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Abstract: In this study, an air heated solar collector (AHSC) dryer was designed to determine the
drying characteristics of the pear. Flat pear slices of 10 mm thickness were used in the experiments.
The pears were dried both in the AHSC dryer and under the sun. Panel glass temperature,
panel floor temperature, panel inlet temperature, panel outlet temperature, drying cabinet inlet
temperature, drying cabinet outlet temperature, drying cabinet temperature, drying cabinet moisture,
solar radiation, pear internal temperature, air velocity and mass loss of pear were measured at
30 min intervals. Experiments were carried out during the periods of June 2017 in Elazig, Turkey.
The experiments started at 8:00 a.m. and continued till 18:00. The experiments were continued until
the weight changes in the pear slices stopped. Wet basis moisture content (MCw), dry basis moisture
content (MCd), adjustable moisture ratio (MR), drying rate (DR), and convective heat transfer
coefficient (hc) were calculated with both in the AHSC dryer and the open sun drying experiment
data. It was found that the values of hc in both drying systems with a range 12.4 and 20.8 W/m2 ◦C.
Three different kernel models were used in the support vector machine (SVM) regression to construct
the predictive model of the calculated hc values for both systems. The mean absolute error (MAE),
root mean squared error (RMSE), relative absolute error (RAE) and root relative absolute error (RRAE)
analysis were performed to indicate the predictive model’s accuracy. As a result, the rate of drying of
the pear was examined for both systems and it was observed that the pear had dried earlier in the
AHSC drying system. A predictive model was obtained using the SVM regression for the calculated
hc values for the pear in the AHSC drying system. The normalized polynomial kernel was determined
as the best kernel model in SVM for estimating the hc values.

Keywords: solar collector; food drying; convective heat transfer coefficient; support vector
machine regression

1. Introduction

The sun is the largest source of carbon-free energy available throughout human history. A lot of
research has been done to find out how to use and apply solar energy as a primary energy source [1].
Generally, solar energy application is divided into two basic groups. The first is electricity generation
using photovoltaic cells, which convert direct solar energy into electricity, and the other is the thermal
application category, which involves solar drying [2].

Drying is defined as a process of removing water from a product and can be applied in two steps.
In the first stage, the moisture inside the product is removed to the surface and dried as a water vapor
in a constant air. The second stage involves a slow drying rate and the drying process varies according
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to the type of material to be dried [3]. In sun drying, the product is dried at a high temperature in
a closed area or a drying cabinet with the aid of hot air generated in a device known as solar energy
and air heater. This drying is an efficient drying process compared to direct sun drying. The product
is dried in sun dryer, high temperature and low relative humidity, in comparison with outdoor sun
drying. For most agricultural products, a more suitable drying air temperature range is between 45 ◦C
and 60 ◦C, and between these values the products can be dried by solar and air heating collector
systems at varying drying air temperatures [4].

The convective heat transfer coefficient (hc) is an important parameter in drying rate simulation,
since the temperature difference between the air and product varies with this coefficient. Akpinar has
made to evaluate the convective heat transfer coefficient during drying of various crops and to
investigate influence of drying air velocity and temperature on the convective heat transfer coefficient.
She has observed that the convective heat transfer coefficient increased in large amount with the
increase of the drying air velocity, but increased in small amount with the rise of the drying air
temperature [5]. Goyal and Tiwari have studied heat and mass transfer in product drying systems.
They have reported the values of convective heat transfer coefficient for wheat and gram as 12.68 and
9.62 W/m2 ◦C. They have used simple regression and multiple regression technique for predicted the
convective heat transfer coefficient [6].

Various predictive models for hc values were established in various systems in the literature.
Artificial neural networks are usually used to construct these models [7–10]. Predictive models of hc

values were created by using SVM regression in different topics [11,12]. The use of SVM regression for
predicting hc values in food drying systems has not been found in literature. So the SVM regression
was chosen for the predictive model.

Recently, SVM regression studies were carried out in various fields. Baser et al. have focused
on the estimation of yearly mean daily horizontal global solar radiation by using an approach that
utilizes fuzzy regression functions with support vector machine (FRF-SVM). To demonstrate the
utility of the FRF-SVM approach in the estimation of horizontal global solar radiation, they have
conducted an empirical study over a dataset collected in Turkey and applied the FRF-SVM approach
with several kernel functions [13]. Yang at all have investigated the total volatile basic nitrogen (TVB-N)
in a total of 210 pork meat pieces (tenderloin) with an average weight of approximately 200–400 g.
They have developed Multivariate calibration models using partial least-squares regression (PLSR)
and least-squares support vector machines (LS-SVM) in the full spectral range [14]. Li et al. have
utilized conventional back propagation neural network (BPNN), radial basis function neural network
(RBFNN) general regression neural network (GRNN), and support vector machine (SVM) modeling
techniquesfor estimating the hourly cooling load in a building. They used root mean square error
(RMSE) and mean relative error (MRE) for estimation of the predictive accuracy of the four models.
They have obtained better accuracy and generalization than BPNN and RBFNN methods [15].

