comprised of two tests in the simulation environment. USV:
unmanned surface vehicle.

Environment Index Speed of the
USV (m/s)

Thruster
Speed (r/min)

Propulsion
Angle (◦)

Computation
Time (s)

Distance
(m)

static
maximum 11.0 4000 0.0 0.63 100.0
minimum 0.0 0 −30.0 0.11 19.8
average 7.5 3109 −10.8 0.25 51.1

dynamic
maximum 10.9 4000 3.0 0.61 86.8
minimum 0.0 0 −30.0 0.11 10.4
average 7.2 3059 −10.5 0.26 35.9

6.2. Verification in Realistic Sea Environment with Multiple Moving Target Vessels

A more complex simulation is done in a realistic sea environment (shown in Figure 8a) with
multiple moving TVs. Under the same algorithm parameter conditions, the USV first starts to sail in
the static sea area and the final result is shown in Figure 20. It can be seen that the USV travels into the
harbor in the safe area and eventually reaches the end area.
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(a) (b)

Figure 20. The simulation final result in static sea environment. (a) The binary map; (b) The potential map.

Now, three virtual TVs are added into the environment, traveling at 10 m/s (TV1), 7 m/s (TV2),
and 5 m/s (TV3) respectively. The size (7.00, 3.00) m of TV1 and TV2 is similar to the USV, and TV3
measures (20.00, 8.00) m. In the same way, their path is also generated by the TFMS method without
regard for other vessels. The movement sequences are expressed in Figure 21, which includes both the
original binary maps as well as the potential maps. The potential maps show the vessel domain of
three TVs based on their velocities. In addition, the system is verified in three encounter situations.
Figure 21a,b plots the USV moving from the initial state to the harbor. At the entrance of the harbor,
the USV encounters TV1 and forms a head-on situation. Next, Figure 21b–d displays the USV evasion
process. After moving away from TV1, a crossing situation is made up of USV and TV2 in Figure 21e–g.
When TV1 and TV2 are successfully avoided, the USV begins to overtake TV3. From Figure 21h–j,
it is observed that the USV completed the task of overtaking, although TV3 changes its course in the
process. The process of entering the end area is depicted in Figure 21k,l. Figure 21l shows the contrast
of the final tracks of the USV in the two tests.

(a) Time 5 s (b) Time 29 s

(c) Time 33 s (d) Time 37 s

Figure 21. Cont.
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(e) Time 69 s (f) Time 73 s

(g) Time 77 s (h) Time 97 s

(i) Time 121 s (j) Time 137 s

(k) Time 161 s (l) Time 176 s

Figure 21. The motion sequence diagram of the unmanned surface vehicle with multiple target vessels
in a real environment. (a) Time 5 s; (b) Time 29 s; (c) Time 33 s; (d) Time 37 s; (e) Time 69 s; (f) Time 73 s;
(g) Time 77 s; (h) Time 97 s; (i) Time 121 s; (j) Time 137 s; (k) Time 161 s; (l) Time 176 s.

To assess the algorithm, first of all, in static and dynamic environments, the output and input of the
USV are shown in Figure 22a–d and Table 3. In Table 3, the evaluation results of two tests is almost the
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same except for distance. Compared to the two tests, the speeds of the USV and thruster are largely the
same and can maintain a maximum during the sail time in Figure 22a,c. In Figure 22d, the propulsion
angle is completely consistent before collision avoidance. During the collision avoidance, the size of
command propulsion angle is less than 5◦, similar to the static environment at less than 4◦. Figure 22e
displays the computation time of the FCS-MPC. In the real environment, the DTFMS method time is 3.6 s
which is far longer than the FCS-MPC time. The Tupd is selected as 4.00 s. Figure 22f records the distance
between the USV and the detected collision area in the two tests. During the collision avoidance, the
minimum distances of three situations are respectively 28.2 m, 25.4 m, and 69.3 m, which means that the
USV is safe enough to drive.

Table 3. Results of evaluation index comprised of two tests in real environment. USV: unmanned
surface vehicle.

Environment Index Speed of the
USV (m/s)

Thruster
Speed (r/min)

Propulsion
Angle (◦)

Computation
Time (s)

Distance
(m)

static
maximum 11.0 4000 2.0 0.27 100.0
minimum 0.0 0 −18.0 0.14 60.8
average 10.0 3731 −1.9 0.16 92.8

dynamic
maximum 11.0 4000 2.0 0.27 100.0
minimum 0.0 0 −18.0 0.15 25.4
average 9.9 3690 −1.9 0.17 85.7

(a) (b)

(c) (d)

(e) (f)

Figure 22. Evaluation results in the real environment. (a) Speed of the unmanned surface vehicle
(USV); (b) Course of the USV; (c) Thruster speed; (d) Command propulsion angle; (e) Computation
time; (f) Distance between the USV and the collision area.
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7. Conclusions

In this paper, a complete ANS is presented with PPS (DTFMS) and CAS (FCS-MPC) in a realistic
sea environment. First, the TFMS method is proposed to model the static sea environment and path
plan, which can be adjusted by Saturation to weigh security and path length. Then, according to
FCS-MPC theory, a CAS is developed to track trajectory and avoid collision based on a prediction
model of the USV. The dynamic target point and security evaluation come from path planning and
an environmental model of the PPS. Next, the proposed DTFMS method with dynamic domain
models (a path re-planning algorithm), is able to well represent the dynamic vessels including the
own and target vessels. There, dynamic domain models are changed according to the state of motion
of the vessels and the environment update time. Finally, by comparing the static and dynamic tests,
the simulation results validated the effectiveness of the proposed ANS in simulated and realistic
sea environments.

Future work will firstly consider the problem that the practicability of ANSs can be further
increased for real fully-autonomous USV experiments. First, to model a more real sea environment, the
sea environment model needs additional altitudes and surface currents. Second, the collision avoidance
control algorithm also needs to consider the problem of energy consumption and environmental
influences (wind, waves and current). Thirdly, the Convention on the International Regulations for
Preventing Collisions at Sea (COLREGs) should be considered in ANSs.
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