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Abstract: Collective modes of doped two-dimensional crystalline materials, namely graphene, MoS2

and phosphorene, both monolayer and bilayer structures, are explored using the density functional
theory simulations together with the random phase approximation. The many-body dielectric
functions of the materials are calculated using an ab initio based model involving material-realistic
physical properties. Having calculated the electron energy-loss, we calculate the collective modes of
each material considering the in-phase and out-of-phase modes for bilayer structures. Furthermore,
owing to many band structures and intreband transitions, we also find high-energy excitations in the
systems. We explain that the material-specific dielectric function considering the polarizability of
the crystalline material such as MoS2 are needed to obtain realistic plasmon dispersions. For each
material studied here, we find different collective modes and describe their physical origins.

Keywords: collective modes; density functional theory; random phase approximation; dielectric
function

1. Introduction

In a groundbreaking theoretical concept in the early 1950s, Bohm and Pines [1] proved that
excitations in long-range Coulomb interacting systems can be decomposed into two separate
sectors, namely the high-energy collective excitations, so-called longitudinal bulk plasmons, and
the low-energy single-electron excitations. Well-defined plasmon oscillations exist if the momentum of
carriers in the system is much smaller than the Thomas–Fermi wavevector. Moreover, the plasmon
branch enters the single-electron excitation region where at this point, the collective energy of the
plasmon dissipates into single electron-hole excitations. This process is known as the Landau
damping [2]. The Bohm–Pines result is consistent with the classical plasma picture and was the
first demonstration of the idea of the renormalization group theory in physics.

Plasmonics is based on interaction processes between electromagnetic radiation and itinerant
charges (electrons or holes) at metallic or doped semiconductor interfaces or in small metallic
nanostructures. Although it is well known that there are two main ingredients of plasmonics,
namely surface plasmon polaritons and localized surface plasmons, it is often far from trivial to
appreciate the interlinked nature of many of the phenomena and applications of this field. This is
compounded by the fact that throughout the 20th Century, surface plasmon polaritons have been
rediscovered in a variety of different contexts. Accordingly, the science of plasmonics is dealing with
generation, manipulation and detection of surface plasmon polaritons.

Surface plasmon-polaritons are electromagnetic surface waves coupled to plasmon modes of
the itinerant charges (electrons or holes), propagating along the interface between a dielectric and
a conductor. Therefore, surface plasmon-polaritons are bound modes whose fields decay exponentially
away from the interface, and therefore, plasmonics opened the possibility for manipulating light and
controlling light-matter interactions at scales below the diffraction limit.
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Propagation of electromagnetic waves at the interfaces of plasmas with other dielectrics depends
strongly on the interface geometry. A surface plasmon was predicted by Ritchie in 1957 [3].
The plasmon mode shows dispersions of the various plasmon modes at the metal-vacuum surface.
The two dispersion branches of the surface plasmon, the dispersion-less branch of the longitudinal
bulk plasmon (ωp) and the dispersion of the so-called multipole surface plasmon, can be found along
with a linear dispersion for an electromagnetic wave, ω = ck where c is the speed of light in vacuum,
parallel to its surface stemming from the coupling of a photon and a plasmon at the interface. The
coupling between the light and the longitudinal bulk plasmon leads to a splitting of the (ω − k)
dispersion curves for the excitations, which form a photon dispersion and the bulk plasma mode as
the joint of the photon mode and surface plasmon mode. For small wave vectors, dispersion of the
surface plasmon mode asymptotically approaches the light-line. For the large wavevector, in the local
approximation, this surface plasmon approaches asymptotically a constant frequency, which for metals
is ω = ωp/

√
2.

Let us focus on the interaction of metals with electromagnetic fields using a classical approach
based on Maxwell’s equations. Small sizes of metallic nanostructures on the order of a few nanometers
could be qualitatively described by semiclassical mechanics. The reason for that is the high density of
free carriers results in minute spacings of the electron energy levels compared to thermal excitations
of energy kBT at room temperature. Moreover, the optical response of metals clearly depends on
the frequency, and therefore, we have to take into account the non-locality in time and space by
generalizing the linear relationships to:

D(r, t) = ε0

∫
dt′dr′ε(r− r′, t− t′)E(r′, t′)

