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Abstract: Weapons development planning is an unstructured and complex multi-criteria decision-
making problem, especially in antagonistic environments. In this paper, the defender’s decision was
modelled as a high complexity non-linear optimization problem with limited resources. An operation
loop with realistic link rules was first proposed to model the cooperation relationships among
weapons in the defense system. The system dynamics principle was used to characterize the
dynamic behavior of the nodes in a complex weapons network. Then, we used cumulative threat
and development risk to measure different planning solutions by considering the opponent and
uncertainties in the development process. Next, an improved Differential Evolution (DE) and
Non-Dominated Sorting Differential Evolution (NSDE) were designed to determine the optimal
planning solutions for a single objective and multi-objective. The compromise solution, based on the
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), was used to evaluate
the Pareto solution set of the multi-objective. Finally, an illustrative case was studied to verify the
feasibility and validity of the proposed model.

Keywords: weapons development planning; resources constraint; operation loop; optimization
model; threat; development risk; DE; NSGA-II; TOPSIS

1. Introduction

After the 11 September 2001 terrorist attacks on the World Trade Center and the Pentagon in
the United States, interest in counter-terrorism methods with limited resources has rapidly increased.
However, allocating scarce defensive resources to optimize an objective function is one of the classic
problems in Operations Research [1], being an important and difficult task [2]. For the defense agencies
in many countries, weapon system of systems (WSOS) development planning is a critical process
used to develop countermeasures (CMs) to confront the threats posed by other hostile countries [3].
The planning solution focuses on how to allocate resources to different weapons to effectively eliminate
the threat from hostile countries.

In prior studies on weapons development planning, a decision maker (DM) seeks to maximize
a single objective function, such as capability, profit, and effectiveness. For example, Gu et al. [4]
established a WSOS planning model by maximizing the expected effectiveness as the optimization
target. Håkenstad [5] compared the long-term defense planning systems of seven Nordic countries and
found that most countries aimed to improve their own profit. Zhang et al. [6] proposed an optimization
model to minimize the capability gaps to find the best development scheme by comparing different
combinations of weapons, based on the given capability requirements. Throughout the literature
research, however, did not mention the change of the opponent. In contrast, this paper considered
minimizing the threat caused by the enemy as the objective function. Herein, we addressed an arms
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race between two parties, R and B. Each party considers the potential threat from the other party.
R develops one or more weapons to gain operational advantages over B, whereas B attempts to develop
one or more CMs that would neutralize, or at least mitigate, the threat from R [7].

Resource allocation in adversarial settings, also called the research of arms races using
mathematical models, has been studied since the 1930s. However, most of these studies focused
only on the strategic aspect but not the operational aspect. In 1935, Richardson [8] first proposed
a simple coupled differential equation model to solve the effects of an arms race between rival states,
thus successfully predicting World War II. Later, Hunter [9] analyzed a three-nation arms race by
solving linear difference equations based on Richardson’s study. Similar to most previous research,
Hunter’s model focused only on the strategic aspect and did not consider the relationship between
research and development (R&D) investments and time, nor the cooperation relationships among
different weapons. Afterwards, Etcheson [3] established and solved equations to optimize the function
of each side rather than the constrained nonlinear optimization model. Recently, Paulson et al. [10]
proposed a model for determining optimal resource allocation by combining game theory with a simple
multi-attribute utility model. The defender first allocated her resources amongst all combinations of
countermeasures and targets, and then the attacker striked with his best response to this allocation.
Golany [11] investigated efficient computation schemes for allocating two defensive resources to
multiple sites to protect against possible attacks by an adversary. The availability of the two resources
was constrained and the effectiveness of each may vary over the site. Mazicioglu [12] modelled
the attacker’s behavior using multi-attribute prospect theory to account for the attacker’s multiple
objectives and deviations from rationality. These articles mainly modelled adversary’s behavior
from macroscopic and strategic view, and considered neither the time required to develop new
countermeasures, nor the relationship between expenditures and development gap. In addition,
budgets were not modelled explicitly.

WSOS is a variety of weapons that can be functionally related to each other in accordance
with a certain structure with a higher level of integration with certain strategic guidance,
operational command, and security conditions [13]. Moreover, with the development of technology,
the operational effectiveness of an army depends on the interactions between multiple weapons
instead of independent weapons [14]. However, to the best of our knowledge, the relationships among
different weapons have rarely been modelled in the literature. For example, the most authoritative
article in Operations Research [15] focused only on a single family of countermeasures (e.g., interception
systems or bomb neutralization systems) that evolves and improves over time. With the development
of informationization, the performance of defense depends on the interaction of multiple systems rather
than the individual attributes of the armaments. As a consequence, the defender tends to use several
families of CMs instead of a single type, so the performance of the defense cannot be determined only
by the effectiveness of any single CM employed. Instead, the cooperation between CMs should be
considered. Furthermore, as new CMs are introduced, even in the decision-making stage, the defender
may also have to consider the interaction between the current CMs and future possible CMs to optimize
the defense system. If the relationships among weapons are ignored in the development planning
process, the problem will be simplified to a simple selective problem of a single weapon, neglecting the
holistic structural characteristics [16]. Thus, we used and improved an operation loop-based network
model focusing on the cooperation relationships among the weapons [17], in which weapons are
represented as nodes, whereas relationships among the weapons are modelled as edges. In this model,
weapons entities contain sensor, decision, influencer, and target nodes. All types of nodes are treated
as target nodes to the enemy. Note that one weapon may be characterized as multiple nodes, and each
node is attached to a parameter, denoting the amount of the resources allocated to it. In addition,
we considered the real link rules of these nodes that prior studies [18] did not mention. For example,
if more than one S node exists in one operation loop, the nodes could only be arranged based on
their index values of Radius in descending order. Due to the limitation of the geographical locations
of the different weapons and some other factors, not all nodes could transfer information or energy,
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and certain nodes could only be arranged in descending or ascending order. This phenomenon is
common in real-life operational battles.

In summary, this problem can be modelled as a constrained nonlinear optimization problem,
which is known as NP-hard. The complexity of this type of problem depends on the complex
relationships among weapons. Consequently, we argue that the analytical solution to the problem is
not feasible, and a heuristic-based optimization algorithm would be effective. In this article, we used
Differential Evolution (DE) and Non-Dominated Sorting based Genetic Algorithm-II (NSGA-II) for our
optimization tasks.

The main contributions of this paper are as follows: (1) When assessing the threat posed by
the enemy, we not only considered the cooperation among different nodes based on the traditional
ideology of the operation loop, but also the real link rules of these nodes. Meanwhile, the system
dynamics principle was used to characterize the dynamic behavior of the nodes in the complex
weapons network; (2) According to the characteristics of the weapon life cycle curve, we considered
some realistic constraint conditions, such as the annual weapons budget, the total weapons budget,
and the weapon planning cycle; (3) A complex multi-objective planning problem and the related
solving approach were proposed, considering the development risks and probabilistic threat from the
enemy. In this paper, we considered practical settings in realistic dynamic competition.

This paper was organized as follows. Section 2 introduced the modeling method based on
operation loop and the threat assessment process. Section 3 elaborated upon the single objective
optimization model with time and investment constraints. In addition, the algorithm to solve
the problem was outlined. Section 4 extended the objective functions to an actual weapons R&D
process. Section 5 demonstrated the usefulness of the models by presenting the results of a numerical
experiment. Finally, Section 6 concluded the paper and discussed possible future research.

