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Abstract: This paper addresses the target localization problems based on received signal strength
(RSS) measurements in underwater acoustic wireless sensor network (UWSN). Firstly, the problems
based on the maximum likelihood (ML) criterion for estimating target localization in cases of both
known and unknown transmit power are respectively derived, and fast implementation algorithms
are proposed by transforming the non-convex problems into a generalized trust region subproblem
(GTRS) frameworks. A three-step procedure is also provided to enhance the estimation accuracy in
the unknown target transmit power case. Furthermore, the Cramer–Rao lower bounds (CRLBs) in
both cases are derived. Computer simulation results show the superior performance of the proposed
methods in the underwater environment.

Keywords: underwater acoustic wireless sensor network (UWSN); target localization; received signal
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1. Introduction

Target localization in underwater acoustic wireless sensor network (UWSN) has attracted
much attention in recent years due to its wide applications in such fields as data collection,
pollution monitoring, offshore exploration, disaster prevention, target tracking, assisted navigation,
and military surveillance [1–3]. In UWSN, target localization is often performed by using such
measurement information as time-of-arrival (ToA), time-different-of-arrival (TDoA), angle-of-arrival
(AoA), and received-signal-strength (RSS). However, localization based on ToA and TDoA requires
careful timing and synchronization, and the costs are high, especially in underwater acoustic
environmental conditions [4–6]. Additionally, as AoA relies on a direct line-of-sight path from the
target node to anchor nodes, it will cause large errors in AoA measurements in multi-path underwater
acoustic (UWA) transmission environments [7,8]. Therefore, RSS-based target localization is preferred
by researchers due to its low complexity and easy implementation [9–12]. Based on the received
signal strength measurements, the maximum likelihood (ML) method is used to estimate the target
position [13], and this method is robust in underwater environments. Although the ML estimator
has asymptotically optimal performance, it is non-convex and has multiple local optimal solutions.
Moreover, its performance depends highly on the initial solution and obtains bad results if a poor
initialization is provided. In [9], the authors propose a fast iteration algorithm by using a triangulation
method based on RSS measurements. In [11], the authors discuss the convex optimization method for
target localization in UWSN, while the propagation model is still the terrestrial acoustic wave model.
Two convex methods based respectively on RSS-based and frequency-dependent differential approaches
in UWSN have been proposed [12]. A hybrid localization method was investigated by combining ToA
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and RSS measurements [10]. This method provides better performance by exploiting the benefits of
combined measurements of the radio signal in the assumption that the RSS measurements are known
in advance.

In this paper, target localization methods for the cases of both known and unknown target
transmit power are proposed. Firstly, the general target localization problems based on the ML
criterion are formed, and the new weighted least square (WLS) problems are then derived using
approximation techniques. These non-convex estimators are then transformed into a generalized
trust region subproblem (GTRS) framework [14], which are solved in an efficient way. Furthermore,
a three-step procedure is used to enhance the estimation accuracy of the target localization in the
unknown target transmit power case. Finally, the closed-form expressions of the Cramer–Rao lower
bounds (CRLBs) in both known and unknown target transmit power cases are derived.

The remainder of this paper is organized as follows. In Section 2, the RSS measurement model
for locating a single target node is briefly introduced, and the non-convex target localization problem
is formulated. Section 3 derives the proposed methods in both the known and unknown transmit
power cases. In Section 4, complexity analysis is carried out. Computer simulation comparisons of
the discussed methods are presented in Section 5. The CRLBs in both known and unknown transmit
power cases are derived in Section 6. In Section 7, the main conclusions are drawn. Finally, Section 8
points out the idea of further research.

2. The System Model

Consider an UWSN with N anchor nodes and one target node in a two-dimensional (2D)
localization scenario, where the locations of anchor nodes, noted as s1, s2, . . . , sN , are known, while the
location of the target node, noted as x, is unknown. For simplicity and without loss of generality,
we assume that the anchor nodes are equipped with omnidirectional antennas. Under a centralized
processing mode, all sensors convey their RSS measurements with respect to the target node to the
central processor. We assume that the locations of all the nodes are supposed to be unchanged during
the computation period [11,15]. Figure 1 shows the i-th sensoring link in the UWSN model.
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Figure 1. The i-th sensoring link in the underwater acoustic wireless sensor network (UWSN) model.