J(r, t) =
∫

dt′dr′σ(r− r′, t− t′)E(r′, t′) (1)

It should be noticed that we have implicitly assumed that all length scales are significantly larger
than the lattice spacing of the material, i.e., the impulse response functions do not depend on absolute
spatial and temporal coordinates, but only on their differences. A fundamental relationship between
the dielectric function and the conductivity is given by:

ε(k, ω) = 1 +
iσ(k, ω)

ε0ω
(2)

The general form of the dielectric response ε(k, ω), in the interaction between the light and metals,
can be simplified to the limit of a spatially local response through ε(k, ω) = ε(ω). The simplification is
valid as long as the wavelength in the material is significantly longer than all characteristic dimensions
such as the size of the unit cell or the mean free path of the electrons. In general, ε(k, ω) is a complex
valued function, and the imaginary part of the dielectric function determines the amount of absorption
inside the medium. Most importantly, including quantum interlayer contributions leads to increasing
the imaginary part of the dielectric function, and it turns out that the effects of quantum mechanics are
very vital in systems in which interlayer transitions play an important role.

It is basically known that the traveling-wave solutions of Maxwell’s equations in the absence of
external stimuli is given by:

k2E− k(k · E) = ε(k, ω)
ω2

c2 E (3)

Two cases, depending on the polarization direction of the electric field vector, need to be
distinguished. For transverse waves, where k · E = 0, yielding the generic dispersion relation and
more intriguingly for longitudinal waves, where k(k · E)− k2E = 0, it requires the particular condition
where ε(k, ω) = 0, signifying that longitudinal collective oscillations can only occur at frequencies
corresponding to zeros of the dielectric function.
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Plasmon modes in doped graphene, which are obtained from the condition in which ε(k, ω) = 0,
show many special properties, and some of them are listed here.

(a) Their momentum is larger than the light momentum with the same energy [4];
(b) They can be actively tuned through chemical doping or electrical gating in real time (tuning

charge carriers) [5,6];
(c) They illustrate higher levels of confinement (λSPP/λlight ' 0.025 in the normal case) [4];
(d) They have a longer lifetime and propagating lengths (τ ' 500 fs) [7];
(e) They occur in the terahertz and mid-infrared modes, which are absent in normal metals [4];
(f) They can be coupled with quasiparticles (for instance, generating plasmarons) [8];
(g) They are used in the quasi-zero dimension as emitters [9,10];
(h) They show very particular properties in hybrid structures (combining graphene with other 2D

crystalline materials) [11,12];

(k) At long wavelength limits, they behave like
√

n1/2q, which is proportional to the charge career

as n1/4 [4].

Those properties of plasmon modes in doped graphene have been measured by using the
near-field optical microscopic technique with nanometer resolution. Based on this technique, a
scanning near-field optical microscope with the aperture radius much smaller than the wavelength
of incident light can be used. The near-field evanescent components of light coming out from the
microscope provide the required in-plane momenta. Two independent research groups performed
experiments on graphene plasmonics using a similar concept [5,6] where they detected graphene
surface plasmon modes. Moreover, monolayer graphene supports transverse-electric modes, which
are absent in normal metals. The reason that we have this mode in doped graphene lies in the fact
that the imaginary part of the conductivity is negative due to the interband transitions. Moreover, the
transverse-electric modes’ dispersion does not depart much from the light line, which means poor
confinement, and thus, its effect is negligible.

We briefly look at another physical concept, which is the energy of the electro-magnetic field
inside dispersive media, since the dielectric function is a complex-valued function. Since the amount
of field localization is often quantified in terms of the electromagnetic energy distribution, a careful
consideration of the effects of dispersion is necessary. In metals, the dielectric function is complex and
frequency-dependent owing to the dispersion. For a field consisting of monochromatic components,
Landau and Lifshitz have shown that the conservation law can be well described by an effective
electric energy density ueff, defined as [13]:

ueff =
ε0

4
(ε1 +

2ωε2

γ
)|E|2 (4)

where γ = 1/τ in which the relaxation time of the free electron gas is τ and the dielectric function is
given by ε = ε1 + iε2.

