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Abstract: Intrinsic magnetic properties (saturation magnetization, anisotropy fields, and Curie temperatures)
of Ce2Fe14B doped with Al, Ni, and Si are presented. Substitution for Fe by these elements leads to the
formation of solid solutions that crystallize in the tetragonal Nd2Fe14B structure. Substituting Al, Ni,
or Si for Fe leads to a decrease in both the saturation magnetization and the anisotropy field of Ce2Fe14B.
Ni and Si increase the Curie temperature of Ce2Fe14B while Al reduces it. While, for the Ce2(Fe14−xTx)B
containing Ni, a maximum Curie temperature of 210 ◦C was observed at 9 atom % Ni (x = 1.45), the highest
value of 252 ◦C was found for the Ce2Fe14B containing 14 atom % Si (x = 2.26).

Keywords: permanent magnet; Ce2Fe14B compound; saturation magnetization; anisotropy field;
Curie temperature

1. Introduction

The demand for Nd–Fe–B permanent magnets continues to increase due to their superior magnetic
properties, despite the relatively high price of Nd and its restricted supply [1–7]. The low cost and
availability of Ce have driven interest in developing Ce-based permanent magnets to replace expensive
Nd2Fe14B magnets in certain applications [7–19]. This has resulted in investigation of Ce2Fe14B and
its alloys [20–26]. Ce2Fe14B has intrinsic magnetic properties [3–7] that are inferior to those observed
for the Nd2Fe14B [4,6,7], but they can be improved using a fourth element to replace some of the
Fe in Ce2Fe14B. Studies of Nd2(Fe14−xTx)B, where T = Al, Ni, and Si have shown that Ni and Si
increase the Curie temperature (TC) and Al significantly increases coercivity [27–31]. Homogeneity
ranges for Ce2(Fe14−xNix)B, Ce2(Fe14−xSix)B, and Ce2(Fe14−xAlx)B solid solutions have been found
to be (0 ≤ xNi ≤ 1.5), (0 ≤ xSi ≤ 2.33), and (0 ≤ xAl ≤ 2.5), respectively, at 900 ◦C, and the details of
the phase equilibria in these systems are reported elsewhere [32]. The dopant concentrations used
throughout this paper are the actual values substituting for Fe in the Ce2Fe14B phase as determined by
scanning electron microscopy (SEM) combined with wavelength-dispersive X-ray spectroscopy (WDS).
Ce2(Fe14−xTx)B solid solutions, where T = Al, Ni, and Si, show visible magnetic domains using
magnetic force microscopy (MFM) analysis, and more details can be found in [32]. The aim of this
work is to quantify the changes in the intrinsic magnetic properties of Ce2Fe14B when Fe is replaced by
various amounts of Al, Ni, and Si.
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2. Materials and Methods

The starting materials were Al (99.7 wt %), B (99.5 wt %), Ce (99.9 wt %), Fe (99.99 wt %),
Si (99.9999 wt %), and Ni (99.99 wt %). An argon-arc furnace, equipped with a water-cooled
copper crucible and a non-consumable tungsten electrode, was used to prepare the samples.
After samples were melted three times to ensure homogeneity, they were sealed in an evacuated
quartz tube and annealed at 900 ◦C for 21 days. These annealing temperature and time were
chosen so as to grow high volume percentage of the Ce2(Fe14−xTx)B solid solution in each sample.
Hitachi S-3400N Scanning Electron Microscopy (SEM) (Hitachi, Tokyo, Japan), combined with
wavelength-dispersive X-ray spectroscopy (WDS), was used to analyze compositions, morphologies,
and homogeneity ranges of the constituent phases observed in the alloys. X-ray diffraction (XRD)
patterns were obtained using a PANanalytical Xpert Pro powder X-ray diffractometer (PANAnalytical,
Almelo, The Netherland) with Cu Kα radiation at 45 kV and 40 mA from 20 to 90◦ 2θ with a
0.02◦ step size. XRD study of the alloys was carried out using X’Pert HighScore Plus Rietveld analysis
software (PANAnalytical, Almelo, The Netherland). Pearson’s crystal structure database [33] was
used to export the crystallographic data so as to identify the known phases in the samples. Saturation
magnetizations (MS) and anisotropy fields (HA) were measured using a Quantum Design physical
property measurement system (PPMS-9T). The demagnetization data were taken on bulk samples
in external fields of up to 50 kOe at 25 ◦C. HA was determined by the singular point detection
(SPD) method, using second derivative of magnetization (d2M/dH2) [34–37]. A Perkin-Elmer 7 Series
thermogravimetric analyzer (TGA) was used to determine the Curie temperatures (TC) of the materials
by observing the temperature dependence of the force exerted on the sample in a small magnetic field
gradient provided by a permanent magnet placed close to the sample. A nickel metal standard was
used to give a transition point reference, and TC was taken as the point where the magnetization due
to the Ce2(Fe14−xTx)B vanishes [17,24].