2. Problem Formulation

Throughout history, two or more countries are often in hostilities, such as the United States and
the Soviet Union during the Cold War, India and Pakistan, and so on. Therefore, WSOS development
planning transforms from a capacity to a military demand, as seen as an arms race. The R&D of national
military weapons occurs in a situation requiring rapidity of development. Each country will set the
other country or countries as the “reference” or “opponent” and change their own R&D strategies
following the change of the R&D strategies of the opponent. Herein, we considered the dynamic
competition between two parties, denoted as the attacker (R) and the defender (B). Generally speaking,
R is a military power with advanced military technology and in a leading position in the military.
R will independently develop a set of new weapons early on to attack B to gain an advantage at time
tR1. The weapons developed by R are targets that B must counter. If all information about R is obtained
by the intelligence department of B completely and opportunely at time tR1, then the initial damage (d1)
caused by R, typically measured in casualties and economic damages [15], to B is known. As shown in
Figure 1a, to defend the homeland from being attacked by R, B must develop new weapons (Bn) as
CMs to mitigate the damage. However, as shown in Figure 1b, if B cannot intercept information about
R’s new weapon or B’s CMs fail, the threat will remain.
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The collection of different weapons is called WSOS. Modern weapons are complex, integrated, and
diverse. The connections among weapons also vary. Therefore, we not only considered interdependency
among the current weapons, but also relationships among all current and future weapons. In this
paper, the concept of meta-functional nodes and meta-functional edges, based on the operation loop,
was used to model the cooperation relationships among weapons.

2.1. Cooperation Relationships Modeling among Weapons Based on an Operation Loop

2.1.1. Meta-Functional Node Modeling

A meta-functional node can be represented as a three tuple, containing a node identity, node type,
and node threat vector, as shown below:

v = (Identity, Type, t) (1)

The node identification indicates the position of the meta-functional node in combat operation
process, such as red or blue. The node type refers to the classification of the meta-functional node,
which can be divided into different categories from different angles. Cares [19] divided nodes into
sensor, decider, influencer, and target according to the different roles on the battlefield. In this study,
meta-functional nodes were divided into four categories: scout, command-and-control, influence, and
target, which are expressed as follows:

NodeType ::= S|D|I|T (2)

where S, D, I and T represent the meta scout functional node, meta command-and-control functional
node, meta influence functional node, and meta target functional node, respectively. Node S refers to the
weapon, equipment, entity, or system that performs basic surveillance, reconnaissance, and warning in
a battle, such as radar and infrared detection systems. Node D is a system that performs basic command
and control tasks during a combat operation. Node I is a device, entity, or system that performs basic
fire strikes or electromagnetic interference during a battle, such as artillery, missiles, and torpedoes.
Different nodes are included in both the same and different weapons. For example, an armored
observation and command vehicle can be characterized as node S and node D. A self-propelled
antiaircraft gun can only be characterized as node I. An illustrative example of different nodes in
WSOS is provided in Figure 2. Different parties are described with corresponding color. R has five
existing nodes (S1, D1, D2, D3 and I2) and one new weapon (S2) awaiting development. S1, S2 and I2

can be detected by B and become B’s targets. The same applies to the other party.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 25 

The collection of different weapons is called WSOS. Modern weapons are complex, integrated, 
and diverse. The connections among weapons also vary. Therefore, we not only considered 
interdependency among the current weapons, but also relationships among all current and future 
weapons. In this paper, the concept of meta-functional nodes and meta-functional edges, based on 
the operation loop, was used to model the cooperation relationships among weapons. 

2.1. Cooperation Relationships Modeling among Weapons Based on an Operation Loop 

2.1.1. Meta-Functional Node Modeling 

A meta-functional node can be represented as a three tuple, containing a node identity, node 
type, and node threat vector, as shown below: 

( , , )v Identity Type t  (1) 

The node identification indicates the position of the meta-functional node in combat operation 
process, such as red or blue. The node type refers to the classification of the meta-functional node, 
which can be divided into different categories from different angles. Cares [19] divided nodes into 
sensor, decider, influencer, and target according to the different roles on the battlefield. In this study, 
meta-functional nodes were divided into four categories: scout, command-and-control, influence, 
and target, which are expressed as follows: 

::NodeType S D I T  (2) 

where S, D, I and T represent the meta scout functional node, meta command-and-control functional 
node, meta influence functional node, and meta target functional node, respectively. Node S refers 
to the weapon, equipment, entity, or system that performs basic surveillance, reconnaissance, and 
warning in a battle, such as radar and infrared detection systems. Node D is a system that performs 
basic command and control tasks during a combat operation. Node I is a device, entity, or system 
that performs basic fire strikes or electromagnetic interference during a battle, such as artillery, 
missiles, and torpedoes. Different nodes are included in both the same and different weapons. For 
example, an armored observation and command vehicle can be characterized as node S and node D. 
A self-propelled antiaircraft gun can only be characterized as node I. An illustrative example of 
different nodes in WSOS is provided in Figure 2. Different parties are described with corresponding 
color. R has five existing nodes (S1, D1, D2, D3 and I2) and one new weapon (S2) awaiting development. 
S1, S2 and I2 can be detected by B and become B’s targets. The same applies to the other party. 

 
Figure 2. Weapon system of systems nodes location in battle.  

Figure 2. Weapon system of systems nodes location in battle.



Appl. Sci. 2018, 8, 214 5 of 25

2.1.2. Meta-Functional Edge Modeling

Considering the antagonism between the two sides, B will set all of R’s nodes as the target.
Similarly, R will set all of B’s nodes as the target. Thus, 36 (node number × node number) different
combinations of the three kinds of meta-functional nodes exist. Some types of meta-functional edges,
however, do not exist in practical operation. Based on the following assumptions, we filtered the
36 edge types: (1) the node S cannot act independently; it can only share information with other S or
D nodes; (2) the node D cannot attack the enemy target directly; and (3) the node I will not interfere
or attack its own weapons. After applying these filters, 20 edge relationships remained in the WSOS
network under the antagonistic situation, as shown in Table 1.

Table 1. Meta-functional edge relation types.

Nodes SR DR IR SB DB IB

SR SR→SR SR→DR SR→SB
DR DR→SR DR→DR DR→IR DR→SB
IR IR→SB IR→DB IR→IB
SB SB→SR SB→SB SB→DB
DB DB→SR DB→SB DB→DB DB→IB
IB IB→SR IB→DR IB→IR

2.1.3. Operation Loop Modeling

Modern warfare theory, which is also called Observe Orient Decide Act (OODA) theory [20],
argues that a combat operation is a cyclic process. First is target discovery (T→S), then information
is delivered to the node D (S→D). Next, node D analyzes the battlefield situation and charges node
I (D→I) to attack node T (I→T). The close loop (T→S→D→I→T) is called the operation loop [21].
During the operation, both parties build their own operation loops, and treat all the opponent’s nodes
as targets, as shown in Figure 3. Although only four classes of meta-functional nodes exist in one
operation loop, each type of node can contain more than one weapon. Different weapons cooperate
with others through loops. The number and technical performance of loops directly impact the combat
effectiveness. The greater the number of loops, the stronger the threat capability. The fewer the nodes
and edges in a loop, the better the threat effect.
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2.2. Threat Assessment

2.2.1. Node Threat Vector

In this study, we applied the concept of accumulative damage presented by Golany [15], which is
an objective function that measures the threat posed by the opponent. To assess the threat of the whole
WSOS, we first analyzed the node threat vector. Different types of nodes have different functions,
and the corresponding threat vectors vary considerably. Based on prior studies [22–24], we improved
the index system of different nodes. The threat vector of the node S is:

t_S ::=< Radius, Accuracy, DetectRate, HavestRate, Λ > (3)

where Radius, Accuracy, DetectRate and HavestRate denote the reconnaissance scope, the target
recognition accuracy, the effective detection rate, and the critical intelligence acquisition rate of the
node S, respectively. The threat vector of the node D is

t_S ::=< CoverRate, E f f iciency, Community, Dlay, Λ > (4)

where CoverRate, Efficiency, Community and Dlay represent the effective coverage rate, the information
processing efficiency, the network communication efficiency, and the command decision time of the
node D, respectively. The threat vector of the node I is

t_S ::=< Radius, Accuracy, RPG, Mobility, Λ > (5)

where Radius, Accuracy, RPG and Mobility indicate the operational coverage radius, the hitting accuracy,
the ammunition quantity, and the maneuvering speed of the node I, respectively. Λ means that the
vector can be extended to different weapons.