It is worth mentioning that the real part of the dielectric function or the imaginary part of the
conductivity describes the reflection of light (an elastic process); however, the imaginary part of
the dielectric function describes the absorption of light (inelastic process). Basically, plasmons are
observed when the real part of the dielectric function is negative (metallic behavior). In order to
give some numbers, the plasmon modes occur at ultraviolet frequencies for aluminum and other
materials, at ultraviolet frequencies for zero- and one-dimensional carbon structures, at visible-near
infrared frequencies for noble materials (Ag, Cu, Au), at terahertz and mid-infrared frequencies for
two-dimensional (2D) carbon structures (graphene) and at amplitude modulation radio frequencies
for the ionosphere.

With these general properties, let us now discuss in more detail the organization of the article.
The scope of this paper is collective modes in pristine doped two-dimensional crystalline systems,
where the real part of their dielectric functions is basically negative, with the emphasis on fundamental
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physics from theoretical and experimental viewpoints. Details of the band structure properties are
covered in some stand stemming from the density functional theory. Phonon scattering, the effect
of impurity or strain and corrugation and optical conductivity in those materials are not covered.
Detailed reviews of the plasmon modes in general are available in [14,15] and in particular for graphene
in [16–20]. Our ultimate goal is to facilitate the reader’s independent study of original papers on the
plasmonics of crystalline two-dimensional materials using the density functional theory.

In this article, we are using a recently-proposed theoretical formulation based on ab initio
density functional theory (DFT) together with the random-phase approximation (RPA) to investigate
the electronic excitation spectrum of doped graphene, MoS2 and phosphorene in monolayer and
bilayer structures. To commence, the electronic ground-state of the periodically-repeated slab of each
material is first determined, and then a Dyson-like equation is solved within the RPA to calculate
the density-density response function. Having calculated the density-density response function for
each structure, we therefore can calculate the macroscopic dielectric function whose imaginary part
gives the optical absorption spectrum, and the collective modes are established by the zero in the real
part of the macroscopic dielectric function. The theoretical dielectric function is related to the electron
energy-loss function, and it provides useful information about the optical properties of the system.
Here, we are just interested in the low-energy excitations for investigating the collective modes.

2. Theoretical Framework

2.1. Density Functional Theory

Density functional theory (DFT) has long been the pillar of ground-state energy and density
profile calculations in condensed matter science, widely used both by physicists, chemists and material
researchers to study theoretically various properties of many-body systems, and in particular, it is
an approach for the description of ground-state properties of metals, semiconductors and insulators.
The success of density functional theory not only encompasses standard bulk materials, but also
complex materials, such as proteins and nanostructures [21,22].

In 1965, Kohn and Sham proposed a practical way to implement DFT and made a significant
breakthrough when they showed that the problem of many weakly-interacting electrons in an external
potential can be mapped exactly to a set of non-interacting electrons in an effective external potential.
The effective potential in this non-interacting particle system (the Kohn–Sham system) can be shown
to be completely determined by the electron density of the interacting system and is for this reason
called a density functional theory [23].

The Kohn–Sham (KS) equation looks like a simple one-particle Schrödinger equation, and it can
be described by the following equation:

[− h̄2∇2

2m
+ Vext(r) + VHartree + Vxc(r)]Φj(r) = εjΦj(r)

where Φj(r) is KS wave functions and Vext is the external potential acting on the interacting
system. Furthermore, VHartree is the Hartree part of the Coulomb electron-electron interaction. The
exchange-correlation potential, Vxc(r), which stems from the many-body effects, describes the effects
of the Pauli principle and the Coulomb potential beyond a pure classical electrostatic interaction of
the electrons. Possessing the exact exchange-correlation potential means that we solve the weakly
many-body problem exactly. A common approximation is the so-called local density approximation
(LDA), which locally substitutes the exchange-correlation energy density of an inhomogeneous system
by that of an electron gas evaluated at the local density.

Computational Method

There are several DFT packages that are available in the world, and each one mainly uses different
basis sets. PWscf, a core component of the Quantum ESPRESSO distribution [24], performs many
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different kinds of self-consistent calculations of electronic structure properties such as ground-state
energy and one-electron Kohn–Sham orbitals; within density functional theory, using a plane-wave
basis set and pseudopotentials.

The expression of the Kohn–Sham orbitals in the plane waves basis has the form:

Φnk(r) =
1
Ω ∑

G
Cnk(G)ei(k+G)·r

where Ω represents the crystal volume, G is the reciprocal lattice vectors and k is the quasi-wavevectors
of the first Brillouin zone (BZ). The coefficients Cnk(G) are obtained by solving the LDA-KS equations
self-consistently.