In this study, the drying performances between the drying under the sun and the AHSC drying
system were compared. Pears were dried in both drying methods. The hc values of pears were
calculated in the AHSC drying system and under the sun drying. The SVM regression was applied
for the calculated hc coefficients in AHSC drying system. The aim of this study was to establish
a predictive model for hc values and to determine which drying method of pears would be faster.

2. Materials and Methods

2.1. Experimental Set-Up

Drying experiment set consisted essentially of an indirect forced convection solar dryer with air
heating solar collector panel (1400 mm × 800 mm), a circulation fan and a drying cabinet. Solar air
collector panel was made of stainless steel plates (thickness 0.5 mm), the exterior of which was painted
with black paint. Solar air heater was covered with copper sheet (thickness, 0.4 mm), which was
painted with black collector paint. Glass was used as a transparent cover over the air heater to prevent
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heat losses. Air heating solar collector was oriented southwards under the collector angle of 23.7◦

(local latitude 38.4◦). The air heating solar collector feet were fixed to this angle. The collector frame
was made of stainless steel sheet. Pear drying process under the sun was used in the perforated drying
tray (45 cm × 45 cm). Experimental setup is shown in Figure 1.
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Figure 1. Experimental set-up: (1) drying cabinet; (2) solar collector; (3) circulation fan; (4) pear drying
under the sun.

The pear drying cabinet was made of aluminum material (thickness 2 mm) and designed in
rectangular dimensions (100 cm × 50 cm × 100 cm). Spiraled aluminum type pipe was used to transfer
the heated air between the collector panel and drying cabinet. Aluminum spiral pipe connections used
for hot air transfer between the collector panel and the cabinet were leak-proof. The underside of the
cabin was manufactured as hoods to convey hot air from the collector to the cabinet. The drying air in
the cabinet was vented from the culvert on the cabin. Three drying trays (90 cm × 40 cm) were placed
in the drying cabinet. A circulation fan (0.9 m3/s, 0.4 kW, 220 V, 50 Hz) connected to drying cabinet
provides air.

For drying in the AHSC drying system and under the sun, Santa Maria type thin-skinned pears
were selected. Selected pears were sliced. Thickness of pear was measured as 10 mm. Solar drying
experiments were carried out during the periods of June 2017 in Elazig, Turkey. Experiments were
carried out in sunny weather. Test started at 8:00 a.m. and continued till 18:00. Elazig is locate at
38◦60′ N and 39◦28′ E and above 950 m of sea level in the eastern part of Anatolia, Turkey. In both
drying methods, the weight of the pears dried in 30 min periods was measured by digital scale.
The experiments were continued until the weight changes in the pear slices stopped. If the weight
change continued, the experiments were started again at 8:00 am the next day. During the time when
the experiments were not carried out, the mass loss of the orb was neglected. The speed of the air was
measured using an anemometer from the air outlet of the drying cabinet. The radiation measurement
for the AHSC drying system was made with a pyranometer placed parallel to the solar panel. In the
drying under the sun, the pyranometer was placed parallel to the floor and the radiation was measured.

In the experiments, panel inlet temperature, panel outlet temperature, panel glass temperature,
panel floor temperature, drying cabinet inlet temperature, drying cabinet outlet temperature, drying
cabinet temperature, drying cabinet moisture, solar radiation, drying cabinet air velocity, and mass loss
of pear were measured at 30 min intervals. Panel inlet temperature, panel outlet temperature, panel
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glass temperature, panel floor, temperature, drying cabinet inlet temperature, drying cabinet outlet
temperature, drying cabinet temperature and drying cabinet moisture measuring points of AHSC
experiment set are presented in Figure 2. Waterproof DS18B20 digital temperature sensors were used
for these measuring points.Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 16 
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Figure 2. The measuring points: (1) Panel glass temperature; (2) panel floor temperature; (3) panel
inlet temperature; (4) panel outlet temperature; (5) drying cabinet inlet temperature; (6) drying cabinet
outlet temperature; (7) drying cabinet temperature; (8) measurement monitoring screen.