For i = 1, 2, . . . , N, the RSS of the UWA propagation between the i-th anchor node and the target
node is measured in dBm and has the log-normal shadowing model as follows [12]:

Pi = P0 − 10γ log10
di
d0
− α f (di − d0) + ni (1)

where di = ‖x − si‖ is the Euclidean distance, ni is a zero-mean Gaussian random variable with
covariance matrix Q that represents the log-normal shadowing effect, P0 is the reference power at
the reference distance d0(d0 ≤ di), γ is the path-loss exponent between 2 and 4 according to different
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propagation environments, and α f is the absorption coefficient that can be obtained from Thorp’s
formula as a function of signal frequency f in dB/km, which is as follows [16]:

α f =
0.11 f 2

1 + f 2 +
44 f 2

4100 + f 2 + 2.75× 10−4 f 2 + 0.003. (2)

Let n = (n1, n2, . . . , nN)
T ∈ RN be the collection vector of Gaussian random variables with a

symmetric and positive-definite covariance matrix Q as follows:

[Q]ij =

{
σ2, i = j

ρσ2, i 6= j
(3)

where 0 ≤ ρ < 1 is the correlation coefficient of any two different links between i and j to the target
node for i, j = 1, 2, . . . , N. It is known from Equation (3) that Q can be transformed into white noise
using the Cholesky decomposition as Q = BBT with lower-triangular matrix B. This implies a linear
transformation n = Bw, where w ∼ N (0, σ2 IN), and IN is the order-N unity matrix [17].

Let P = (P1, P2, · · · , PN)
T ∈ RN be the vector of observations given by Equation (1). The joint

probability density function (PDF) of P, conditioned on a given x, has the following form

f (P|x) = 1

(2π)
N
2 |Q| 12

e−
1
2

(
P−P̂

)T
Q−1
(

P−P̂
)

(4)

where P̂ =
(

P̂1, P̂2, . . . , P̂N
)T , with each component

P̂i = P0 − 10γ log10
‖x− si‖

d0
− α f (‖x− si‖ − d0).

Therefore, the joint ML estimation of the target location x can be formulated as

arg min
x

(P− P̂)TQ−1(P− P̂). (5)

In the special case where ρ = 0, which corresponds to added white Gaussian noise, the estimation
can be reduced as

arg min
x

N

∑
i=1

(
Pi + 10γ log10 ‖x− si‖+ α f ‖x− si‖ − P0 − 10γ log10 d0 − α f d0

)2. (6)

Clearly, the ML estimator based on Equation (5) or Equation (6) is non-convex, hence the difficulty
in finding a global optimal solution.

3. The Proposed Methods

In this section, we provide an approximation method that can transform the ML estimator into
a GTRS problem. Without loss of generality, we assume that noise ni is sufficiently small, and let
d0 = 1 m [12,15]. From Equation (1), we have the following approximation expression

‖x− si‖ ≈ 10
P0−Pi+α f

10γ 10−
α f ‖x−si‖

10γ . (7)

Let u = − α f ‖x−si‖
10γ be the exponent of the second factor on the right hand side of Equation (7).

It was shown in [12,18] that, when the absorption coefficient α f is sufficiently small, the absorption term
α f ‖x− si‖ can be relatively small (α f ‖x− si‖ � 10γ

ln 10 ), especially in deep water; then, 0 < |u| � 1.
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Therefore, for a sufficiently small α f , it is reasonable to approximate this factor by using the first-order
Taylor expansion about u = 0 as follows:

10−
α f ‖x−si‖

10γ ≈ 1− ln 10 ·
α f ‖x− si‖

10γ
(8)

where the higher-order terms are omitted.
By substituting Equation (8) into Equation (7), the distance between the i-th anchor and the target

node can be further approximated in the following form:

λi‖x− si‖ ≈ η, (9)

where λi = βi +
ηα f ln 10

10γ βi = 10
Pi−α f

10γ , and η = 10
P0

10γ .