Since the core electrons of an atom are highly localized, it would be difficult to implement them
using the plane waves basis sets. Actually, a very large number of plane waves is required to expand
their wave functions. Furthermore, the contribution of the core electrons to bonding compared to
those of the valence electrons is usually negligible. Therefore, it is practically desirable to replace
the atomic potential owing to the core electrons with a pseudopotential that has the same effect on
the valence electrons [25]. There are mainly two kinds of pseudopotentials, norm-conserving soft
pseudopotentials [26] and Vanderbilt ultra-soft pseudopotentials [27].

The first part of our calculations includes determining the KS ground-state of pristine 2D
crystalline materials and the corresponding wave functions and energies. We carry out the
first-principles simulations based on the DFT simulations implemented in the QUANTUM ESPRESSO
code. The calculation of the density-density response functions (χ(q, ω)) is performed employing our
own code. The computation of this quantity will be discussed in the next section.

In this study, the electronic structures of 2D materials are computed using the Perdew–Zunger
local-density approximation [28], unless otherwise stated. Furthermore, we use this throughout the
norm-conserving pseudopotentials and the plane wave basis. The energy convergence criteria for
electronic and ionic iterations are set to be 10−5 eV and 10−4 eV, respectively.

Careful testing of the effect of the cutoff energy on the total energy can be implemented to
determine a suitable cutoff energy. The cutoff energy is required to obtain a particular convergence
precision. Well-converged results are found with a kinetic energy cutoff equal to 50 Ry.

The k-point grid is another calculated parameter that must be considered, and it is used to
approximate integrals of some property, e.g., the electron density over the entire unit cell. Notice that
the integration is performed in reciprocal space (in the first Brillouin zone) for convenience and
efficiency. We thus use a Monkhorst–Pack [29] k-point grid, which is essentially a uniformly-spaced
grid in the Brillouin zone. Geometry optimization and ground-state calculations are carried out on the
irreducible part of the first BZ, using a Γ-centered and unshifted Monkhorst–Pack grid of 60× 60× 1
k-points for graphene and MoS2 and 30× 40× 1 k-points for phosphorene. The converged electron
density is then used to calculate the KS electronic structure, i.e., the single-particle energies and orbitals
on a denser k-point mesh. We perform calculations to check the convergence of the plasmon spectra
with respect to the k-point sampling to obtain reliable spectra, and these are listed in Table 1.

The equilibrium distance between two layers in bilayer materials is also determined by varying
the interlayer distance, while keeping the in-plane lattice constant fixed at the monolayer value. In all
bilayer systems, studied in this paper, the van der Waals interaction is included in order to obtain
accurate results.

In the 2D case, we consider a system that is infinite and periodic only in the basal (x− y) plane,
but confined along the third (z) direction. A so-called supercell approach is commonly used to treat
2D systems, in which the system is modeled by repeated 2D slabs, separated by a large vacuum region
along the z direction. We use a vacuum region of at least 20 Å to avoid spurious interaction between
the periodic images. We have discovered that increasing these separations would not affect the band
structure of the system. The structural parameters, band gap and sampling of the reciprocal space BZ
to calculate the density-density response function are listed in Table 1.
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Table 1. The lattice constants (a, b) and band gap (in eV) of different 2D crystalline materials. Sampling
of the reciprocal space Brillouin zone (BZ) is done by a Monkhorst–Pack (MP) grid for the considered
2D materials.

2D Structures Lattice a (Å) b (Å)
Gap (eV) MP

Monolayer Bilayer Monolayer Bilayer

graphene Hexagonal 2.46 − 0.00 0.00 101× 101× 1 201× 201× 1
MoS2 Hexagonal 3.15 − 1.80 1.05 101× 101× 1 151× 151× 1

phosphorene Rectangular 4.62 3.30 0.98 0.63 60× 80× 1 120× 160× 1

2.2. Density-Density Response Function

A central quantity in the theoretical formulation of the many-body effects in electronic systems is
the non-interacting dynamical polarizability function [30] χ(0)(q, ω) for a finite chemical potential, µ.
Here, we would like to emphasize that we have calculated the non-interacting polarization function
for doped graphene, MoS2 and phosphorene, both monolayer and bilayer structures based on DFT
simulations.

