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Abstract: In a semiconductor manufacturing process, defect cause analysis is a challenging task
because the process includes consecutive fabrication phases involving numerous facilities. Recently,
in accordance with the shrinking chip pitches, fabrication (FAB) processes require advanced facilities
and designs for manufacturing microcircuits. However, the sizes of the particle defects remain
constant, in spite of the increasing modernization of the facilities. Consequently, this increases
the particle defect ratio. Therefore, this study proposes a particle defect management method for
the reduction of the defect ratio. The proposed method provides a kernel-density-based particle
map that can overcome the limitations of the conventional method. The method consists of two
phases. The first phase is the acquisition of cumulative coordinates of the defect locations on the
wafer using the FAB database. Subsequently, this cumulative data is used to generate a particle
defect map based on the estimation of kernel density; this map establishes the advanced monitoring
statistics. In order to validate this method, we conduct an experiment for comparison with the
previous industrial method.

Keywords: kernel density estimation; particle defect management; particle map; semiconductor
manufacturing process

1. Introduction

The worldwide semiconductor market is valued at 333 billion dollars [1]. As the semiconductor
industry accounts for 10–15% of the total exports of the Republic of Korea, it has a significant
influence on the market economy. Owing to the recent proliferation of electronic devices such as
mobile phones and tablet PCs (Personal Computers), market competition is becoming increasingly
fierce [2]. In the future, as the demand for the internet of things (IoT) products is expected to
increase, most manufacturers endeavor to increase the production through maintenance of facilities [3].
The semiconductor manufacturing process consists of numerous steps. As shown in Figure 1, in the
front-end process, the ingot is cut to produce wafers and the circuit is designed. The wafers are
subsequently undergone fabrication (FAB), which consists of the following eight processes: oxidation,
lithography, etching, strip & clean, ion-implantation, chemical vapor deposition, metal deposition,
and chemical mechanical planarization. Oxidation refers to a process whereby a thin and uniform
silicon oxide film is formed by the chemical reaction of oxygen or water vapor and the surface of
the wafer at a high temperature. Lithography is a process whereby patterns on the wafer is formed
by photoresist coating, exposure, and development processes. Etching refers to the process whereby
unnecessary portions are selectively removed by using the reactive gas to form a circuit pattern. Strip
& clean refers to the process of removing particle contamination generated on the wafer amid other
ongoing processes. Ion-implantation is the process whereby characteristics of the electronic device are
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generated by the implantation of impurities converted to a gas form in the circuit pattern. Chemical
vapor deposition is the process whereby the water vapor formed in the particles are formed by the
chemical reaction of gases to form an insulating film. Metal deposition interconnects each circuit
formed on the surface of a wafer with aluminum and copper wire. Chemical mechanical planarization
is a process whereby the oxide film and the metal thin film coated on the wafer are ground and
flattened using chemical and physical processes. The subsequent step is the back-end process, in which
the probe test, the assembly, and the package tests are conducted sequentially. Thereby, the final
product is manufactured. These processes each have their own facilities, and each facility includes
several chambers where a wafer must be placed for fabricating. The above-mentioned processes occur
within those chambers.

Wafer fabrication for semiconductor devices such as microprocessors, memories, digital signal
processors, and consumer electronics applications involves a complex and lengthy process with 30–40
reentrant loops, and the above-mentioned processes ( 1©– 8©), as shown in Figure 1 [4]. This study
focuses on these eight processes and the inter-process metrology.
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Figure 1. The semiconductor manufacturing process. IC, Integrated Circuit.