In the measurements of air temperature (Te) and pear surface temperature (Ts), J type
iron-constantan thermocouples were used with a manually controlled 20-channel automatic digital
thermometer (ELIMKO, 6400), with reading accuracy of ±0.1 ◦C. Drying cabinet air velocity was
measured by a 0–15 m/s range anemometer (LUTRON, AM-4201), with reading accuracy of ±0.1 m/s.
Mass loss of pears were measured during drying by digital balance (BEL, Mark 3100, Monza, Italy) in
the measurement range of 0–3100 g and an accuracy of±0.01 g. The solar radiation during the operation
period of drying system was measured with a Kipp and Zonen pyrometer in ±0.1 W/m2 accuracy
and its CC12 model digital solar integrator. The initial and final moisture content of mushrooms was
determined at 80 ◦C by Unibloc moisture analyzer (Shimadzu MOC63u) in ±0.001 g accuracy.

2.2. System Analyis

Some general equations used in the drying analysis of the system are given below. For the values
of moisture content according to dry basis (MDd) and wet basis (MCw) in pear Equations (1) and (2)
have been used.

MCd =
Ww − Dw

Dw
(1)

MCw =
Ww − Dw

Ww
× 100 (2)

In Equations (1) and (2); WW is wet weight and DW is dry weight.
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Adjustable moisture ratio (MR) values have been calculated using Equation (3).

MR =
M−Me

Mo −Me
(3)

Drying speed (DR) values have been calculated from Equation (4).

DR =
Mt+dt −Mt

dt
(4)

In Equations (3) and (4); M is moisture, Me is equilibrium moisture, Mo is first moisture, “Mt+dt” is
moisture content at “t + dt” and Mt is moisture content at “t”.

Convective heat transfer occurs between a moving fluid and solid surface. In this study, it is
investigated convective heat transfer for forced convection flow over a flat plate. The viscosity of the
fluid requires that the fluid have zero velocity at the plate’s surface. Because a boundary layer exists,
the flow is initially laminar but can proceed to turbulence once the Reynolds number of the flow is
sufficiently high [16].

It was assumed that the plate length (L) was sufficiently short so that turbulent flow was never
triggered. Air velocity (V), air temperature (Te), central temperature (Tc) and pear surface temperature
(Ts) in the drying cabinet are shown in Figure 3. The plate length (pear product thickness) was selected
as 0.01 m.
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Average heat transfer coefficient was calculated using Pohllhausen Equation (5) for laminar flow
and other Equations (6)–(8) that are given below [17]:

Nulam = 0.664 × Re1/2 × Pr1/3(valid for Re < 2× 105) (5)

Nu =
hc × L

Kv
(6)

Re =
L×V × ρv

µv
(7)

Pr =
µv × Cv

Kv
(8)

The different physical properties of humid air, i.e., density (ρv), thermal conductivity (Kv), specific
heat (Cv) and viscosity (µv), used in the computation of Reynolds number (Re) and Prandtl number
(Pr) have been determined using the following polynomial expressions [18–20]. For obtaining physical
properties of humid air Equations (9)–(12) have been used.

ρv =
353.44

(Ti + 273.15)
(9)



Appl. Sci. 2018, 8, 215 6 of 16

Kv = 0.0244 + 0.6773× 10−4Ti (10)

Cv = 999.2 + 0.1434Ti + 1.101× 10−4Ti
2 − 6.7581× 10−8Ti

3 (11)

µv = 1.718× 10−5 + 4.620× 10−8Ti (12)

Here, Ti was taken as average of product surface temperature (Ts) and drying cabinet air
temperature (Te) [18–20]:

Ti =
Te + Ts

2
[K] (13)

Akpinar [5] and Velic [17] conceded that turbulence flow does not occur because of the plate
length being short in convective heat transfer coefficient (hc) calculations. They calculated the number
of hc by the number of Nu. In this study, the Re number for the flow on the plate (pear sample)
was calculated at the range of 112.8–132.3 using Equation (7) according to the air velocity and Ti
temperature values. According to the obtained Re values, the flow on the plate was accepted as laminar.
Using Equation (9), the number of Pr was calculated. In Re and Pr calculations, Equations (9), (11) and
(12) obtained with Ti values were used. In Equation (5), the numbers of Re and Pr calculated for the Nu
number were used. The Nu value calculated for the laminar flow was used in Equation (6) to calculate
the number of hc.