The expression of the non-interacting density-density response function of a three-dimensional
periodic electrons in the reciprocal space is:

χ0
GG′(q, ω) =

2
Ω ∑

k,ν,ν′

fν(k)− fν′(k + q)
h̄ω + εn(k)− εm(k + q) + iη

ρ
kq
νν′(G)ρ

kq
νν′(G

′)∗ (5)

which is obtained from the Adler–Wiser periodic system [31]. Here, εn(k) and εm(k + q) denote
the empty and filled bands and fn(k) = θ(EF − εn(k)) is the Fermi-Dirac distribution of the charge
carrier with energy εn(k) at temperature zero. Furthermore, G and G′ are the three-dimensional (3D)
reciprocal lattice vectors, and ω is the frequency.

In this theory, the linear combination of plane-waves is used to determine the KS single-particle
orbitals of the DFT. The KS wave functions are normalized to unity in the crystal volume Ω. The sum
is over a special set of k vectors and energy bands (ν and ν′). In Table 1, the sampling k point in the BZ
is indicated for different 2D materials in order to fully converge the results. The factor of two accounts
for the spin degeneracy, and η is a small (positive) lifetime broadening parameter.

The matrix elements of Equation (5) have the form:

ρ
kq
νν′(G) =< Φνk|e−i(q+G)·r|Φν′k+q >Ω (6)

where q is the momentum transfer vector parallel to the x− y plane. Wave functions Φnk(r) are the
KS electron wave functions and when expanded in the plane-wave basis have the form:

Φnk(r) =
1
Ω ∑

G
Cnk(G)ei(k+G)·r (7)

where the coefficients Cnk(G) are obtained by solving the LDA-KS equations self-consistently.
The exact interacting density-response function can be obtained in the framework of the DFT,

as follows [32]:

χGG′ = χ0
GG′ + ∑

G1G2

χ0
GG1

νG1G2 χG2G′ (8)

where νGG′ represents the Fourier coefficients of an effective electron-electron interaction. In the
electron liquid, the bare Coulomb interaction is given by ν0

GG′ = 4πe2δGG′/ε|q + G|2 where ε is
the average dielectric constant of the environment. In all our numerical results, we consider ε = 1.
The RPA procedure, an approximation valid in the high-density limit, takes into account electron
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interaction only to the extent required to produce the screening field, and thus, the response to
the screened field is measured by χ0. The RPA follows from a microscopic approach whose main
assumption is that the electrons respond not to the bare Coulomb potential, but to an effective
potential resulting from the dynamical rearrangement of charges in response to the Coulomb potential.
The long-range behavior of the Coulomb interaction allows non-negligible interactions between
repeated planar arrays even at a large distance. This unphysical phenomenon can be removed by
replacing νGG′ with the truncated Fourier integral over the cutoff plane axis (z) [33,34], and thus,
we have:

ν0
GG′ =

2πe2δgg′

|q + g|

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′ei(Gzz−G′zz′)−|q+g||z+z′ | (9)

where the g and Gz denote the in-plane and out-plane components of G, and we assume that q is never
zero owing to a uniform background of positive charge.

In the framework of the linear response theory, the inelastic cross-section corresponding to a
process where the external perturbation creates an excitation of energy h̄ω and wavevector q + G is
related to the diagonal elements of the dielectric function in the level of the RPA:

εGG′ = δGG′ −∑
G1

ν0
GG1

χ0
G1G′ (10)

and the plasmon modes are established by the zero in the real part of the macroscopic dielectric
function given by:

ε(q, ω) =
1

(ε−1)GG′
|G=G′=0 (11)

as long as there is no damping. The electron-energy loss (EEL) is proportional to the imaginary part of
the inverse dielectric function, which is given by:

EEEL(q, ω) = −=m[1/ε(q, ω)] (12)

It is worth mentioning that the nonlocal field effects are included in EEL through the off-diagonal
elements of the general χGG′ [35] function. In addition, one may use the non-local dynamical
conductivity to describe the electronic processes and light-matter interactions. This can be simply
achieved by writing the longitudinal conductivity in terms of the density-density response function
through the relation:

σ(q, ω) =
ie2ω

q2 χ(q, ω) (13)

We note that Equations (11)–(13) are the fundamental physics describing the optoelectronic
interactions in 2D crystalline materials.