Semiconductor FAB includes various physical and chemical treatments and takes six to eight
weeks. Therefore, there is a considerable difficulty in identifying causes of failure in the fabrication
process, which involves numerous facilities. Figure 2 chronologically shows a pitch change in
the lithography process used for fabricating DRAM (Dynamic Random-Access Memory), NAND
(Negative-AND gate flash memory), and logic products that have been actively manufactured in recent
years. The pitch on the Y-axis illustrates the integration capacity of the semiconductor products and
significantly affects product yield, hence the increasing significance of defect management as current
FAB processes design and fabricate sophisticated patterns [5].
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owing to the manufacturing environment has remained unchanged, but the FAB process has been 
improved to develop capabilities for the fabrication of fine patterns. During one inspection, as shown 
in Figure 4, there was no defect when the pitch was 130 nm, but a pitch of 45 nm resulted in a defect 
because the size of the particle was greater than the pitch size. Therefore, the structure and stability 
of the deposited chemical must be carefully controlled, and reduction in contamination in particular 
becomes increasingly crucial as device sizes shrink [7]. 
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Figure 2. Pitch change in the lithography process (2002–2020). DRAM, Dynamic Random-Access
Memory; NAND, Negative-AND gate flash memory.

The defects in a semiconductor manufacturing process are generally distributed as shown in
Figure 3. The pie chart on the left shows that the particle defects account for 75% of the total defects.
As shown in the pie chart on the right, 75% of the particle defects are caused by process equipment [6].
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Figure 3. Distribution of defects in a semiconductor manufacturing process.

In the field of semiconductor manufacturing, a particle defect indicates a failure resulting from
fine particles, such as dust, that are present on the wafers during FAB. The size of the particle defect
owing to the manufacturing environment has remained unchanged, but the FAB process has been
improved to develop capabilities for the fabrication of fine patterns. During one inspection, as shown
in Figure 4, there was no defect when the pitch was 130 nm, but a pitch of 45 nm resulted in a defect
because the size of the particle was greater than the pitch size. Therefore, the structure and stability
of the deposited chemical must be carefully controlled, and reduction in contamination in particular
becomes increasingly crucial as device sizes shrink [7].

The particles in the chamber of a facility need to be monitored to maintain the chamber’s stability.
Current manufacturing processes manage particle defects through a simple control chart (c-chart)
that monitors the number of particles. As these monitoring charts do not consider the distribution or
density of the particles on the wafers, engineers do not know whether the particles are assignable or
what the common causes are. Therefore, this study proposes a particle defect management method to
overcome the limitation of this monitoring chart.

This paper is organized as follows. Section 2 reviews the conventional particle management
method. Section 3 provides the details of the proposed method, and Section 4 presents the experimental
results and evaluation. Finally, Section 5 concludes this study.
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2. The Conventional Industrial Method

In an actual semiconductor manufacturing process, conventional particle defect management
involves manual action by engineers if, based on the monitoring chart, there is a cause for alarm.
The procedure consists of three phases for the detection of the cause of the defect. In the first phase,
when an alarm occurs, the insides of the manufacturing equipment are repeatedly cleaned. In the
second phase, if the problem persists, the field engineers replace suspicious parts. In the final phase,
if the previous replacement does not solve the prevailing problem, predictive maintenance (PM) of the
equipment is performed. The second phase, in particular, consumes a substantial amount of time in
terms of both decision-making and detection of the root cause, owing to an experience-based decision
of the replacement. Therefore, reducing false alarms in the first phase is critical.

Among the aforementioned particle defect management phases, we focus on the first phase,
wherein the particle defects are monitored. Particle defects in process equipment are primarily due
to equipment aging. Other defects occur due to environmental factors. The counts control chart
(c-chart) is commonly used to monitor particle defects. The c-chart is based on the assumption that the
distribution of the number of nonconformities is sufficiently well fitted by a Poisson distribution [8].
However, in the actual semiconductor manufacturing process, the particle count does not follow
a Poisson distribution [9]. Especially, in our case, random variables are not independent since the
particles are cumulated with a time-varying property. Figure 5 shows the metrology equipment
gauging the number of particles on the wafer. The number of particles, N, at each coordinate on the
wafer is stored.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 11 

 

Figure 4. Change in the particle defect size with respect to the pitch. 

2. The Conventional Industrial Method 

In an actual semiconductor manufacturing process, conventional particle defect management 
involves manual action by engineers if, based on the monitoring chart, there is a cause for alarm. The 
procedure consists of three phases for the detection of the cause of the defect. In the first phase, when 
an alarm occurs, the insides of the manufacturing equipment are repeatedly cleaned. In the second 
phase, if the problem persists, the field engineers replace suspicious parts. In the final phase, if the 
previous replacement does not solve the prevailing problem, predictive maintenance (PM) of the 
equipment is performed. The second phase, in particular, consumes a substantial amount of time in 
terms of both decision-making and detection of the root cause, owing to an experience-based decision 
of the replacement. Therefore, reducing false alarms in the first phase is critical. 