2.3. Regression

The main purpose of the regression analysis is to explain the relationship between dependent
variable and independent variable (s) with a mathematical equation. The regression analysis used
in the analysis of quantitative variables in general is divided into simple and multiple. Multiple
regression analysis, which tends to relate between a dependent variable and a number of independent
variables, is a natural extension of simple regression analysis that includes an independent variable.
However, multiple regression analysis is more difficult than simple regression analysis. In particular,
if there are too many independent variables, it is not possible to draw a graph with more than three
dimensions, either directly to the data or to the model [21].

In this study, linear regression has been applied with SVM for hc values. The general formula for
linear regression is the following.

Y = w0 + w1a1 + w2a2 + . . . + wnan (14)

In this formula, Y is the dependent variable, ω0 is the regression constant, a is the independent
variable, and w is the weight of the independent variable.

2.4. Support Vector Machine Regression

Support Vector Machine (SVM) is a classification and regression method that combines theoretical
solutions with numerical algorithms. In statistical learning theory, this technique has been developed
as a learning algorithm based on Structural Risk Minimization (SRM) rather than Empirical Risk
Minimization (ERM). SRM induction principle provides a formal mechanism to determine the optimal
model complexity, depending on the Vapnik Chervonenkis (VC) dimension for the finite samples [22].
Compared to classical neural networks, SVM can achieve a single global optimal solution and does not
encounter size problems. These attractive features often make SVM a preferred technique. Support
vector regression (SVR) is featured with the capability of capturing nonlinear relationship in the
feature space and thus is also considered as an effective approach to regression analysis. The following
sketches the basic idea of SVR. For more detailed illustration of SVR, please refer to Burges [23].

2.4.1. SVR for Linear Regression

In a regression problem, given a finite data set F = {(xk, yk)}n
k=1 derived from an unknown

function y = g(x) with noise, we need to determine a function y = f (x) solely based on F and to minimize
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the difference between f and the unknown function g. For linear regression, g is assumed to be a linear
relationship between x and y

y = g(x, w, b) = w · x + b =
m

∑
j=1

wjxj + b (15)

where x is called feature vector and the space X it lives in is named as feature space. m is the dimension
of the feature vector x and the feature space X. y is referred to as the label for each (x,). Now that the
relationship to be determined is assumed linear, our goal is to find a hyperplane y = f (x) in the m + 1
dimension space, where are {(xk, yk)}n

k=1 plotted and to minimize the fitting errors by adjusting the
parameters. As is proven by Vapnik, the hyperplane is given as

y = f (x, α, b) = ∑
k

akykxk · x + b (16)

where xk’s are support vectors in the given data set F and yk’s are the corresponding labels.
“·” represents the inner product in the feature space X. Finding the support vectors and determining
the parameters a and b turn out to be α linearly constrained quadratic programming problem that can
be solved in multiple ways (e.g., the sequential minimal optimization algorithm [24]. Such a process
conducted on the given data set F is called learning. Once the learning phase is done, the model built
can be used to predict the corresponding label y from any feature vector x in the feature space X.

2.4.2. SVR for Nonlinear Regression

However, the linear relationship assumption is often too simple to characterize the dynamics of
the time series, and thus it is necessary to consider the case when g is nonlinear. The idea of SVR for
nonlinear regression is to build a mapping x→ φ(x) from the original m dimension feature space X to
a new feature space X′ whose dimension depends on the mapping scheme and is not necessarily finite.
In the new space X′, the relationship between the new feature vector φ(x) and label y is believed to be
in a linear form. By building a proper mapping, the nonlinear relationship can be approximated by
doing in the new feature space φ(x) exactly the same thing as is done for the linear case, and it can be
proven that the nonlinear version of (2) is

y = f (x, α, b) = ∑
k

akykK(xk, x) + b (17)

where K(xk, x) = φ(xk) · φ(x) is the kernel function and “·” represents the inner product in the new
feature space X′. The new feature φ(x), which can be an infinite dimension vector, is usually not
necessary to be computed explicitly, since we normally work with the kernel function in the training
and forecasting phases. Accordingly, the kernel function is essential to the performance of SVR [25].

The SVM regression used for the hc values was made by the SMOreg sequence in the Waikato
Environment for Knowledge Analysis (WEKA) 3.8.1 program. The WEKA program has been developed
at Waikato University. The WEKA Program is open source software and this program supports many
algorithms for classification, clustering and association rules. SMOreg implements the support vector
machine for regression. The parameters can be learned using various algorithms. The algorithm was
selected by setting the RegSMOImproved. The most popular algorithm (RegSMOImproved) is due to
Shevade, Keerthi et al. [26].