3. Results and Discussion

In this work, the predominant phases observed in the alloys are α-Fe, Ce1.1Fe4B4, Ce2(Fe17−xTx),
and Ce2(Fe14−xTx)B. Annealing at 900 ◦C increases the growth of Ce2(Fe14−xTx)B to above 70%,
reducing other phases to insignificant amount as shown in Table 1. Ce2(Fe14−xTx)B solid solutions
crystallize in the tetragonal Nd2Fe14B-type structure (P42/mnm, #136 space group). As can be seen
in Figure 1, substitution of Fe by Ni and Si, which have smaller atomic radii to Fe, decreases the
lattice volumes of the Ce2Fe14B, shifting its peaks positions to higher diffraction angles, whereas
Al substitution increases lattice volume of the Ce2Fe14B, shifting its peak positions to lower angles.
The measured unit cell parameters and lattice volume of the Ce2Fe14B used in Figure 1 are in agreement
with literature values [4]. The linear relations between lattice parameter c and lattice volume V versus
T concentrations in the Ce2(Fe14−xTx)B solid solutions are consistent with Vegard’s law [38] as shown
in Figure 1. The dashed red line in Figure 2 demonstrates the shift in the (140) peak due to substitution
of Fe in Ce2Fe14B by Si, Ni, and Al. This confirms that these elements replace Fe in the Ce2Fe14B
to form solid solutions. Rietveld analysis was carried out on the XRD patterns obtained for all the
samples and the relative amount of the Ce2(Fe14−xTx)B solid solution is listed in Table 1.
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Figure 1. Plots of the (a) lattice parameter, c, and (b) lattice volume, V, with T content in the 
Ce2(Fe14−xTx)B solid solutions (T = Al, Ni, and Si). The uncertainties in lattice parameter and volume 
are smaller than the data points. 

 

Figure 2. XRD patterns of the Ce2Fe14B base compound and Ce2(Fe14−xTx)B solid solutions. The 
labelled peaks are for the Ce2Fe14B and its solid solutions. 