2.2.2. Tactical and Technical Index Normalization

The different indicators have different dimensions. For example, the unit of the operational
coverage radius is km, and the unit of the maneuvering speed is km/h. Therefore, different index
values have to be standardized. The quantitative indexes are divided into two categories: the benefit
type and the cost type. The greater is the value of the benefit index, the greater is the threat. The greater
is the value of the cost index, the lesser is the threat. For example, the higher is the hitting precision of
the node S, the os higher the threat. The shorter is the decision time of the node D, the sooner the attack
can be implemented, resulting in a greater threat. The processing methods of the two quantitative
indicators are as follows:

s =


0 I ≤ Imin

(I−Imin)
Imax−Imin

Imin < I < Imax

1 I ≥ Imax

(6)

s =


1 I ≤ Imin

(Imax−I)
Imax−Imin

Imin < I < Imax

0 I ≥ Imax

(7)

where Equation (6) is the standardized function of the dimensionless benefit index and Equation (7) is
the standardized function of the dimensionless cost index. I is the original index. Imax and Imin are
the worldwide maximum and minimum values of the current index, respectively. As for the benefit
index, if the value of I reaches Imax, the score of the index is 1. Otherwise, the score is 0. The same logic
applies to the function symbol of the cost index.
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2.2.3. Threat Assessment Based on Operation Loop

The basic goal of the WSOS is to strike the opponent targets and reduce the opponent combat
capability, until that capability is completely lost. Hence, threat assessment should emphasize the
influence on enemy targets. Each operation loop in the WSOS represents a method to strike the enemy
target. As a result of the differences in the performance of the weapons within the operation loop,
the threat to enemy targets varies. After normalization of the index value, we classified and aggregated
the threat value of the various nodes. The weighted sum method was used in this paper, as it is
the most commonly used index aggregation method. The method assigns weight wj to each index,
and then weights the sum to obtain the threat value dj of one node.

dj =
k

∑
j=1

wjsj, wj ≥ 0, j = 1, 2, · · · , k,
k

∑
j=1

wj = 1 (8)

An operation loop contains the node set S, the node set D, and the node set I. The threat to the
opponent target of the entire operation loop is

Dol = ∏ ds ·∏ dd ·∏ di (9)

where ds, dd, and di represent the threat vector aggregation value of node S, node D, and node I,
respectively. The total threat to the opponent is the sum of all loops.

2.2.4. Initial Threat Rate and Threat Accumulation

The goal of the development of new weapons is to reduce the threat from the opponent. The threat
that changes over time is determined by the performance of one’s own weapons. For example,
Figure 4 shows the dynamic change in the threat from R during the development process of B.
The horizontal axis represents time and the vertical axis represents the threat. The red squares represent
the deployment of R’s weapons and the blue dots represent the deployment of B’s weapons. The threat
from R increases after R’s new weapon R1 is deployed. Then, the threat accumulates for a period of
time. Once B has developed new weapons against R, R’s threat level decreases. Then, R develops new
weapons to increase the threat again. That is to say, the threat changes with the deployment of new
weapons, and accumulates over time. B selects B1, B2, and B3 from the optional weapons collection.
B1 and B2 form operation loops that cover R with other weapons, and the threat from R decreases.
Although B develops B3, it cannot form an operation loop that covers R. Therefore, the threat from R
remains unchanged.

In summary, B must choose the most suitable weapons against R, and rationally plan the
development. In addition, weapons must be deployed as soon as possible to neutralize the threat that
accumulate with time.
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2.2.5. Evaluation of Threat Reduction Effects

According to the real-life military operations, B develops new weapons to form operation loops
to mitigate the threat from R. The number of operation loops represents the number of ways in which
the opponent targets can be attacked. The higher the number of operation loops, the more ways are
available to cover the opponent target nodes, and the better the threat reduction effect.

The WSOS network is complex dynamical network system. To research this kind of problem,
the dynamical theory is usually introduced into the nodes of the complex network. In a complex
network, the dynamic behavior of each node is governed by two factors: the original dynamic behavior
mechanism of the node itself, and the influence of the nodes to which they are connected. Considering
a complex dynamical network system that is coupled to N nodes, the general expression is [25]:

∧
xi(t) = f (xi(t)) + c

N

∑
i=1,j 6=i

aijg(xj(t)) (10)

where
∧
xi(t) denotes the state of node vi at time t; f (xi(t)) denotes the primitive dynamic behavior

of node vi; c is the coupling coefficient; g(xj(t)) denotes one coupling function through the coupling
relationships among nodes; and A = (aij)N×N is the topological structure or adjacency matrix of the
complex network, and every element is positive. If aij = 0, no connection exists between node i and
node j. Conversely, if aij 6= 0, a relationship between node i and node j exists. Next, we combined the
actual nature of the WSOS to establish a dynamic WSOS network model based on the general model.

From the analysis of the operational process outlined in Section 2.2.4, we knew that the formation
of the operation loop of B reduced the threat from R. As a result, the coupling coefficient c was −1.
The coupling function g(xj(t)) was calculated using Equations (8) and (9). We assumed that the number
of new operation loops was m during B’s weapons development process, and only the operation loops
that covered R’s threat nodes reduced the threat from R. Thus, not all m operation loops reduced the
threat from R. The value of aij has the following two forms:

aij =

{
1, if B′s new operation loops can cover R′s threat nodes

0, if B′s new operation loops can not cover R′s threat nodes
(11)

In summary, the cumulative threat (DB) expression is:

DB =
∫ T

0
∧
x(t)· dt

=
∫ T

0

(
f (x(t))−

N
∑

i=1,j 6=i
aijg(xj(t))

)
· dt

(12)

where
∧
x(t) denotes the threat from the entire WSOS of R at time t; f (x(t)) denotes the initial threat

caused by R, namely, the situation where B’s confrontation is not considered; and
N
∑

i=1,j 6=i
aijg(xj(t))

denotes a measure of threat reduction.

3. Single Objective Modeling and Solving

Golany [7] viewed an arms race as a process between two asymmetrical groups. The advantage
established by one side is temporary, and the advantage disappears when the other side exceeds it.
Therefore, the issue faced by B is how to use limited resources to develop effective CMs to mitigate the
threat from R as much as possible. Thus, the cumulative threat is used as the optimization objective
function. To simplify the computation, we only considered the operation loops that cover the threat
nodes of R. Consequently, aij is removed from the expression. Then, all new m loops work to counter
R. The initial threat from R is set as d1. The entire duration of the confrontation is expressed as T.
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The number of B’s operation loops that cover R is m, and the moment of forming of the jth loop is tj.
Then, the cumulative threat expression is:

DB =
∫ T

0
∧
x(t)· dt

=
∫ T

0

(
f (x(t))−

m
∑

j=0
(∏ ds

j ·∏ dd
j ·∏ di

j)

)
· dt

=
∫ T

0 f (x(t)) · dt−
∫ T

0

m
∑

j=0

(
∏ ds

j ·∏ dd
j ·∏ di

j
)
· dt

= d1T −
m
∑

j=0
(T − tj)(∏ ds

j ·∏ dd
j ·∏ di

j)

(13)

3.1. Constraints

In the WSOS development planning process, B must consider the following two constraints:
time and money.

3.1.1. Time

The cumulative threat posed by R gradually increases over time. Supposing B chooses to develop
10 new weapons. If all investments are made at time 0, then the optimal choice is that the development
of the 10 new weapons is initiated at time 0. Therefore, B can deploy new weapons to counter R more
rapidly. If not all investments are made simultaneously, but in batches due to the limited investments
amount for each batch, B must consider the sequence of these new weapons. Therefore, the starting
time and R&D time of the weapons directly impact the threat reduction. Herein, time is considered as
a constraint, including the beginning and throughout the duration of the operation.