3.1. Target Localization in the Known Transmit Power Case

In the known transmit power case, P0 is assumed to be known in the centralized localization, so η

is a constant that depends only on the path-loss exponent γ. Given γ, α f , {Pi}N
i=1, and the coefficients

{λi}N
i=1, the target node localization can be determined from Equation (9). Next, we can rewrite

Equation (9) as

λ2
i ‖x− si‖2 ≈ η2. (10)

Based on Equation (10), we propose the following WLS estimation problem:

min
x

N

∑
i=1

(λ2
i ‖x− si‖2 − η2)TQ−1(λ2

i ‖x− si‖2 − η2). (11)

The above WLS estimator is still a non-convex optimization problem. In the following section,
we can transform Equation (11) into an equivalent quadratic programming problem with a quadratic
constraint whose global solution can be computed efficiently [19].

Let y =
[
xT , ‖x‖2]T , and Equation (11) can be written in an equivalent GTRS problem as

min
y
‖Q−

1
2 (Ay− b)‖2

s.t. yT Dy + 2vTy = 0 (12)

where D = diag([1, 1, 0]), v = [0, 0,− 1
2 ]

T , and

A =

−2λ2
1sT

1 λ2
1

...
...

−2λ2
NsT

N λ2
N

 , b =

 η2 − λ2
1‖s1‖2

...
η2 − λ2

N‖sN‖2

 . (13)

Although Equation (12) is still non-convex, both the objective function and the constraint in
Equation (12) are quadratic. This is a typical quadratic programming problem with quadratic
constraint and can be solved using the bisection method [19]. In the sequel, this method is noted as
“WLS-K”(weighted least square–known).

3.2. Target Localization in the Unknown Transmit Power Case

In most practical applications, the target transmit power is unknown. Therefore, the related P0 or
η in Equation (11) is unknown. Therefore, the method proposed in Section 3.1 cannot be used directly
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in this case. To cope with the difficulties caused by this additional unknown parameter, we developed
the following method.

By using the notations of λi, βi and η, from Equation (9), we have

‖x− si‖ ≈
η

βi +
α f ln 10

10γ η
(14)

and thus

‖x− si‖ ≈
10γ

α f ln 10 (βi +
α f ln 10

10γ η)− 10γ
α f ln 10 βi

βi +
α f ln 10

10γ η
. (15)

Furthermore, Equation (15) can be rewritten as

‖x− si‖ ≈
10γ

α f ln 10
−

10γ
α f ln 10 βi

βi +
α f ln 10

10γ η
. (16)

We divide βi from both the numerator and denominator of the second term on the right hand
side of Equation (16), yielding

‖x− si‖ ≈
10γ

α f ln 10
− 10γ

α f ln 10
· 1

1 +
α f ln 10

10γ · η
βi

. (17)

Let ν =
α f ln 10
10γβi

η, in which α f is related to the frequency, βi is related to the signal power, γ is
a constant, and η is an independent unknown parameter. We will verify that |ν| � 1 in most UWSN
environments. Figure 2 is the α f versus the frequency band 0–30 kHz, within which most acoustic
systems operate [20–22]. The figure shows that α f � 1. Figure 3 shows ν versus the transmit signal
power when α f takes three different values (in dB/m). The figure shows that |ν| � 1 in this case.
Therefore, when the absorption coefficient α f is sufficiently small, it is reasonable to approximate
Equation (17) by using the first-order Taylor expansion about ν = 0 as follows:

1

1 +
α f ln 10

10γ · η
βi

≈ 1−
α f ln 10

10γ
· η

βi
. (18)

Taking Equation (18) into Equation (17), we have the following simplified form:

‖x− si‖ ≈
η

βi
. (19)

As in the previous section, squaring both sides of Equation (19), we have

‖x− si‖2 ≈ η2

β2
i

. (20)

Thus, we can obtain the following WLS problem:

min
x,η

N

∑
i=1

(‖x− si‖2 − η2

β2
i
)TQ−1(‖x− si‖2 − η2

β2
i
). (21)
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Let ỹ =
[
xT , ‖x‖2, η, η2]T , and Equation (21) can be written in equivalent GTRS form as

min
ỹ
‖Q−

1
2 (Ãỹ− b̃)‖2

s.t. ỹT D̃ỹ + 2ṽT ỹ = 0 (22)

where D̃ = diag([1, 1, 0, 1, 0]), ṽ = [0, 0,− 1
2 , 0,− 1

2 ]
T , and

Ã =


−2sT

1 1 0 − 1
β2

1
...

...
...