Various accuracy criteria were used for SVM regression. Accuracy criteria and formulas used in
SVM were shown in Table 1.
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Table 1. Accuracy Criteria and Formulas.

Accuracy Criteria Formulas Parameters

MAE |P1−A1|+...+|Pn−An |
n

P: Predicted Value
A: Actual Value
n: Total Estimated Value

RMSE
√

(P1−A1)
2+...+(Pn−An)

2

n

P: Predicted Value
A: Actual Value
n: Total Estimated Value

RAE |P1−A1|+...+|Pn−An |
|A1−A′|+...+|An−A′|

P: Predicted Value
A: Actual Value
A’: Average Of Actual Values

RRAE
√

(P1−A1)
2+...+(Pn−An)

2

(|A1−A′|)2+...+(An−A′)2

P: Predicted Value
A: Actual Value
A’: Average Of Actual Values

It is essential to determine the kernel function to be used for a classification operation to be
performed by SVM and optimum parameters of this function. The most commonly used radial basis
function, Pearson VII (PUK) function and normalized polynomial kernels in the literature are presented
together with formulas and parameters in Table 2. As shown in the table, some parameters for each
kernel function must be specified by the user.

Table 2. The kernel functions and parameters used in support vector machine (SVM).

Kernel Function Formulas Parameters

The normalized polynomial kernel K(x, y) = ((x×y)+1)d√
((x×y)+1)d((y×y)+1)d d: degree of polynomial

The radial-based function (RBF) kernel K(x× y) = e−γ‖(x−xi)‖2
γ: kernel dimension

Pearson VII (PUK) kernel
K(x, y) = 11+

(
2×
√
‖x−y‖2

√
2(1/ω)−1

σ

)2
ω

ω,σ: Pearson width parameters

3. Results and Discussion

In this study, pears were dried in AHSC drying system and outdoors. The initial moisture content
of the dried pear slices was determined to be 83.1% (4.9 g water/g solid matter). The drying process
was terminated when the moisture transfer between the product and the desiccant media air ended
and thus the moisture content remained constant at 21.4% (0.27 g water/g solids).

In the drying experiments, the pear slices were started to dry in the AHSC drying system and
under the sun, and the experiment was continued in both systems until the moisture content was fixed.
The images of pear slices before and after drying are shown in Figure 4.
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The experimental data obtained from the AHSC drying system and under the sun drying were
shown in Tables 3 and 4. Pears were weighed together with the drying tray in the weight measurements.
Measured product weight was recorded in Tables 3 and 4 as total weight value minus drying tray
weight value. In the Tables 3 and 4, the 0 value show that the first measurements taken at 8:00 a.m.
The 600 value shows that the last measurements taken at 18:00. If the product weight continued to
change at 18:00, the experiment was terminated and continued at 08:00 a.m. the next day. According
to this, in the AHSC drying system, the experiments were completed in 1 day, while the under sun
drying experiments were completed in 2 days.

When outdoor temperatures were measured, there were irregularities due to adverse weather
conditions (cloud, wind etc.). In order to remedy these adverse conditions, the outdoor temperature
values in the range of 780 and 840 were assumed to be constant in Table 4.

The panel inlet temperature measurement point for the AHSC drying system was shown in
Figure 2 as Figure 3. The hood was used to connect the fan with the solar panel. The output temperature
of the fan was measured with the help of the sensor installed in the hood. The temperature sensor
inside the hood may create a temperature difference of several degrees between The Panel Inlet
Temperature in Table 3 and the Outdoor Temperature in Table 4.

The air was sent to the solar collector via the fan with a constant speed. The air heated when it
passed through the absorbent plate in solar collector. For this reason, there may be changes in the
temperature of the air and the values of drying cabinet air velocity may vary in Tables 3 and 4.

MCd, MR, DR and hc values obtained by Equations (1), (3) and (4) for the AHSC and the open-air
drying system dried pears are shown in Figures 5–8 respectively. Figures 5–8 were added to indicate
that the AHSC drying system had better drying performance than the under-sun drying. According
to Figure 5, when the moisture content values were examined over time, it was seen that moisture
content first decreases in the drying in the AHSC drying system. This indicates that the AHSC drying
system was more effective in pear drying. As shown in Figures 6–8, drying time in the AHSC drying
system was less than drying under the sun. As can be understood from this situation, pears dry in
the AHSC drying system earlier than in the sun. According to Figure 8, the value of hc in the AHSC
drying system is higher than the value of hc in the sun. This shown that the heat transfer on the dried
pear under the sun drying was lower than the AHSC drying system.
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Table 3. Air heated solar collector (AHSC) drying system experiment data.