The starting time (stBj) of each weapon should satisfy the following relationship:

0 ≤ stBj ≤ T (14)

The upper limit of the R&D duration should be less than the weapon development planning;
otherwise, this development planning would be meaningless. The lower limit of the R&D duration
depends on the technical maturity of R&D. Therefore, the R&D duration (tBj) should be between the
shortest and longest development time length:

tmin
Bj ≤ tBj ≤ tmax

Bj (15)

3.1.2. Investment

To date, the research on the weapons funding allocation problem is still prominent, focusing
on limited budgets and how to allocate resources to different weapons. Therefore, R&D investments
should be considered as a constraint, including the single weapon budget, the annual budget, and the
total budget.

The upper and lower limits of R&D investment usually depend on defense funds. If the investment
is too small, the weapon will fail to develop. Similarly, the investment has an upper limit that cannot
be more than the assigned national defense funds. Therefore, the R&D investment (cBj) of each weapon
should be between the minimum and maximum investments:

cmin
Bj ≤ cBj ≤ cmax

Bj (16)

The total investment for all new weapons should be lower than the total budget (C):

∑ cBj ≤ C (17)



Appl. Sci. 2018, 8, 214 10 of 25

Although the total investment was confirmed prior to creating the development plan, the R&D
funds are often used in batches because of a long development period of many years or even decades.
This article focused on a five-year planning problem. Thus, the total investment C was divided into
average usage over five years. A strict capital flow restriction was placed on the annual budget.
Moreover, the unused budget for one year could not be carried over to the next year. We assumed that
the funds are continuously and evenly invested in the development of one weapon. As multiple
weapons were being developed in one year, the annual investment in the Hth year should not
exceed C/5:

∑
j∈H

cBj ≤
C
5

(18)

3.2. Modeling the Relationship between Time and Investment

In reality, a negative correlation exists between the R&D time and investment. To ensure
the smooth development of weapons, the investment of each weapon cannot be lower than
a certain threshold cmin, otherwise it will not be successfully developed. The lowest investment
amount corresponds to the longest development time tmax. As the investment gradually increases,
the development time correspondingly gradually shortens. However, as the marginal effect of
investment decreases, the development time declining rate slows. In addition, due to technical
restrictions, the development time cannot continually decrease. No matter the amount of the
investment, the development time will not be less than the shortest time tmin. The corresponding
investment is now cmax. Therefore, for the relationship between time and investment, the inverse
scaling function model was designed as shown in Figure 5. Herein, aBj generally represents the
technical difficulty in the development process.
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Figure 5. Relationship modeling between time and investment.

The relationship above is simple. However, we argue that a realistic relationship between
development time and the resource investments can only be empirically determined from experts or
statistically from data. This problem is neither a major concern in this paper, nor a key component of
our model.

In Golany’s model [15], tBj was used to determine the development time of each weapon. tBj was
determined by the level of intensity, which is a discrete variable; therefore, tBj was also a discrete
variable. As opposed to Golany’s model, tBj = aBj/cBj is used to describe the development time,
determined by the allocated investment, which is quite realistic in defense contracting. The continuous
variable cBj implies continuity of tBj, resulting in a wider range of possible solutions. Hence, the problem
faced by B is to decide which weapon to develop, when to start development, and what proportion of
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the available resources to allocate to each weapon based on the current weapons. The objective is to
minimize the cumulative damage over the time horizon, subject to budgetary constraints.

3.3. Algorithm Design

The decision variables of the problem are development time and investment amount. The unit of
development time is usually years. The unit of investment is usually millions or an order of magnitude
higher. For easy figures, all variables take integers. We defined the solution space as S, and the
corresponding scale as:

S =
n

∏
j=1

(cmax
Bj − cmin

Bj + 1)× (tmax
Bj − tmin

Bj + 1) ≥ 22n (19)

The scale of S increases exponentially with an increase in n. The computational complexity of this
problem is at least NP-hard. Therefore, using an intelligent optimization algorithm for solving this
problem is reasonable.

Differential Evolution (DE) is an evolutionary optimization methods proposed by Storn and
Price [26]. A simple mutation operation and a one-on-one competitive survival strategy reduce the
complexity of a genetic operation. DE is robust and has a strong global convergence ability, suitable for
solving certain optimization problems that conventional mathematical programming methods cannot
solve in complex environments [27]. Given the advantages of DE and the characteristics of this model,
we designed the following solving algorithm.

Step 1: Initialize the population. Using decimal integers to encode all variables according to
the type of decision variables is appropriate for this problem. A total of J pending weapons exist,
so an individual of 2J is generated. The encoding form of the individual is shown in Figure 6.
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The upper boundary for time in terms of the variable is five, whereas the lower boundary is one,
which respectively indicates that the weapon is developed in the fifth or the first year. As for the
investment, the upper boundary is cmax and the lower boundary is cmin.

Step 2: The fitness function and penalty function. Evolutionary algorithms have been widely
used to solve optimization problems. However, when the optimization problem has many nonlinear,
linear, inequality, and equality constraints, the solving process is more complex. Therefore,
designing a constraint processing technology with better performance is essential. Michalewicz [28]
and Coellol [29] conducted extensive investigations into the constraint handling techniques and
classified the techniques into five classes: penalty functions, special representations and operators,
repair algorithms, separation of constraints and objectives, and hybrid methods. Among these
constraint handling approaches, we applied the penalty functions to address the constraints. We set
the development investments, so that the planning each year that exceeded the annual budget is the
penalty function. The fitness function is defined as the objective function. The smaller is the fitness
value, the better is the individual. The penalty function f is:

f =
5

∑
H=1

max(∑
j∈H

cBj − CH , 0) + ∑(max(1− stBj , 0) + max(stBj − 5, 0) + max(cmin
Bj − cBj , 0) + max(cBj − cmax

Bj , 0)) (20)

where each part in Equation (20) denotes the extent to which the corresponding limit is exceeded.
Taking the first item max( ∑

j∈H
cBj − CH , 0) as an example, when the annual investment exceeds the
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budget, the first item is ∑
j∈H

cBj − CH . Herein, the part of the excess budget is computed as part of the

penalty function. Conversely, if max( ∑
j∈H

cBj − CH , 0) = 0, the corresponding penalty function is 0.

That is, no violation of the constraint is triggered. As for the time, stBj should take an integer between
1 and 5. If the starting time of a weapon does not meet this requirement, the excess is computed in the
penalty function max(1− stBj , 0) + max(stBj − 5, 0). The same logic is applied to the other constraints.

Step 3: Initial population evaluation. The fitness value and the degree by which each individual
in the population violates the constraints are calculated. When no individual violates the constraints in
the population, the penalty function is 0. Then, the individual with the best fitness value is the current
global optimal solution. When all individuals in the population violate the constraints, the penalty
functions of all individuals are greater than 0. Then, the individual with the least penalty function
value is chosen as the current global optimal solution.

Step 4: Mutation operation. Equation (21) is used to mutate the individual.

(1) DE/rand/1 : vi(G + 1) = xr1(G) + F× (xr2(G)− xr3(G))

(2) DE/best/1 : vi(G + 1) = Xbest + F× (xr1(G)− xr2(G))

(3) DE/ rand-to-best /1 : vi(G + 1) = Xi + F× (Xbest − Xi) + F× (xr1(G)− xr2(G))

(21)

where Xbest is the best target individual; xr1(G), xr2(G), and xr3(G) are random target individuals;
vi(G + 1) is the mutant individual, and F ∈ [0, 1] indicates the mutant scale factor, recommended as
0.5 [30].