...
−2sT

N 1 0 − 1
β2

N

 , b̃ =

−‖s1‖2

...
−‖sN‖2

 . (23)

Equation (22) is still non-convex, but both the objective function and the constraint are quadratic
and can therefore be solved by using the bisection method [19], as discussed in Section 3.1.
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Figure 2. Absorption coefficient, α f , versus frequency.
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In fact, we can further improve localization performance in the unknown transmit power case.
To do so, first, we solve Equation (22) to obtain the initial location estimate of target node x, x̂1, and then
use this estimate to search for the ML estimate of the transmit power P0, P̂0. Finally, with the estimated
P̂0, the problem is transformed into the localization in the known transmit power case. Hence, we form
the following three-step procedure:

(1) Solve Equation (22) to obtain an initial estimate of x, x̂1.

(2) Use x̂1 to search for the ML estimate of P0, P̂0 as

P̂0 =
∑N

i=1(Pi + 10γ log10
d̂i
d0

+ α f (d̂i − d0))

N
(24)

where d̂i = ‖x̂1 − si‖.

(3) Use P̂0 to calculate the η̂ = 10
P̂0

10γ , λ̂i = βi +
η̂α f ln 10

10γ and use this estimate to solve the WLS-K in
Equation (12), then obtain the new estimate of x, x̂.

We label this method as “WLS-U”(weighted least square–unknown).

4. Complexity Analysis

There is an inherent trade-off between estimation accuracy and implementation complexity
among all proposed methods. The method for the worst-case complexity of the mixed SD/SOCP [23] is
used to analyze the complexities of the proposed and other discussed methods in this paper. Table 1
shows that the computational complexity of the discussed methods mainly depend on the network
size, i.e., the number of anchor nodes.

Table 1. Summary of the considered methods.

Method Description Complexity

SDP (semi–definite programming) RSS-based SDP method in [12] O(N3.5)
WLS-K (weighted least square-known) The proposed WLS-K Equation (13) O(Kmax N)

WLS-U (weighted least square-unknown) The proposed WLS-U Equation (22) 2O(Kmax N)

From Table 1, we see that the proposed methods have less complexity.

5. Cramer–Rao Lower Bound Analysis

The Cramer–Rao lower bounds of the target localization in UWSN are derived in this section to
compare the performance of the proposed methods. Let B1 = (GTQ−1G)−1, and B2 = (HTQ−1H)−1,
where G = [g1, g2, · · · , gN ]

T , and H = [h1, h2, · · · , hN ]
T , with

gi = −
10γ

ln10
(x− si)

T

‖x− si‖2 − α f
(x− si)

T

‖x− si‖
, i = 1, . . . , N (25)

hi = [− 10γ

ln10
(x− si)

T

‖x− si‖2 − α f
(x− si)

T

‖x− si‖
, 1]T , i = 1, . . . , N. (26)

Thus, the Cramer-Rao lower bounds (CRLBs) of the target node location x in both known
and unknown transmit power cases, i.e., CRLB-K (Cramer–Rao lower bound-known) and CRLB-U
(Cramer–Rao lower bound-unknown) can respectively be written as

CRLB-K(x) = trace(B1) (27)

CRLB-U(x) = trace(B2[1:2, 1:2]). (28)



Appl. Sci. 2018, 8, 225 8 of 14

For detailed derivations, please refer to the Appendix.

6. Simulation Results and Analysis

In this section, computer simulation results are used to compare the performance of the proposed
methods with the SDP method (RSS-based approach) in [12] in underwater acoustic environments.
The propagation model, Equation (1), is used to generate the range measurements. The anchor nodes
and target node are assumed to be randomly located at a square region 100 m × 100 m in each Monte
carlo (Mc) run. Unless otherwise stated, the reference distance is set to be d0 = 1 m, the reference
power is P0 = −10 dBm, the maximum number of steps in the bisection procedure is Kmax = 30,
and the path-loss exponent is fixed as γ = 2, which corresponds to an UWA spherical spreading case.
Different values of α f are given in each figure. The noise correlation coefficient ρ = 0.8 for i 6= j.
Three thousand Monte carlo runs are used to compute the root mean square error (RMSE) defined

as RMSE=
√

∑Mc
i=1

‖x− x̂‖2

Mc , where x̂ is the estimated location in the i-th Monte Carlo run. The SDP
is solved using the MATLAB package CVX (Version 2.1, Stanford University, Stanford, CA, USA,
2014) [24], where the solver is SeDuMi (Version 1.02, Tilburg University, Tilburg, Netherlands, 1999) [25].
The corresponding ML problems are solved by the MATLAB function “Isqnonlin,” which adopts the
Levenberg–Marquardt algorithm.