3. Result and Discussion

3.1. Monolayer Graphene

Graphene is a 2D layer of carbon atoms arranged in a honeycomb lattice with Dirac cones, i.e.,
massless Dirac fermion at K point, where the π and π∗ bands show a linear energy dispersion [36–38].
In Figure 1, we illustrate the atomic structure and also the electronic energy band structure of graphene
based on our DFT simulations.

Research on collective electronic excitations (plasmons) in graphene has attracted enormous
interest both from theoretical and experimental viewpoints [4,7,39–46]. Three kinds of the collective



Appl. Sci. 2018, 8, 238 8 of 30

excitations of electrons can be considered in graphene that unroll on a wide range of energy. The first
kind is attributed to finite electron doping, originating from the intraband transitions of Dirac fermions
in the vicinity of the K and K′ points of the BZ at low energies (0–2 eV), and it can be regarded as
intraband plasmon modes. The second kind of plasmons in the monolayer graphene is the intrinsic
π plasmons, arising from the collective excitations of electrons from the π to π∗ bands at energies
of about 4–15 eV. At higher energies, σ bands start to contribute, and the mixture of the π → π∗

and σ transitions leads to another kind of plasmon excitation of graphene, usually denoted as π + σ

plasmons. It is worthwhile mentioning here that the calculation of the π + σ plasmon would require
including high-lying bands; hence, the ab initio approach would be the more appropriate way to
capture them [47].

KM

Γ

-10

-5

0

5

10

h_
ω

 (
e
V
)

ΓΓ M K

(a)

(b)

(c)

Figure 1. (a,b) Top and side view of monolayer graphene. (c) The band structure of graphene along the
high symmetry Γ−M− K − Γ directions and the associated Brillouin zone. The zero in the energy
axis is set at the Fermi level as shown by the solid line.

The plasmon spectrum of a pristine single-layer graphene was investigated in [48] using ab initio
calculations. They observed the π and π + σ plasmon modes in freestanding single sheets at
4.7 and 14.6 eV, which were red shifted in comparison to the corresponding modes in the bulk
graphite.

Our attention is now focused on the intraband and π plasmons of the spectrum (below 10 eV),
and it appears to be owed to the intraband and interband transitions, respectively, as mentioned above.

In order to better perceive the electronic excitations of monolayer graphene, we calculate the
non-interacting density-density response function, χ0(q, ω). The non-interacting density-density
response function can be decomposed into two parts where the first part can be considered by only
including transitions within a band and the second part contains all transitions between separate
bands. An example of the non-interacting density-density response function is shown in Figure 2,
for q = 0.076 Å−1 and EF = 0.8 eV (the Fermi level is shifted upward by 0.8 eV above the Dirac
cone, and this corresponds to an electron doping level of 7.4× 1013 cm−2). The limq→0 χ0(q, ω = 0)
is finite and equal to the density of states at the Fermi energy, N(0) a measure of the number of excited
states. This figure shows that intraband transitions contribute more at low-energy, while the interband
transitions dominate at high-energy.
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In Figure 3, the EEL functions for various momentum transfers and the plasmon spectrum of
electron doped monolayer graphene (n = 7.4× 1013 cm−2) are computed using the linear response
DFT-RPA approach. The effect of doping on the band structures of 2D materials is ignorable [49]. In the
long-wavelength limit, plasmons can be viewed as a center-of-mass oscillation of the electron gas as
a whole. The physical origin of plasmons is described as follows. When electrons in free space move
to screen a charge inhomogeneity, they tend to overshoot the mark. They are then pulled back toward
the charge disturbance and overshoot again, setting up a weakly-damped oscillation. The restoring
force responsible for the oscillation is the average self-consistent field created by all the electrons.
As expected, the dispersion behavior of the plasmon mode at the low-energies shows a standard

√
q

dispersion predicted in the 2D electron gas system. To be more precise, the plasmon mode at the long
wavelength limit in graphene is given by:

ωp(q) =

√
2D0

ε
q

[
1 +

12− N2
f α2

ee − 8(1− κ0/κ)

16
q

qTF
+ ...