Among the aforementioned particle defect management phases, we focus on the first phase, 
wherein the particle defects are monitored. Particle defects in process equipment are primarily due 
to equipment aging. Other defects occur due to environmental factors. The counts control chart (c-
chart) is commonly used to monitor particle defects. The c-chart is based on the assumption that the 
distribution of the number of nonconformities is sufficiently well fitted by a Poisson distribution [8]. 
However, in the actual semiconductor manufacturing process, the particle count does not follow a 
Poisson distribution [9]. Especially, in our case, random variables are not independent since the 
particles are cumulated with a time-varying property. Figure 5 shows the metrology equipment 
gauging the number of particles on the wafer. The number of particles, , at each coordinate on the 
wafer is stored. 

 

Figure 5. Particle measurements on a test wafer. 

Moreover, these particles indicate the status of the equipment, not of the wafer. Therefore, in 
conventional monitoring statistics, the particle defect (PD) that indicates the number of particles on 
a test wafer can be denoted as follows: 

Particle

x

y
wafer

11 , yxN

22 , yxN

Figure 5. Particle measurements on a test wafer.



Appl. Sci. 2018, 8, 224 5 of 11

Moreover, these particles indicate the status of the equipment, not of the wafer. Therefore, in
conventional monitoring statistics, the particle defect (PD) that indicates the number of particles on a
test wafer can be denoted as follows:

PD = ∑
i

Nxi ,yi (1)

where xi and yi are the i-th particle coordinates, and Nxi ,yi indicates the number of particles at the
designated coordinate.

The particle coordinates can be used to generate a wafer map to obtain the distribution and number
of particles. Figure 6 depicts four illustrative particle defect maps for four processes. The particle defect
maps indicate high-density particles at a particular location on the wafer and the location is correlated
with the structure of the process equipment. As indicated by the dotted ellipse in each particle defect
map, a high-density area indicates that an ongoing wafer has a potential defect. The particle defect
map of the oxidation is also affected by the structure of the equipment. Field engineers have discovered
a problem at the center position, where the gas is injected into the furnace, using the particle map.
The lithography process shows a higher density at the edges of the wafer. The lithography process
includes a photo resist (PR) coating using a high-speed rotation of the spinner equipment in the
wafer process. Therefore, the remnants of the chamber affect the density of the wafer edges owing to
the characteristics of the high-speed spinning process. Both the etching and strip & clean processes
exhibit the highest densities where the dotted ellipse is drawn. Engineers have checked the equipment
that analyzes the causes of this phenomenon and discovered a particle resulting from the improper
fastening of the O-ring in the chamber. Further, as the strip & clean process includes multiple baths
that form bias chemicals at the bottom wafer, the particle defect map indicates high densities of the
particles in the bottom area.
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A real domain conducts monitoring based on the control chart in Equations (2)–(4) to monitor the
particle counts [9].

Center line = PD (2)

Upper control limit = PD + CV ×
√

PD (3)

Lower control limit = PD− CV ×
√

PD. (4)
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However, CV (critical value) is decided through the experience of engineers because the particle
defect cannot assume a specific distribution. Moreover, since the particle count is always positive,
Lower control limit is zero. Therefore, the actual process determines the abnormalities in the facility
using the threshold of the particle count, as shown in Figure 7.Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 11 

 
Figure 7. Illustration of the conventional monitoring method. PD, particle defect. 