Figure 4 compares the RMSE versus the standard derivation σ. It is observed that the RMSE
grows in nature as the standard derivation increases for all the methods. The proposed localization
method WLS-K in the case of known transmit power provides superior performance over the SDP
method, and approximates the CRLB-K even when the standard derivation increases. Furthermore,
to the best of the authors’ knowledge, few people has discussed localization methods based on a UWA
RSS propagation model in unknown transmit power cases in UWSN. Therefore, we compared the
performance of the proposed WLS-U with CRLB-U in this case. The results show that the proposed
method in this case also maintains an optimal performance.
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Figure 4. Root mean square error (RMSE) versus the σ when N = 10, α f = 0.001 dB/m ( f = 9 kHz),
and ρ = 0.8.

Figure 5 compares the RMSE versus the number N of the anchor nodes. As predicted, the RMSE
decreases in nature as N increases for both the WLS-K and WLS-U methods. The figure also shows
that adding more anchor nodes in the network can enhance the performance of the proposed methods
and outperform the SDP method for all chosen N. Moreover, the performance of WLS-K is slightly
better than WLS-U.
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Figure 5. RMSE versus the anchor node number N when σ = 4 dB, α f = 0.01 dB/m ( f = 34 kHz),
and ρ = 0.8.

Figure 6 depicts the cumulative density function (CDF) of localization comparison versus mean
error (ME) among the discussed methods. The figure shows that the proposed methods show
an improvement in performance compared with the SDP method.
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Figure 6. Cumulative density function (CDF) versus mean error (ME) when σ = 4 dB, α f = 0.1 dB/m
( f = 454 kHz), N = 10, and ρ = 0.8.

Figure 7 compares the RMSE versus the absorption coefficient α f . The figure shows that the
RMSE crease in with the increase in absorption coefficient for the discussed methods, and WLS-K
method shows a performance that is superior to the SDP method. Furthermore, the gap between
the WLS-K method and the WLS-U method is small. This is due to the fact that, in the proposed
WLS-U method, with some approximation, the unknown transmit power P0 can be estimated from
the GTRS optimization problem, Equation (22). In this case, the problem is transformed into the same
problem in the known transmitter power case. The results show that the proposed methods have
robust performance for α f from 0.001 to 0.1 dB/m.
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Figure 7. RMSE versus absorption coefficient α f when σ = 4 dB, N = 10, and ρ = 0.8.

Figure 8 illustrates the RMSE versus transmit power P0. The figure shows that the RMSE of the
discussed methods maintains a robust performance with the change in transmit power. Moreover,
like the WLS-K method, the proposed WLS-U method also shows a superior performance for P0 from
−60 to −10 dBm.
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Figure 8. RMSE versus transmit power P0 when σ = 4 dB, α f = 0.01 dB/m ( f = 34 kHz), N = 10, and ρ = 0.8.

7. Conclusions

In this paper, the target localization problems using RSS measurements in UWSN in both known
and unknown transmit power cases are investigated. Firstly, an optimization problem for estimating
target localization in both cases is presented. The derived objective function is then transformed into
a GTRS framework. Efficient implementation methods are provided in both known and unknown
target transmit power cases. The closed-form expressions of the CRLBs in both cases are derived.
Computer simulation results confirm the effectiveness of the proposed methods in underwater acoustic
environments.
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8. Further Research

This study was limited to a stationary environment where the anchor and target node positions
are unchanged during the observation period. In most UWSN environments, however, the positions
of the target or anchor nodes change. Therefore, the localization method for mobile nodes in UWSN
should be studied.
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Abbreviations

The following abbreviations are used in this paper:

UWSN Underwater Acoustic Wireless Sensor Network
UWA Underwater Acoustic
RSS Received Signal Strength
ToA Time-of-Arrival
TDoA Time-Different-of-Arrival
AoA Angle-of-Arrival
SDP Semi-Definite Programming
PDF Probability Density Function
ML Maximum Likelihood
WLS Weighted Least Square
WLS-K Weighted Least Square-Known
WLS-U Weighted Least Square-Unknown
GTRS Generalized Trust Region Subproblem
CRLBs Cramer–Rao Lower Bounds
CRLB Cramer–Rao Lower Bound
CRLB-K Cramer–Rao Lower Bound-Known
CRLB-U Cramer–Rao Lower Bound-Unknown
RMSE Root Mean Square Error
Mc Monte Carlo
CDF Cumulative Density Function
ME Mean Error