Figure 1. Plots of the (a) lattice parameter, c; and (b) lattice volume, V, with T content in the
Ce2(Fe14−xTx)B solid solutions (T = Al, Ni, and Si). The uncertainties in lattice parameter and volume
are smaller than the data points.
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In this work, MS of Ce2Fe14B at 25 ◦C was determined as 130 emu/g, and this is approximately
997.1 kA/m using the density of Ce2Fe14B reported in [4]. This value is somewhat higher than the
931.1 kA/m at 22 ◦C that was reported for a Ce2Fe14B single crystal [3,4]. Our value of 28.1 kOe
for HA at 25 ◦C is also higher than the 26.4 kOe previously reported [5,37] using the same SPD
method. This might be due to the presence of other secondary phases, such as iron. This was evident
during TGA experiments when the curve did not reach zero force after passing TC of the Ce2Fe14B
compounds. In addition, the deviation from the single crystal data might be due to the fact that grain
size, texture, defects, and precipitates affect many magnetic properties of bulk alloys [39]. The grain
boundary increases as the grain size reduces, and increasing or decreasing grain boundaries can
either improve or worsen magnetic properties of a material [39–41]. In this work, the annealing
conditions were high enough to produce a high volume of Ce2(Fe14−xTx)14B, and other phases
were reduced to minimum amounts. However, grain boundaries were still present in the current
samples, and it is expected that the single crystal sample would have had a higher MS value if the
contribution of the secondary phases was ignored. Therefore, the improvement in MS in this study is
presumably attributed to the contributions of the secondary phases. The intrinsic magnetic properties
of the Ce2(Fe14−xTx)14B solid solutions reported here, where T = Al, Ni, or Si, are limited to the
homogeneity ranges, which were determined by diffusion couple and other key alloys techniques
described in [32]. Table 1 shows the magnetic properties of these solid solutions in relation to the
undoped Ce2Fe14B. The estimated maximum errors in MS, HA, and TC measurements are ±1.4 emu/g,
±2.0 kOe, and ±0.9 ◦C, respectively.

Table 1. The magnetic properties of Ce2(Fe14−xTx)B solid solutions, where T = Al, Ni, or Si.

Key Alloy
Number

Dopant Concentration in Ce2(Fe14−xTx)B Relative Amount of
Ce2(Fe14−xTx)B (vol %)

MS (emu/g)
at 25 ◦C

HA (kOe)
at 25 ◦C

TC (◦C)
(Atom %) x

Ce–Fe–B system

0 0 0 81.1 130 28.1 151

Ce–Fe–Al–B system

1 1.91 0.32 82.1 117.1 27.2 146
2 3.85 0.64 74.6 123.6 22.1 139
3 6.09 1.02 95.0 86.0 16.1 117
4 9.33 1.56 88.0 82.3 10.1 90
5 12.22 2.04 93.7 56.8 3.1 46
6 14.62 2.44 64.0 36.1 -* 72

Ce–Fe–Ni–B system

1 1.05 0.18 73.6 127.9 27.1 159
2 2.94 0.49 94.2 124.3 26.1 174
3 6.17 1.03 73.6 114.8 24.1 197
4 8.71 1.45 88.4 106.3 24.1 210

Ce–Fe–Si–B system

1 1.30 0.22 91.8 123.1 26.1 163
2 3.75 0.63 84.2 116.1 26.1 183
3 6.62 1.1 83.9 110.4 22.1 200
4 10.04 1.67 86.5 104.2 13.7 219
5 12.62 2.1 96.8 93.0 9.1 243
6 13.60 2.26 78.6 88.8 6.8 252

* The measurement of HA was stopped at Sample #6 because the observed value is already too low for use in a
permanent magnet material.

Figure 3 shows the composition dependence of MS for the Ce2(Fe14−xTx)B solid solutions,
(T = Al, Ni, or Si). As expected, MS decreases in all cases as the elements replacing the iron are either
non-magnetic (Al and Si) or weakly magnetic (Ni). This behaviour is in agreement with that reported
for RE2Fe14B (RE = rare earth) [27–31,42–47]. The higher apparent MS value at 3.85 atom % (x = 0.64)
of Al substituting for Fe in Ce2Fe14B is due to an α-Fe impurity. This data point was retained as this
impurity does not affect the determination of either TC or HA. Saturation magnetization shows a
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decrease of about 6.2, 2.5, and 2.6 emu/g for Al, Ni, and Si, substituting 1 atom % Fe (x = 0.17) in the
Ce2Fe14B compound.
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Figure 3. The composition dependence of the saturation magnetization (MS) for the Ce2(Fe14−xTx)B
solid solutions (T = Al, Ni, Si) at 25 ◦C. Some error bars are not visible because they are smaller than
the data points.