Figure 7 describes both the monitoring chart and the particle maps of the wafers required for 
observing the particles with specific equipment. In the monitoring chart, the horizontal axis is the 
wafer index and the vertical axis is the monitoring statistic, . The dashed-polygonal line indicates 
production yield and the solid straight line indicates the criterion that distinguishes between a non-
defect and a defect. As shown in the chart, Wafer A is beyond the threshold, whereas Wafers B and 
C are within the threshold. Although both Wafers B and C are within the threshold, they have 
different distributions, as shown by their respective maps. The three wafer maps depict their 
respective particle distributions. Wafer A shows high-density particles because  is beyond the 
threshold. The particles in Wafers B and C are differently distributed, whereas the monitoring chart 
indicates that  is within the threshold for both wafers. The particles on Wafer B are uniformly 
distributed, and the particles on Wafer C are concentrated around the edges of the wafer. 
Consequently, despite a smaller , the particles concentrated on Wafer C can induce fatal risks, 
including out-of-threshold wafers or yield reductions, as shown by the shaded rectangular area of 
the plot. Therefore, since it is important to identify particle distributions, as in Wafer C, this study 
proposes a new monitoring method considering dense particles. 

3. The Proposed Method 

The proposed method consists of two stages. The first stage consists of the particle map based 
on the estimation of kernel density and the cumulative particle data. The second stage proposes a 
new monitoring statistic, calculated from the probability of the kernel function based on the particle 
map. 

3.1. Particle Map Generation Based on the Kernel Density 

As the particle map indicates only the distribution of the particles using the cumulative data, the 
density of the particles should be considered. Therefore, this method utilizes a function for the 
estimation of kernel density. Kernel density estimation is a non-parametric method for estimating the 
probability density of a dataset. As the particle map consists of two dimensions, the X-axis and Y-
axis of the wafer, this map is constructed using multivariate kernel density estimation. Considering , , , , … , ,  as the sample data of two-dimensional vectors and  as the number of 
particles, the kernel density estimation function is expressed as [10], where  is the scale coefficient 
of the kernel function and  is the Gaussian kernel function, which is a symmetric multivariate 
density. 

Figure 7. Illustration of the conventional monitoring method. PD, particle defect.

Figure 7 describes both the monitoring chart and the particle maps of the wafers required for
observing the particles with specific equipment. In the monitoring chart, the horizontal axis is
the wafer index and the vertical axis is the monitoring statistic, PD. The dashed-polygonal line
indicates production yield and the solid straight line indicates the criterion that distinguishes between
a non-defect and a defect. As shown in the chart, Wafer A is beyond the threshold, whereas Wafers B
and C are within the threshold. Although both Wafers B and C are within the threshold, they have
different distributions, as shown by their respective maps. The three wafer maps depict their respective
particle distributions. Wafer A shows high-density particles because PD is beyond the threshold.
The particles in Wafers B and C are differently distributed, whereas the monitoring chart indicates
that PD is within the threshold for both wafers. The particles on Wafer B are uniformly distributed,
and the particles on Wafer C are concentrated around the edges of the wafer. Consequently, despite a
smaller PD, the particles concentrated on Wafer C can induce fatal risks, including out-of-threshold
wafers or yield reductions, as shown by the shaded rectangular area of the plot. Therefore, since it
is important to identify particle distributions, as in Wafer C, this study proposes a new monitoring
method considering dense particles.

3. The Proposed Method

The proposed method consists of two stages. The first stage consists of the particle map based on
the estimation of kernel density and the cumulative particle data. The second stage proposes a new
monitoring statistic, calculated from the probability of the kernel function based on the particle map.

3.1. Particle Map Generation Based on the Kernel Density

As the particle map indicates only the distribution of the particles using the cumulative data,
the density of the particles should be considered. Therefore, this method utilizes a function for the
estimation of kernel density. Kernel density estimation is a non-parametric method for estimating
the probability density of a dataset. As the particle map consists of two dimensions, the X-axis and
Y-axis of the wafer, this map is constructed using multivariate kernel density estimation. Considering



Appl. Sci. 2018, 8, 224 7 of 11

{x1, y1}, {x2, y2}, . . . , {xn, yn} as the sample data of two-dimensional vectors and n as the number of
particles, the kernel density estimation function is expressed as [10], where H is the scale coefficient of
the kernel function and K is the Gaussian kernel function, which is a symmetric multivariate density.

f̂H(x, y) =
1
n

n

∑
i=1

KH{(x, y)− (xi, yi)}. (5)