Step 5: Crossover operation. To increase the diversity of the population, the crossover operation
is performed between the temporary individual and the parent individual. Substitute the parent
individuals for temporary individuals with a probability of CR = 0.2.

Step 6: Cross-border processing. The classical DE does not consider how to address the constraints
handling. The randomness of the general cross-border processing strategy is too strong to preserve
the historical optimal information accumulated through evolution. We used the symmetric mapping
processing strategy as previously reported [31]. As shown in Figure 7, rangeleft and rangeright are the
left and right boundaries of each variable in the individual, respectively. When the extent to which
a variable violates the constraint is less than the absolute value of the variable range, the boundary
point is taken as the center to map this variable equidistantly onto the range of value.

Step 7: Competitive survival operation. We used the idea of competition survival to compare the
fitness and penalty function of the corresponding individual in the parent population and temporary
population, and selected the preferable individual to form a new population. The specific rules are:
(1) if both individuals do not violate the constraints, we judge them by comparing their fitness values;
(2) if a solution satisfies the constraints, whereas the other one does not, then the solution meeting the
constraints is better; and (3) if both do not meet the constraints, the solution with the lower penalty
function is better.
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Step 8: Evolution and iteration. We determined whether the scheduled iterations are reached. If so,
then the operation is stopped; otherwise, proceed to step 3. If the desired iterations are reached, but the
satisfactory solution has not been found, the population size and the iterations should be adjusted.

4. Multi-Objective Modeling and Solving

Many uncertainties exist in the weapons development process. One uncertainty is the development
speed of military technology. Another uncertainty is the development process and conditions, such as
funds, talents, and management [32]. These uncertainties result in risk during the development of
weapons, meaning that the weapons may not attain the initially planned threat value. Therefore,
DMs should consider the risk in weapons development so as to minimize the risk and meet
future needs.

4.1. Development Risk Modeling

Weapons development risk refers to the possibility that weapons may not attain the tactical and
technical index given the constraints imposed by limited resources, which negatively impacts the
overall performance of combat [33]. Therefore, we first reasonably modelled the risk. In general, risk is
defined as the consequence of failing to reach the expected purpose, multiplied by the probability of
that consequence [34]. According to the typical risk model, which is called Expected Downside Risk
(EDR) [35]:

EDR =
I

∑
i=1

P(xi)× f (xi)

f (xi) =

{
(π − xi)

α xi < π

0 xi ≥ π
α > 0

(22)

where π is the target value, x is the actual value, and α is the risk sensitive exponent. The model
considers the difference between the actual value and the target value as the consequence,
and calculates the sum of the probability of all consequences. We used this model to define the
gap between the actual threat reduction value and the expected value as the consequence, and then
totaled all gaps with the corresponding probabilities to measure the risk.

Assuming that I possibilities of threat reduction value of each weapon exist, then the ith possible
threat reduction value is:

T′i = Ai × Ti × (1− ηk) (23)

where Ai is the conversion coefficient of the ith possible threat reduction value, T denotes the expected
maximum value of the threat reduction without considering any constraints, and ηk denotes the
risk sensitive coefficient of the expected maximum threat reduction value. The probability of T′ is
modelled as:

P(T′i ) = Pi ×
T′i

Ti × t
(24)

where Pi is the probability conversion coefficient of the ith possible threat reduction value and t is
the development duration of the weapon. For the weapons that can counter the same threat value,
the longer is the development duration, the greater is the probability that the weapon will achieve the
expected effect, and the smaller is the risk, and vice versa.

Based on the above model, the total weapons development risk of B is defined as:

RB =
J

∑
j=1

P(T′i )× (Ti − T′i )
α (25)
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4.2. Optimization Model

According to the threat gap planning model outlined in Section 3 and Equation (25), we built
a multi-objective optimization model, which allows DMs to balance the two objectives of threat and
risk, and obtains the best compromise solution to create a combined weapons planning scheme.

minDB =
∫ T

0
∧
x(t)· dt

minRB =
J

∑
j=1

P(T′i )× (Ti − T′i )
α (26)

Therefore, the problem is treated as a typical Multi-Objective Optimization Problem (MOOP).
The objectives that need to be optimized can be represented by an objective function set and certain
equality or inequality constraints, and conflicts often exist among these objectives. It is impossible to
simultaneously optimize all sub-objective functions; instead, we can obtain a compromise solution to
these objectives, which is the Pareto optimality problem, first proposed by Pareto [36].

A global optimal solution to the single-objective optimization problem must exist. Conversely,
it is possible that no definite optimal solution exists, but an acceptable solution set to MOOP may be
possible. When all objectives are considered, the acceptable solution set is the best solution within
the entire search space. However, the solution may not be optimal from the perspective of any of the
sub-objectives. This solution set is called a Pareto optimal set, or non-dominated set, and the other
solution set is called a dominated set. Because any of the solutions in the non-dominated set are not
better than the other solutions, then the key to solve MOOP lies in how to find the Pareto optimal set,
and determine the most appropriate solution in the Pareto optimal set according to the preference of
the DMs.

4.2.1. Non-Dominated Sorting Differential Evolution Algorithm

The NSGA-II is a popular optimization method used to solve MOOP [37]. In 1994, NSGA was
proposed by Srinivas and Deb [38]. Based on the shortcomings of NSGA, Deb et al. introduced
NSGA-II in 2000 [39], which has gradually become the mainstream algorithm used for solving MOOP.
It uses non-dominated sorting and shared variable methods to effectively maintain the diversity of
Pareto frontiers. However, NSGA-II does not perform well in processing MOOP with a complex
Pareto front. Given these shortcomings of NSGA-II, we designed an improved algorithm, which we
have called the non-dominated sorting differential evolution (NSDE) algorithm. NSDE introduces
a differential evolution operator to replace the crossover operation in NSGA-II and adaptively adds the
global optimal solution information in the new generations to improve the local search accuracy and
diversity. Considering the characteristics of the model, we combined NSGA-II with DE, and designed
the following solving algorithm.

Step 1 Define the parameters of the algorithm. Define population size, iterations, and the crossover
probability parameter, and the counter is set to 0.

Step 2 Initialize the population. The initial population is randomly generated and the individual
encoding structure is outlined in Section 3.3.

Step 3 Sort the population. According to the objective function and constraints, evaluate the
individuals. Use non-dominated sorting on the initial population to obtain the Pareto solution
set. Then individuals are given ranks and crowding distance values. The binary tournament
selection operation is implemented on the population.

Step 4 Mutation and crossover. The mutation operator based on DE was used to mutate the
population. Simultaneously, a new population Q is obtained by using crossover operation on
each of the individuals with a certain probability.
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Step 5 Evaluate the temporary population. The temporary population is composed of the present
population P and the offspring population Q, and non-dominated sorting of the temporary
population is performed by comparing the rank and crowding distance of the individuals.

Step 6 Generate a new population. Select the best individuals from the temporary population to
generate the new population.

Step 7 Evolution and iteration. If the number of iterations is reached, the Pareto optimal solution is
output. Otherwise, the counter increases, and we continue back to Step 3.

4.2.2. Compromise Solution Based on TOPSIS

After obtaining the Pareto optimal set, evaluating the solution in the Pareto optimal set and
selecting the compromise solution according to the preference of the DM are necessary. To date,
many methods can be used to obtain a compromise solution from the Pareto optimal set. We used
the classical TOPSIS method proposed by Hwang and Yoon [40] to obtain the compromise solution.
TOPSIS essentially compares the proximity between different schemes and the ideal scheme. The main
steps are as follows:

Step 1: Establish a decision matrix. Establish and normalize the decision matrix A = (aij)p×2. p is
the number of solutions, and 2 is the number of evaluation criteria, which, in this paper, are the threat
gap and weapons development risk.

xij = aij/

√√√√ p

∑
i=1

aij
2i = 1, 2, . . . , p; j = 1, 2 (27)

Step 2: Standardization the Decision matrix. Establish the weighted standardized decision matrix
R = (rij)p×2, rij = xij × qj, where qj is the weight value of the jth criteria.