Time
(min.)

Panel Inlet
Temperature (◦C)

Panel Outlet
Temperature (◦C)

Panel Glass
Temperature

(◦C)

Panel Floor
Temperature

(◦C)

Drying Cabinet
Inlet Temp.

(◦C)

Drying Cabinet
Outlet Temperature

(◦C)

Drying Cabinet
Temperature

(◦C)

Drying Cabinet
Moisture (%)

Radiation
(W/m2)

Drying
Cabinet Air

Velocity (m/s)

Product
Weight
(gram)

Ti (◦C) MCw
(%)

0 31.3 54.9 40.7 34.0 49.1 40.8 44.0 19.6 431.7 1.2 238.4 37.7 83.1
30 31.9 59.0 41.2 34.5 52.5 41.5 45.3 22.6 448.6 1.2 213.3 38.6 81.1
60 32.7 62.3 41.8 34.8 53.4 42.1 46.8 18.5 505.5 1.3 195.2 39.8 79.3
90 33.3 63.4 43.0 35.2 54.3 42.9 46.5 16.6 570.5 1.4 180.4 40.1 77.6
120 33.8 71.0 51.8 40.4 61.1 48.2 51.9 16.2 651.2 1.4 168.7 44.8 76.1
150 34.5 71.8 53.3 40.8 63.6 50.6 55.0 15.9 795.9 1.6 157.2 46.2 74.3
180 35.6 72.9 54.0 42.7 63.3 52.2 56.7 15.5 838.6 1.8 147.1 48 72.6
210 36.8 75.4 58.1 45.0 68.6 57.8 59.1 13.3 871.7 1.8 137.2 49.1 70.6
240 37.3 79.3 59.8 46.2 69.1 58.1 60.2 12.5 929.0 1.8 127.8 50.3 68.4
270 37.4 83.8 61.3 42.9 71.1 60.2 63.1 10.2 970.5 2.0 118.4 51.7 65.9
300 37.9 79.9 59.0 39.8 70.1 59.1 61.7 10.2 952.6 2.0 109.7 49.8 63.2
330 38.5 75.3 55.1 39.3 64.4 53.3 55.6 10.1 931.8 2.0 101.2 47.1 60.2
360 39.6 70.9 51.3 37.2 61.7 50.7 53.8 9.9 867.0 2.0 92.8 46.2 56.5
390 40.5 69.8 50.2 36.4 60.4 49.6 50.1 9.5 815.9 1.9 85.6 43.9 52.9
420 41.6 67.7 46.2 35.2 56.8 45.1 47.8 9.3 764.5 1.9 78.1 41.1 48.4
450 40.3 65.9 43.9 35.8 54.4 43.9 45.3 9.1 710.5 1.8 71.4 38.1 43.5
480 37.9 64.5 42.7 34.8 52.3 41.8 44.3 8.8 626.0 1.5 64.8 38 37.8
510 34.6 59.5 41.0 34.6 50.8 38.7 42.3 8.7 526.0 1.3 58.2 35.2 30.7
540 31.8 52.1 40.6 34.1 47.7 37.1 41.5 8.7 518.7 1.3 53.8 34.1 25.0
570 30.8 51.2 40.2 34.0 45.3 36.1 40.3 8.6 457.5 1.2 52.2 33.8 22.8
600 30.6 50.6 39.7 33.8 43.6 35.3 37.4 8.5 436.6 1.2 51.3 33.2 21.4
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Table 4. Under the sun drying experiment data.

Time Outdoor Temp. (◦C) Radiation (W/m2) Product Weight (Gram) Air Velocity (m/s) Moisture (%) Ti (◦C) MCw (%)