The scale coefficient H of Gaussian kernel function K is estimated using a well-supported rule [11]
and is dependent on the performance of particle inspection equipment. H means the estimated sigma.
In this study, we selected 99,370 as the value of H. However, this value can vary depending on the
resolution of image data from equipment. Consequently, this function calculates the density f̂H(x, y)
of the wafer. We build a three-dimensional kernel-density-based particle map using f̂H(x, y) in the
X-axis and Y-axis. Figure 8a,b illustrate the particle map and the kernel-density-based particle map,
respectively. In Figure 8a, the dotted area indicates dense particles, and Figure 8b shows a high
density at the corresponding area in Figure 8a. Hence, Figure 8b shows the probability density of the
corresponding particles of the map in Figure 8a. This particle map contains dense particles regardless
of the total count of the particles.
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particle map.

As these dense particles can cause an abnormal state in the facility, this study devises new
monitoring statistics that consider the density of the particles using the kernel-density-based
particle map.

3.2. New Monitoring Statistics Using the Proposed Map

As mentioned in the previous section, the conventional method uses PD for monitoring.
This chapter describes new monitoring statistics that can replace the conventional statistics.
The kernel-density-based particle map shows the probabilities at all the points on the wafer,
as shown in Figure 8b. While the original particle map shows only the location of the particles,
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the kernel-density-based particle map includes the density of the particles at a location. In the case of a
kernel-density-based particle defect, the expected value E of the particle defect is calculated as

E =
f̂H(x, y)

∑n
i=1 f̂H(xi, yi)

× n (6)

where n is the total count of the particles, f̂H(x, y) denotes the density of the particle map, and f̂H(x)
∑n

i=1 f̂H(xi)

is the probability based on the density. The expected value indicates a new particle defect at the location
of the particle. Therefore, according to the new monitoring statistics, the kernel-density-based particle
defect (KDPD) is calculated as

KDPD = PD + ∑
i

Exi ,yi (7)

where xi and yi are i-th particle coordinates and Exi ,yi indicates the expected value of each particle at
the designated coordinates.

The sum of Exi ,yi indicates the number of particles considering the densities of the wafer and
defines the new monitoring statistics. Thus, the monitoring chart utilizes KDPD to detect potential
particle defects. Figure 9 depicts the comparisons between the results of certain PD and KDPD.
While Wafers A, B, and C exhibit identical PDs, KDPD assumes different values for each wafer.
As KDPD is derived using the particle distributions on the map in Figure 9, it indicates a density-based
PD. The dense particles, shown at the bottom of the Wafer C map, influence monitoring performance.
Thus, KDPD dynamically changes in accordance with the particle distribution.
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4. Experimental Results

This section describes an experiment for verifying the proposed method and its results.
The particle maps used for this experiment were retrieved from the etching process. As several
“killer-particles” originate from the deposition of a layer of by-product on the inside of the
plasma-etching chamber, the etching process is sensitive to particles [12]. Therefore, we used particle
data from a real etching process in a Korean semiconductor manufacturing company, obtained over a
period of five months. The entire dataset consists of 600 wafers, generating 600 particle maps. Among
these particle maps, we defined the particle defect types using field knowledge. A dense particle
indicates that the facility is abnormal. Therefore, the dataset with dense and even particles was selected.
The four defect types are shown in Figure 10. Our dataset consists of 300 normal wafers, 100 wafers
of Type 1, 100 wafers of Type 2, 50 wafers of Type 3, and 50 wafers of Type 4. These types were
determined by experienced engineers.

As shown in Figure 10, Type 1 shows an illustrative particle map of a small defect. This map
includes only one particle cluster, shown on the left side of the map. Type 2 map has two or more
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small defects. The Type 3 map has only one large-sized defect and the Type 4 map shows the particle
distribution on the entire surface of the wafer.

According to the specified defect types, we generated four datasets for the experiment, as shown
in Table 1.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 11 
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Table 1. Defect datasets.