Step 3: Define the ideal solution. Define the positive ideal solution f+j and the negative ideal

solution f−j . Because the threat gap and weapons development risk are both cost-type indexes:

f+j = min
i

rij, i = 1, 2, . . . , p,

f−j = max
i

rij, i = 1, 2, . . . , p,
(28)

Step 4: Calculate the Euclidean distance between each scheme and the positive and negative
ideal solutions.

D+
i =

√
2
∑

j=1
(rij − f+j )

2

D−i =

√
2
∑

j=1
(rij − f−j )

2
(29)

Step 5: Sort all solutions. Calculate the relative approach degree Ci between each scheme and the
ideal point.

Ci =
D−i

D+
i + D−i

, i = 1, 2, . . . , p (30)

Finally, sort Ci in descending order. The solution with the largest Ci value is the optimal solution
in the Pareto solution set.

5. Validation Demonstration

To clearly illustrate the application and procedure of the proposed approach and to demonstrate
its feasibility and effectiveness, a case study is presented in this section.
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5.1. Parameters Settings

Two countries, denoted as the attacker (R) and the defender (B), are in conflict with each other.
R will deploy a sort of weapons in the next five years. As a result, B should develop a defense system
consisting of new weapons as CMs.

As shown in Table 2, R1, R2, R3, R4, R5, R6, R7 and R8 are R’s current weapons; B1, B2, B3, B4, B5,
B6, B7, B8, B9 and B10 are new weapons that B may develop. Each weapon can be characterized as one
or several meta-functional nodes. For example, R1 is abstracted into two meta-functional nodes. B1 is
abstracted into three meta-functional nodes. In addition to the functional descriptions of the nodes,
the threat vectors that can counter R must be computed.

Table 2. WSOS composition.

R B

Name Nodes Name Nodes

R1 SR1, DR1 R1 (Main Battle Tank) SR1, DR1, IB1
R2 DR2, IR2 R2 (Infantry Fighting Vehicle) SB2, DB2, IB2
R3 IR3 B3 (Armored Front Observation Command Vehicle) SB3, DB3, IB3
R4 SB4, DR4, IR4 B4 (Self-propelled Howitzer) IB4
R5 SB5, IR5 B5 (Low Level Search and Warning Radar Vehicle) SB5
R6 SB6, DR6, IR6 B6 (Self-propelled Antiaircraft Gun) IB6
R7 SB7, IR7 B7 (Armored Reconnaissance Vehicle) SB7, IB7
R8 SB8, DR8 B8 (Unmanned Aerial Vehicle) SB8

B9 (Reconnaissance Information Vehicle) SB9, DB9
B10 (Reconnaissance Attack Helicopter) SB10, IB10

Part of the data is obtained from prior studies on [41,42]. Tactical and technical index values of
B’s weapons are shown in Table 3.

Table 3. Tactical and technical index values.

Weapon
S D I

TS1 TS2 TS3 TS4 TD1 TD2 TD3 TD4 TI1 TI2 TI3 TI4

B1 7 0.85 0.4 0.9 0.8 10 3 250 600 0.9 2 60
B2 5 0.8 0.5 0.7 0.7 15 4 280 600 0.8 1.5 45
B3 10 0.9 0.3 0.8 0.9 10 3 200 500 0.8 1 40
B4 - - - - - - - - 500 0.8 2.5 40
B5 12 0.9 0.3 0.9 - - - - - - - -
B6 - - - - - - - - 500 0.2 1.5 40
B7 10 0.9 0.3 0.9 - - - - 500 0.8 1 50
B8 20 0.95 0.2 0.9 - - - - - - - -
B9 15 0.9 0.3 0.9 0.8 10 3 200 - - - -
B10 10 0.9 0.5 0.9 - - - - 700 0.95 1.5 150

The reference values of the tactical and technical indexes are provided in Table 4, and the
normalization result is calculated in Table 5 according to the normalization method mentioned in
Section 2.2.2.
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Table 4. The reference values of the tactical and technical indexes.

Node Index Unit Max Min

S

Radius (TS1) km 25 0
Accuracy (TS2) m 1 0.1
DeteRate (TS3) % 1 0

HavestRate (TS4) % 1 0

D

CoverRate (TD1) % 800 0
Efficiency (TD2) Sec 1 0

Community (TD3) Sec 3 0
Dlay (TD4) Sec 200 0

I

Radius (TI1) km 1 0
Accuracy (TI2) % 20 0

RPG (TI3) ton 10 0
Mobility (TI4) km/h 500 0

Table 5. Tactical and technical index normalization.

Weapon
S D I

TS1 TS2 TS3 TS4 TD1 TD2 TD3 TD4 TI1 TI2 TI3 TI4

B1 0.28 0.83 0.60 0.90 0.80 0.50 0.70 0.50 0.75 0.90 0.67 0.30
B2 0.20 0.78 0.50 0.70 0.70 0.25 0.60 0.44 0.75 0.80 0.50 0.23
B3 0.40 0.89 0.70 0.80 0.90 0.50 0.70 0.60 0.63 0.80 0.33 0.20
B4 - - - - - - - - 0.63 0.80 0.83 0.20
B5 0.48 0.89 0.70 0.90 - - - - - - - -
B6 - - - - - - - - 0.63 0.20 0.50 0.20
B7 0.40 0.89 0.70 0.90 - - - - 0.63 0.80 0.33 0.25
B8 0.80 0.94 0.80 0.90 - - - - - - - -
B9 0.60 0.89 0.70 0.90 0.80 0.50 0.70 0.60 - - - -
B10 0.40 0.89 0.50 0.90 - - - - 0.88 0.95 0.50 0.75

Next, we classified and aggregated the threat value of various nodes. The result was shown in
Table 6. The weights were set to be the same. To facilitate the calculation, we set all threats from R
as 40.

Table 6. Threat vector aggregation of nodes.

Weapon S D T

B1 0.65 0.63 0.65
B2 0.54 0.50 0.57
B3 0.70 0.68 0.49
B4 - - 0.61
B5 0.52 - -
B6 - - 0.38
B7 0.72 - 0.50
B8 0.86 - -
B9 0.77 0.65 -
B10 0.67 - 0.77

Some restrictions exist based on real-life operational situations: (1) if more than one S node
exists in one loop, they can only be arranged based on their values of Radius in descending order.
For example, the Radius of SB3 and SB2 are 10 and 5, respectively. Then, SB3→SB2 is logical, SB2→SB3 is
unreasonable; (2) if more than one D node exists in one loop, they can only be arranged in descending
order in terms of Efficiency. For example, the Efficiency of DB2 and DB9 are 15 and 10, respectively. Then,
DB2→DB9 is logical, DB9→DB2 is unreasonable; (3) for the connection from node S to node D, due to
the limitation of communication links, DB1, DB2, DB3, and DB9 can only receive information from SB1,
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SB2, SB3, and SB9, respectively. SB5 and SB7 can only pass information to DB2. SB8 and SB10 can only
pass information to DB9; (4) for node I, due to the limitation of communication links, IB1, IB2, and IB3

can only receive information from DB1, DB2, and DB3, respectively. IB4, IB6, and IB7 can only receive
a strike command from DB2. IB10 can only receive a strike command from DB9; and (5) for the same
functional nodes, more than two nodes cannot exist simultaneously in one loop. Based on the loops
finding rules, a total of 115 loops covering the opponent nodes are found. The distribution of loops is
shown in Table 7. The structure and threat values of all loops are shown in Table A1.

The related parameters of the weapons to be developed are shown in Table 8. The total budget is

set as
10
∑

j=1
(cmin

Bj + cmax
Bj )/2 = 211.5.

Table 7. Loops distribution.