Figure 4 shows the composition dependence of HA for the Ce2(Fe14−xTx)B solid solutions, (T = Al,
Ni, Si). The anisotropy field generally decreases with increasing Al, Ni, or Si substitution, unlike the
work of Jurczyk [43] on the magnetic behaviour of Nd2(Fe12−xAlx)Co2B, which showed a maximum
HA of 85 kOe at x = 0.10 and 0.30. No such maximum was observed here for Ce2(Fe14−xAlx)B.
Increasing Ni substitution for Fe in Ce2Fe14B decreased HA by 0.5(1) kOe for each x = 0.17 (1 atom %)
substitution of Fe by Ni. Si substitution initially left HA unchanged at around 26 kOe; however,
beyond x = 0.63, HA decreased rapidly. The trend of the plot of HA for Ce2(Fe14−xSix)B at 25 ◦C
found here differs from that reported for Nd2(Fe14−xSix)B at 22 ◦C [30], where a maximum was
observed at x = 0.5 (3 atom % Si). Meanwhile, no maximum was observed here for Ce2(Fe14−xSix)B.
In general, Ni substitution for Fe in Ce2Fe14B results in a small overall reduction in HA, while Al and
Si substitutions showed larger reductions.

Figure 5 shows composition dependence of TC for Ce2(Fe14−xTx)B, (T = Al, Ni, and Si).
Replacement of Fe by Al leads to an increase in lattice constant, c, and lattice volume, consequently
increasing the distances between Fe sites. This likely leads to a weakening of the Fe–Fe magnetic
interactions and TC falls as the concentration of Al increases. This behaviour is in agreement with
previous studies on the effect of Al on other RE2Fe14B discussed in the literature [29,43]. Ni prefers
to substitute for Fe in the 16k2 and 8j2 sites, and Si prefers 16k2 and 8j2 sites in RE2Fe14B [48–50].
Fe substitution by both Ni and Si in Ce2Fe14B leads to decreases in the lattice constant, c, and the lattice
volume. This reduces the distances between the Fe sites, strengthening the magnetic interactions and
leading to increases in TC. At a maximum solubility of 9 atom % Ni (x = 1.45), a TC of 210 ◦C was
measured. We found that Ni substitution leads to an increase of about 7.5 ◦C per x = 0.17 (1 atom % Ni).
Increasing Si substitution for Fe in the Ce2Fe14B compound also increases the TC almost linearly (about
7.2 ◦C per x = 0.17 (1 atom % Si)) and a TC of 252 ◦C was measured in the composition containing the
maximum solubility of Si.
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4. Conclusions

The influence of Al, Ni, and Si substitutions on the intrinsic magnetic properties of Ce2Fe14B was
studied. We observed that increasing the concentration of Al, Ni, or Si substituting for Fe in Ce2Fe14B
reduces MS and HA. Ni or Si substitution increases TC, while Al reduces it. For Ce2Fe14B containing Ni,
a maximum TC of 210 ◦C at x = 1.45 (8.71 atom % Ni) was observed, while a higher value of 252 ◦C
was found for Ce2Fe14B containing x = 2.26 (13.60 atom % Si). The lowest value of 46 ◦C was found for
Ce2Fe14B containing x = 2.04 (12.22 atom %) Al. The maximum TC of 252 ◦C observed at x = 2.26 Si
(14 atom %) in the Ce2(Fe14−xSix)B solid solution makes it more promising as a lower cost PM material
than the undoped Ce2Fe14B compound (TC = 152 ◦C). However, in reality, this might not be the case
since the MS and HA both decrease with increasing Si content. Therefore, an intermediate composition,
with a compromised TC but with better MS and HA might be the most promising Ce–Fe–B magnets
containing Ni or Si. Al doping is not recommended because it diminishes all of the studied intrinsic
magnetic properties.
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