Dataset Combination of Defect Types

Dataset 1 Types 1, 2, 3 and 4
Dataset 2 Types 2, 3 and 4
Dataset 3 Types 3 and 4
Dataset 4 Type 4

Dataset 1 includes non-defect wafer images and wafer images with Defect Types 1, 2, 3 and 4.
On the other hand, Dataset 4 consists of non-defect wafers and Type 4 defect wafers only. In order to
validate the monitoring performance for these datasets, we evaluated the use of KDPD, compared to
the use of the conventional monitoring statistics, to identify a defect.

We used the monitoring method illustrated in Figure 7 to classify non-defect and defect particle
maps. The threshold in the monitoring chart corresponds to the upper control limit (UCL) in the
statistical process control chart. Therefore, we compared the classification performance of the particle
defect map by adjusting the decision threshold of the defect/non-defect. Further, we used the receiver
operating characteristic (ROC) curve, a graphical plot that illustrates the performance of a binary
classification. Moreover, in order to compare these curves, the area under the ROC (AUROC) curve was
considered [13]. A broader AUROC can detect a particle defect more accurately. As defect classification
is more important than non-defect classification, the ROC curve uses a false negative rate for the X-axis
and a true negative rate for the Y-axis. Figure 11 depicts the ROC curves for both PD and KDPD of the
four datasets defined in Table 1, and the AUROC examines the monitoring performances.

The ROC curves of Datasets 1, 2 and 3 show that the AUROCs of KDPD are broader than those of
PD. Therefore, KDPD outperforms PD. Moreover, the results indicate an increase in the performance
gap between PD and KDPD in proportion to the degree of the defects. On the other hand, Dataset 4
demonstrates that the conventional statistics (PD) outperforms KDPD. This dataset includes the Type
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4 defect as specified in Table 1 and is referred to as a fatal defect. This can be monitored using either PD
or KDPD. Therefore, the proposed KDPD is appropriate for detecting Type 1, 2, and 3 defects. Since
the Type 1, 2 and 3 defects indicate potential factors that can result in fatal defectives of Type 4, field
engineers can detect critical defects in early stages. Table 2 represents the area under the ROC curves
depicted in Figure 11. In Datasets 1, 2 and 3, the area of KDPD is much larger than PD. However,
in the case of Dataset 4, the area of KDPD is slightly smaller than PD.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 11 
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Table 2. Area under the ROC (AUROC) (If AUROC = 1, then the test is perfect. If AUROC = 0.5, then
the test is worthless) 1.

Dataset PD KDPD

Dataset 1 0.79 0.92
Dataset 2 0.81 0.93
Dataset 3 0.84 0.98
Dataset 4 0.99 0.97

1 ROC; Receiver operating characteristic; PD, particle defect; KDPD, kernel-density-based particle defect.

5. Conclusions

This study is significant because the proposed method utilizes the real data of the particles in the
chamber of a semiconductor process. Novel monitoring statistics that efficiently identify the particles
on the wafers in a chamber are proposed in this study. These new statistics are based on multivariate
kernel density estimation and indicate the densities of the particles. Thorough management is essential
for reducing the failures caused by particles in a semiconductor manufacturing process. This study
presents a particle defect management method using a kernel-density-based particle map for improving
the conventional method of monitoring the number of particles. In particular, the main contribution
of this study is the development of new monitoring statistics. The new statistics that consider the
distribution of particles, when applied to an actual process, produce the following three effects. Firstly,
the proposed method can reduce the number of unnecessary replacements. Secondly, according to a
field internal review, when this study is applied to an actual process, a reduction of approximately
30% in the meantime to repair (MTTR), i.e., the time to find the cause of a failure, is expected. Third,
regardless of the number of particles, dense particles increase the possibility of further failures.
Therefore, using the proposed particle maps, it is possible to detect defects and predict future failures.
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Since the semiconductor manufacturing processes are becoming finer, particle defect management
becomes increasingly important. If the proposed kernel-density-based particle map can be applied
to an actual process, it is expected to improve both the yield and the quality of the semiconductor
product. The size of particle defect has a large influence on yield. The current wafer size is 300 mm,
but the wafer size will grow and the defect rate will increase as the process is refined. Therefore, in the
future, it is necessary to identify the relationship between the particle map and both the yield and
quality of the wafer.
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