Node Number Loop Number

4 17
5 65
6 33

Table 8. Parameters of the weapons.

Weapon cmin cmax tmin tmax aj

B1 8 24 1 3 24
B2 7 14 1 2 14
B3 12 18 2 3 36
B4 6 12 1 2 12
B5 15 30 2 4 60
B6 5 15 1 3 15
B7 21 28 3 4 84
B8 30 50 3 5 150
B9 21 35 3 5 105
B10 32 40 4 5 160

5.2. Numerical Results

Table 9 depicts the parameters used in this study associated with DE.

Table 9. DE parameters.

Parameter F CR NP G

Value 0.5 0.2 200 500

Herein, two other algorithms, Genetic Algorithm (GA) [43] and Particle Swarm Optimization
(PSO) [44], were also applied independently under the same conditions. We ran the above three
algorithms 10 times independently. Figure 8 shows the best evolutionary curves corresponding to
the three algorithms, obtained with the evolutionary generations of the algorithm as abscissa and
the optimization objective function DB in Equation (26) as the ordinate. The smaller is the threat gap,
the better is the corresponding planning. In particular, the final objective function values obtained by
DE and PSO are considerably better than that of GA. Comparing DE with PSO, although the two final
objective function values are basically the same, DE converges to a satisfactory solution at a faster rate,
in about 60 generations, whereas PSO required about 280 generations. The minimum DE threat gap is
20.6594 with the best individual as [4, 1, 1, 2, 3, 1, 1, 5, 1, 1, 21, 8, 14, 7, 27, 6, 28, 38, 33, 40].
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We statistically analyzed the results, as shown in Table 10. The optimal value, the worst value,
the mean value, the middle value, and the variance of the function in the 10 running results were
tabulated. The optimal and worst value illustrate the merits of the scheme. The average value reflects
the overall quality of the algorithm. The mid-value explains the convergence speed of the algorithm,
to a certain extent. The variance is the overall stability of the algorithm.

Table 10. Comparison of algorithm results.

Algorithm DE GA PSO

Optimal 20.6594 25.4480 21.1367
Worst 21.3432 26.7483 24.4506
Mean 21.0385 26.0738 22.0119
Mid 21.0617 26.1466 21.7246

Variance 0.0442 0.1945 1.0718

All DE indexes are better than those of GA and PSO. Although the optimal solution found by PSO
is close to the optimal solution calculated by DE, the mid-value and variance corresponding to the PSO
result are inferior to those of DE. In summary, DE has better efficiency and stability for this model.

As for multi-objective optimization, NSDE and NSGA-II were used to optimize the weapons
development scheme to obtain the Pareto optimal set, and then the TOPSIS method was used to find
the compromise solution. Similarly, we ran the two algorithms 10 times independently. Each algorithm
obtained 10 Pareto sets. Then, these solutions were sorted. The best solutions were selected to form the
Pareto solution set of the two algorithms, as shown in Figure 9, which is plotted with the optimization
objective function RB in Equation (26) as the ordinate, against the optimization objective function DB
in Equation (26) as the abscissa. The coordinate axis is the same in Figure 10.
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NSDE has a longer evolutionary curve than the traditional NSGA-II. Comparing the results of
the two algorithms, the NSDE Pareto solutions are superior to those of NSGA-II in terms of diversity
and convergence. We set the weighted values of the threat gap and the risk objectives as 0.6 and
0.4, respectively. The compromise solution calculated by the TOPSIS method is shown in Figure 10,
which is [1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 8, 7, 12, 6, 23, 5, 26, 30, 21, 40].Appl. Sci. 2018, 8, x FOR PEER REVIEW  20 of 25 
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Figure 10. Compromise solution of the Pareto set.

Uncertainty exists in the weapons R&D process and in all model relationships. A sensitivity
analysis was performed for certain variables to examine the uncertainties of the model. Herein, the total
budget was set as 200 and 230. The compromise solutions calculated by NSDE and TOPSIS are shown
in Figure 11, which are [1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 8, 7, 12, 6, 19, 5, 21, 30, 21, 32] and [1, 1, 1, 1, 1, 1, 1,
5, 1, 1, 8, 7, 12, 6, 21, 5, 24, 30, 27, 40]. Compared to the original settings, the maximum difference
between these programs is related to the ninth and tenth weapons. The model is affected less by
uncertainty. The results indicate that their R&D risks may be high. In the development process of these
two weapons, DMs should focus on the technical progress and upgrading to reduce risk.
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5.3. Results Analysis

In this section, we analyze the model based on the numerical results.

5.3.1. Comparison of a Single Objective and Multi-Objective

The best planning solution of the single objective problem is [4, 1, 1, 2, 3, 1, 1, 5, 1, 1, 21, 8, 14, 7,
27, 6, 28, 38, 33, 40], and the compromise solution of the multi-objective problem is [1, 1, 1, 1, 1, 1, 1, 5,
5, 1, 8, 7, 12, 6, 23, 5, 26, 30, 21, 40]. As for the investment, the maximum difference between these two
results is related to the first and eighth weapons, which means that their threat reduction effects are
the best operation loops to counter the enemy. DMs can focus on developing these two weapons by
increasing the amount of investment or reducing uncertain risks. As for time, the difference between
these two results is related to the first and ninth weapons, indicating that their R&D risks are very
high. In the development process of these two weapons, DMs should ensure the risks are controlled.

5.3.2. Different Weights of Multi-Objective

Different DMs may have different preferences for the above-mentioned two objectives.
Consequently, we used different weighted values for the threat gap and the risk objectives. The optimal
results are shown in Table 11. If the DMs are risk-seeking, they can set the weight of the development
risk objective lower. On the contrary, if the DMs are risk-averse, they can set the weight of the
development risk objective higher. We also found that the risk value does not increase even when the
DM is generally displaying a risk-seeking tendency when making choices.

Table 11. Comparison of algorithm results.

Threat Gap Weight Risk Weight Threat Gap Risk

0.1 0.9 29.4559 0.3496
0.2 0.8 28.2249 0.3538
0.3 0.7 25.9497 0.3644
0.4 0.6 24.6378 0.3727
0.5 0.5 23.9671 0.3782
0.6 0.4 23.7865 0.3799
0.7 0.3 23.3864 0.3834
0.8 0.2 23.3864 0.3834
0.9 0.1 23.3864 0.3834



Appl. Sci. 2018, 8, 214 22 of 25

5.3.3. Decision Preference

During the actual decision-making process, DMs must artificially adjust and optimize the planning
to coordinate the development of weapons. Consider a scenario with an m-period and M weapons
to be developed: (1) if the ith weapon must be developed in the jth year, then, the time encoding of
the ith weapon is set to j when initializing the population; and (2) if the development duration of the
ith weapon must satisfy k years, then, the investment encoding of the ith weapon is set to a/k when
initializing the population. The logic is applied when other similar situations occur. The model and
the corresponding solving algorithm allow users to set specific encoding and adjust the development
planning based on individual preferences. The model is practical for actual application.

6. Conclusions

This paper proposed a new approach to solve the problem of allocating limited resources when
developing military CMs versus probabilistic threat, with emphasis on representing the cooperation
relationships among different weapons. The competition between hostile countries was transformed
into an operation loop-based optimization model. We applied the system dynamics principle to
characterize the dynamic behavior of the nodes in a complex weapons network. The intrinsic properties
of a weapon were converted into certain constraints. To address the development of CMs with limited
resources to counter the enemy, the threat gap was set as the single objective function. In addition,
considering the uncertainties in the development process, the R&D risks of weapons were used to
optimize the planning. Ultimately, certain intelligent optimization algorithms were used to obtain
a numerical solution.

The numerical results showed that more investments result in a more effective design, and more
time leads to lower risk. The key weapons that can effectively reduce threat and could potentially
encounter technical difficulties during R&D should be developed as soon as possible. With a fixed
investment amount, the results also demonstrate that the system effectiveness can be significantly
improved by increasing the amount allocated to the weapon that is found in more operation loops.