Appendix A. CRLBs Deduction

Appendix A.1. CRLB Deduction in the Known Target Transmit Power Case

In the known target transmit power case, according to the observation vectors P =

[P1, P2, · · · , PN]
T(P ∈ RN) in Equation (1), the condition PDF in the given x is

f (P|x) = 1

(2π)
N
2

1

(|Q|) 1
2

exp
{
−1

2
(
P− P̂(x)

)T Q−1 (P− P̂(x)
)}

(A1)

where P̂(x) = [P̂1(x), · · · , P̂N(x)]T, and P̂i(x) = P0 − 10γ log10
‖x−si‖

d0
− α f (‖x− si‖ − d0), i = 1, · · · , N.

Thus, the log-likelihood function w.r.t the variable x has the following form

ln f (P|x) = −N
2

ln(2π)− 1
2

ln(|Q|)− 1
2
(
P− P̂(x)

)T Q−1 (P− P̂(x)
)

. (A2)
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For any unbiased estimator, i.e., E(x̂) = x, the covariance matrix cov(x̂) is lower bound by
cov(x̂) ≥ J−1, where J is the Fisher information matrix (FIM). The CRLB is the inverse of FIM, J−1,
which can be derived from Equation (A2) as follows:

∂ ln f (P|x)
∂x

=
(
P− P̂(x)

)T Q−1 ∂P̂(x)
∂x

. (A3)

Therefore,

∂2 ln f (P|x)
∂x∂xT = −

[
∂P̂(x)

∂x

]T

Q−1 ∂P̂(x)
∂x

+
(
P− P̂(x)

)T Q−1 ∂P̂2(x)
∂x∂xT . (A4)

Based on the assumption that ni is a zero mean Gaussian random variable with the covariance
matrix Q, and taking the negative expectation on both sides of Equation (A4), we have

−E
(

∂2 ln f (P|x)
∂x∂xT

)
=

[
∂P̂(x)

∂x

]T

Q−1 ∂P̂(x)
∂x

= GTQ−1G (A5)

where G = ∂P̂(x)
∂x = [g1, g2, · · · , gN ]

T with

gi =
∂P̂i(x)

∂x
= − 10γ

ln 10
(x− si)

T

‖x− si‖2 − α f
(x− si)

T

‖x− si‖
. (A6)

Finally, we derive the closed-form expression of the CRLB in the known target transmit power
case as

CRLB-K = trace(B1) (A7)

where B1 = (GTQ−1G)−1.

Appendix A.2. CRLB Deduction in the Unknown Target Transmit Power Case

According to the observation vectors P = [P1, P2, · · · , PN ]
T(P ∈ RN) given in Equation (1),

the condition PDF of z = [xT ; P0]
T(z ∈ R3) can be expressed as

f (P|z) = 1

(2π)
N
2

1

(|Q|) 1
2

exp
{
−1

2
(
P− P̂(z)

)T Q−1 (P− P̂(z)
)}

(A8)

where P̂(z) = [P̂1(z), f2(z), · · · , P̂N(z)]T, and P̂i(z) = ιTz−10γ log10
‖FTz−si‖

d0
−α f (‖FTz− si‖− d0), i =

1, · · · , N, ι = [02×1; 1], F = [I2; 01×2].
Similar as in Equation (A5), we have

−E
(

∂2 ln f (P|z)
∂z∂zT

)
=

[
∂P̂(z)

∂z

]T

Q−1 ∂P̂(z)
∂z

= HTQ−1H (A9)

where H = ∂P̂(z)
∂z = [h1, h2, · · · , hN ]

T with

hi =

[
∂P̂i(z)

∂x
,

∂P̂i(z)
∂P0

]T

= [− 10γ

ln 10
(x− si)

T

‖x− si‖2 − α f
(x− si)

T

‖x− si‖
, 1]T . (A10)
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Finally, we provide the closed-form expression of the CRLB in the unknown target transmit power
case as

CRLB-U = trace(B2[1:2, 1:2]) (A11)

where B2 = (HTQ−1H)−1.
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