0 31.9 423.9 238.4 0.5 15.0 18.1 83.1
30 33.8 443.3 223.0 0.5 15.0 24.8 81.9
60 34.7 556.1 211.6 0.5 15.0 26.6 80.9
90 34.9 562.3 201.5 0.6 10.0 27.1 80.0
120 35.2 673.1 191.5 0.6 10.0 28.2 78.9
150 35.8 730.2 181.6 0.8 12.0 28.8 77.8
180 37.1 737.6 173.0 0.8 10.0 29.7 76.7
210 37.8 787.6 166.1 0.9 10.0 30.1 75.7
240 38.1 833.1 160.1 0.9 10.0 32.2 74.8
270 39.5 873.7 154.3 0.9 10.0 33.8 73.9
300 39.8 899.2 148.9 0.9 5.0 33.9 72.9
330 40.8 917.6 143.8 0.9 5.0 34.1 72.0
360 41.7 889.7 139.1 0.9 5.0 34.2 71.0
390 43.1 817.6 134.5 0.9 5.0 35.8 70.0
420 42.2 733.7 130.3 0.8 10.0 35.1 69.1
450 41.1 644.0 126.1 0.7 10.0 34.2 68.0
480 39.2 606.1 122.2 0.6 10.0 33.1 67.0
510 36.6 546.0 118.3 0.6 10.0 31.8 65.9
540 34.6 516.1 114.7 0.6 10.0 29.4 64.8
570 34.2 486.1 111.1 0.5 10.0 27.4 63.7
600 33.8 356.2 107.6 0.5 10.0 25.2 62.5
630 31.2 434.48 104 0.5 15 23.3 61.2
660 32.8 473.05 100.5 0.5 15 24.1 59.9
690 33.3 509.06 97.1 0.5 15 24.8 58.5
720 34.8 554.08 93.7 0.6 10 25.5 57.0
750 35.1 657.23 90.3 0.6 10 26.6 55.3
780 35.2 674.15 87 0.7 12 27.4 53.7
810 35.2 698.6 82.8 0.8 10 27.5 51.3
840 35.2 780.44 79.8 0.9 10 27.5 49.5
870 35.4 810.4 76.9 0.9 10 27.8 47.6
900 35.5 874.7 74.1 0.9 10 28 45.6
930 37.8 907.68 71.3 0.9 5 30.1 43.4
960 38.3 922.42 68.6 0.9 5 32.6 41.2
990 38.8 883.15 66.1 0.9 5 32.9 39.0

1020 39.2 734.71 63.6 0.9 5 33.8 36.6
1050 38.8 645.67 61.1 0.8 10 33 34.0
1080 39.3 612.3 57.1 0.7 10 33.7 29.4
1110 39.6 528.31 54.5 0.6 10 34.1 26.0
1140 38.2 483.71 52.2 0.6 10 33.4 22.8
1170 36.5 480.09 51.4 0.6 10 30.2 21.4
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Figure 8. hc changing with drying time.

In this study, to make choosing an appropriate noise level easier, this implementation applies
normalization/standardization to the target attribute as well as the other attributes. Missing values
were replaced by the global mean/mode. Nominal attributes were converted to binary ones. We used
three kernel models (1—The normalized polynomial kernel; 2—The Pearson VII function-based
universal (PUK) kernel; 3—The radial-based function (RBF) kernel) of SVM regression.

18 Attributes (378 data) have been used for SVM Regression. hc (21 data) has been selected to be
used as the class. Cross-Validation (Folds = 10) has been used for test options. The mean absolute error
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(MAE), root mean squared error (RMSE), relative absolute error (RAE) and root relative absolute error
(RRAE) values for the 3 kernel models are shown in Table 5.

Table 5. Error rates for SVM regression.

Kernel Models MAE RMSE RAE RRAE

The normalized polynomial kernel 0.279 0.3351 16.464% 18.304%
The Pearson VII function-based universal (PUK) kernel 0.4013 0.5175 23.682% 28.265%

The radial-based function (RBF) kernel 0.7048 0.84 41.593% 45.877%

The predicted and actual hc values for each kernel models are shown in Figures 9–11. The hc values
of pears in the AHSC drying system were modeled and estimated with SVM regression. The kernel
model with the least error rates in the SVM regression for the hc values according to Table 5 was
normalized polynomial kernels. Figures 9–11 show the predicted and actual values for hc values based
on 3 different kernel models in the SVM regression. Figure 9 shown that the actual and predicted
values were closer to each other.
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More efficient results can be obtained when the error rate of the estimated values of the kernel
models is small. The error rates are related to the network training used for the SVMreg model.
The network can be better trained using more data. In this study, 378 data were used to construct the
SVMreg model. As the drying time of the pear product was short, 378 pieces of data were obtained.
By using products with longer drying times, more data can be obtained and therefore better predicted
values can be obtained.