Future research directions include allowing for uncertainty in players’ preferences, having a dynamic
resource distribution strategy over a certain time horizon, and enabling multiple players or multi-objective
in a sequential game. These challenges will contribute to the expansion of this methodology for tackling
a broader range of problems.
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Appendix A

Table A1. Parameters of loops.

Node Sequence Dol Node Sequence Dol

T→SB1→DB1→IB1→T 0.266175 T→SB7→SB2→DB2→IB2→T 0.176472
T→SB2→DB2→IB2→T 0.1539 T→SB7→SB2→DB2→IB4→T 0.188856
T→SB2→DB2→IB4→T 0.110565 T→SB7→SB2→DB2→IB6→T 0.117648
T→SB2→DB2→IB6→T 0.100035 T→SB7→SB2→DB2→IB7→T 0.1548
T→SB2→DB2→IB7→T 0.071867 T→SB10→SB1→DB1→IB1→T 0.095086
T→SB3→DB3→IB3→T 0.23324 T→SB10→SB2→DB2→IB2→T 0.077369
T→SB5→DB2→IB2→T 0.089964 T→SB10→SB2→DB2→IB4→T 0.091564
T→SB5→DB2→IB4→T 0.186323 T→SB10→SB2→DB2→IB6→T 0.074504
T→SB5→DB2→IB6→T 0.10773 T→SB10→SB2→DB2→IB7→T 0.126781
T→SB5→DB2→IB7→T 0.058477 T→SB9→SB1→DB1→IB1→T 0.103159
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Table A1. Cont.

Node Sequence Dol Node Sequence Dol

T→SB7→DB2→IB2→T 0.077396 T→SB9→SB2→DB2→IB2→T 0.204955
T→SB7→DB2→IB4→T 0.062975 T→SB9→SB2→DB2→IB4→T 0.118503
T→SB7→DB2→IB6→T 0.1647 T→SB9→SB2→DB2→IB6→T 0.126819
T→SB7→DB2→IB7→T 0.107055 T→SB9→SB2→DB2→IB7→T 0.079002
T→SB8→DB9→IB10→T 0.11529 T→SB9→SB3→DB3→IB3→T 0.10395
T→SB9→DB9→IB10→T 0.1482 T→SB9→SB5→DB2→IB2→T 0.179595
T→SB10→DB9→IB10→T 0.1586 T→SB9→SB5→DB2→IB4→T 0.114114

T→SB2→DB2→DB1→IB1→T 0.10647 T→SB9→SB5→DB2→IB6→T 0.122122
T→SB2→DB2→DB3→IB3→T 0.086632 T→SB9→SB5→DB2→IB7→T 0.076076
T→SB2→DB2→DB9→IB10→T 0.138411 T→SB9→SB7→DB2→IB2→T 0.1001
T→SB5→DB2→DB1→IB1→T 0.080028 T→SB9→SB7→DB2→IB4→T 0.158004
T→SB5→DB2→DB3→IB3→T 0.085644 T→SB9→SB7→DB2→IB6→T 0.169092
T→SB5→DB2→DB9→IB10→T 0.121285 T→SB9→SB7→DB2→IB7→T 0.105336
T→SB7→DB2→DB1→IB1→T 0.057494 T→SB9→SB10→DB9→IB10→T 0.1386
T→SB7→DB2→DB3→IB3→T 0.046781 T→SB8→SB2→DB2→DB1→IB1→T 0.085135
T→SB7→DB2→DB9→IB10→T 0.1026 T→SB8→SB2→DB2→DB3→IB3→T 0.069272
T→SB8→SB1→DB1→IB1→T 0.0988 T→SB8→SB2→DB2→DB9→IB10→T 0.081982
T→SB8→SB2→DB2→IB2→T 0.06669 T→SB8→SB5→DB2→DB1→IB1→T 0.066707
T→SB8→SB2→DB2→IB4→T 0.07182 T→SB8→SB5→DB2→DB3→IB3→T 0.113513
T→SB8→SB2→DB2→IB6→T 0.053352 T→SB8→SB5→DB2→DB9→IB10→T 0.092363
T→SB8→SB2→DB2→IB7→T 0.135 T→SB8→SB7→DB2→DB1→IB1→T 0.43043
T→SB8→SB3→DB3→IB3→T 0.13 T→SB8→SB7→DB2→DB3→IB3→T 0.385385
T→SB8→SB5→DB2→IB2→T 0.2052 T→SB8→SB7→DB2→DB9→IB10→T 0.335335
T→SB8→SB5→DB2→IB4→T 0.2196 T→SB1→SB2→DB2→DB1→IB1→T 0.135135
T→SB8→SB5→DB2→IB6→T 0.1368 T→SB1→SB2→DB2→DB3→IB3→T 0.13013
T→SB8→SB5→DB2→IB7→T 0.18 T→SB1→SB2→DB2→DB9→IB10→T 0.18018
T→SB8→SB7→DB2→IB2→T 0.14742 T→SB3→SB2→DB2→DB1→IB1→T 0.331431
T→SB8→SB7→DB2→IB4→T 0.119952 T→SB3→SB2→DB2→DB3→IB3→T 0.288388
T→SB8→SB7→DB2→IB6→T 0.08775 T→SB3→SB2→DB2→DB9→IB10→T 0.178337
T→SB8→SB7→DB2→IB7→T 0.0945 T→SB5→SB2→DB2→DB1→IB1→T 0.103113
T→SB8→SB9→DB9→IB10→T 0.0702 T→SB5→SB2→DB2→DB3→IB3→T 0.110349
T→SB8→SB10→DB9→IB10→T 0.191646 T→SB5→SB2→DB2→DB9→IB10→T 0.068742
T→SB1→SB2→DB2→IB2→T 0.110808 T→SB7→SB2→DB2→DB1→IB1→T 0.09045
T→SB1→SB2→DB2→IB4→T 0.118584 T→SB7→SB2→DB2→DB3→IB3→T 0.258208
T→SB1→SB2→DB2→IB6→T 0.073872 T→SB7→SB2→DB2→DB9→IB10→T 0.116216
T→SB1→SB2→DB2→IB7→T 0.0972 T→SB10→SB2→DB2→DB1→IB1→T 0.111912
T→SB3→SB1→DB1→IB1→T 0.079607 T→SB10→SB2→DB2→DB3→IB3→T 0.154955
T→SB3→SB2→DB2→IB2→T 0.064774 T→SB10→SB2→DB2→DB9→IB10→T 0.087838
T→SB3→SB2→DB2→IB4→T 0.228911 T→SB9→SB2→DB2→DB1→IB1→T 0.094595
T→SB3→SB2→DB2→IB6→T 0.132354 T→SB9→SB2→DB2→DB3→IB3→T 0.07027
T→SB3→SB2→DB2→IB7→T 0.141642 T→SB9→SB2→DB2→DB9→IB10→T 0.097297
T→SB5→SB1→DB1→IB1→T 0.088236 T→SB9→SB5→DB2→DB1→IB1→T 0.074079
T→SB5→SB2→DB2→IB2→T 0.1161 T→SB9→SB5→DB2→DB3→IB3→T 0.060276
T→SB5→SB2→DB2→IB4→T 0.200586 T→SB9→SB5→DB2→DB9→IB10→T 0.09054
T→SB5→SB2→DB2→IB6→T 0.127452 T→SB9→SB7→DB2→DB1→IB1→T 0.104054
T→SB5→SB2→DB2→IB7→T 0.136396 T→SB9→SB7→DB2→DB3→IB3→T 0.1002
T→SB5→SB3→DB3→IB3→T 0.084968 T→SB9→SB7→DB2→DB9→IB10→T 0.138739
T→SB7→SB1→DB1→IB1→T 0.1118
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