In the AHSC drying system, hot air sent to the drying cab is provided by the solar panel. Hot air
from the panel is sent to the drying cab with the aid of a radial fan. In Table 3, the temperature of the
air passing through the panel changes according to the solar radiation values on the solar panel. If the
sun rays fall at a right angle to the stationary panel, more warm air is provided. Because the solar
panel is fixed, the sun rays do not always come at a right angle. Therefore, the temperature values of
the air at the exit of the panel and the hc values for the speed change were calculated between 16.3
and 21.1.

Result of SVM regression for hc values SMOreg function in the WEKA program is given in Table 6
obtained from 3 different kernel functions.

Table 6. Support vectors obtained in SVM regression for hc.

The normalized polynomial kernel

hc = 0.3416 − 0.1255 × k[0] − 1.0 × k[1] +0.5860 × k[2] +1.0 × k[3] − 1.0
× k[4] − 1.0 × k[5] +1.0 × k[6] − 0.2071 × k[7] − 1.0 × k[8] +1.0 × k[9]
+1.0 × k[10] +1.0 × k[11] − 0.3152 × k[12] − 1.0 × k[13] +1.0 × k[14]
+0.4007 × k[15] − 1.0 × k[16] − 0.7025 × k[17] +1.0 × k[18] − 0.7020 ×
k[19] +0.06567 × k[20]

The Pearson VII function-based universal (PUK) kernel

hc = 0.4527 − 0.3017 × k[0] − 0.2619 × k[1] − 0.08917 × k[2] +0.03710 ×
k[3]− 0.24516 × k[4] − 0.05424 × k[5] +0.2599 × k[6] +0.0062 × k[7] −
0.0103 × k[8] +0.3469 × k[9] +0.1565 × k[10] +0.1490 × k[11] +0.3641 ×
k[12] − 0.1278 × k[13] +0.2997 × k[14] +0.1389 × k[15] − 0.0721 × k[16]
− 0.2559 × k[17] +0.2316 × k[18] − 0.4044 × k[19] − 0.16728 × k[20]

The radial-based function (RBF) kernel

hc = 0.384 − 1.0 × k[0] − 1.0 × k[1] − 1.0 × k[2] − 0.2996 × k[3] − 1.0 ×
k[4] − 1.0 × k[5] +1.0 × k[6] +1.0 × k[7] +0.0764 × k[8] +1.0 × k[9] +1.0
× k[10] +1.0 × k[11] +1.0 × k[12] +1.0 × k[13] +1.0 × k[14] +1.0 × k[15]
+0.2232 × k[16] − 1.0 × k[17] − 1.0 × k[18] − 1.0 × k[19] − 1.0 × k[20]

In the above formulas, k is called feature vector and the space K it lives in is named as feature
space. The k[n] values are the support vectors corresponding to the hc values estimated by the WEKA
program of 21 experimental hc data determined as class.

Various predictive intelligence methods have been used for the heat transfer coefficient. The most
common of these methods is ANN. Using SVM is not much. The error statistic values should be
low when constructing the predictive model in predictive intelligence methods. A low error rate
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indicates a high estimate. Verma [8] and Hassampour [9] have developed a predictive model using
the ANN for hc value in different systems. Verma and others predicted the heat transfer of concentric
tube heat exchanger value using ANN. They achieved root mean square error (RMSE) as 0.354 in
predictive model. Hassanpour and others predicted the pool boiling heat transfer coefficient of alumina
water-based nanofluids using ANN. They used 870 data for ANN. They found mean square error
(MSE) as 4.17 in predictive model. Zaidi [11] predicted the two phase boiling heat transfer coefficient
using SVM. He found predictive value of RMSE as 0.581. In this study, the MSE and RMSE values of
the predictive model for the heat transfer coefficient using the normalized polynomial kernel in SVM
regression are 0.279 and 0.3351. A better predictive model was obtained than the studies given above.

More efficient result may be obtained when parameters of SVM are optimized. Extreme learning
machine which is one of the most recent machine learning methods may also be efficiently used for
regression of convective heat transfer coefficient problem. Furthermore; when the number of data can
be increased by using products with longer drying periods in this system, data mining methods may
be utilized for the discovery of valuable knowledge automatically.

4. Conclusions

In conclusion, the pear product was dried in the AHSC drying system and under the sun.
The drying behavior of different drying systems of the pear has been examined. The drying
performances of these two different drying methods were compared and it was observed that the
AHSC drying system performed a more efficient drying.

SVM regression was used for hc values of pear in the AHSC drying system. Using SVM regression,
create a predictive model for hc values. We can specify that the best kernel model is the normalized
polynomial kernel for estimating the hc values in the SVM regression. We can use the models obtained
from SVM regression for hc values in different drying methods.
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