]
(14)

where D0 = vFkFe2/h̄ is the Drude weight in graphene. For ordinary parabolic-band fermions
with mass mb, the Drude weight is given by D0 = πne2/mb. Graphene’s fine-structure constant is
αee = e2/h̄vFε; NF = 4 is the flavor number in graphene; the Thomas–Fermi screening wave number
is defined by qTF = NFαeekF; and the electron compressibility of interacting and non-interacting
graphene is κ and κ0, respectively [7] . The second term in the square brackets refers to the quantum
non-local effects. Notice that in the classical picture, the long-wavelength plasmon mode behaves like

ωp(q) =
√

2πne2

εm q, which is totally different from the one we have in graphene.

0 2 4 6 8 10
h
_
ω (eV)

-1

0

1

2

χ0 (q
,ω

)

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

Interband

Intraband

N
(0

)

Figure 2. The real (solid line) and imaginary (dashed line) parts of the non-interacting density response
function of monolayer graphene in units of the Fermi-level density of states as a function of h̄ω for
q = 0.076 Å−1.

Our numerical results show that the general behavior of the plasmonic dispersion agrees with the
results from [47,49]. The dispersion relation of the π plasmon is presented, and it has a quasi-linear
behavior, in good agreement with the earlier theoretical study [47]. In this figure, the electron-hole
continuum is indicated with a black line, and it can be obtained at any specific momentum transfer q
by the difference between system energy at kF and kF + q.

We would like to compare the plasmon mode obtained here with that calculated within
a semiclassical approach. We suppose that the graphene sheet, along the x and y directions, is
located between two semi-infinite dielectric media with the same dielectric constant, ε, and consider
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a solution of Maxwell’s equations for a transverse magnetic wave. By using the proper boundary
conditions, we arrive at [19]:

2
ε√

q2 −ω2ε/c2
= −i

σ(ω)

ωε0
(15)

which describes the plasmon mode, ω(q), of graphene with conductivity σ(ω). It should be noted that
this expression implements every 2D crystalline material with its σ(ω). This equation has solutions,
if the imaginary part of the conductivity is positive and its real part vanishes. The conductivity of
graphene from the terahertz to mid-infrared regime is dominated by a Drude term and given by:

σ(ω) =
e2

πh̄
iEF

h̄ω
(16)

It turns out that at the long wavelength limit, the plasmon mode is given by:

h̄ωp =

√
2e2

ε0
EFq (17)

which is the same expression that we have in the quantum many-body framework. We also include
the semiclassical plasmon mode in Figure 3b, and our numerical results show that they are the same at
long wavelength regimes; however, at large momenta, the semiclassical plasmon mode deviates from
that calculated by the many-body approach, especially at lower electron density.
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Figure 3. (a) The electron-energy loss (EEL) function for different momentum transfers and (b) plasmon
dispersions of electron-doped graphene along the Γ−M direction. In this case, the Fermi level is shifted
upward by 0.8 eV above the Dirac cone, and this corresponds to a doping level of 7.4× 1013 cm−2.
The plasmon mode based on the semiclassical approach given by Equation (15) is plotted. The boundary
of the electron-hole continuum is indicated with a black line.
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3.2. Bilayer Graphene

Bilayer graphene displaces the simplest possible system where graphene sheets are brought
together to create a new nanostructure whose physical properties show remarkable similarities and
differences as compared to monolayer graphene. Bilayer graphene, like single-layer graphene, is a
zero-gap semimetal that consists of two coupled monolayers of carbon atoms stacked as in natural
graphite (AB stacking or Bernal-stacked form where half of the atoms lie directly over the center of a
hexagon in the lower graphene sheet, and half of the atoms lie over an atom) yielding a unit cell of
four atoms (Figure 4) [50–52].
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d

Figure 4. (a,b) Top and side view of the atomic structure of bilayer graphene (BLG). (c) The band
structure of BLG along the high symmetry Γ− K−M− Γ directions in reciprocal space. The optimized
interplane distance (d) is calculated to be 3.45 Å.

We calculate the band structure of bilayer graphene through DFT simulations, and this is
illustrated in Figure 4. Bilayer graphene has four electronic bands (a pair of conduction bands and a
pair of valence bands) with pz symmetry, namely: π1, π2, π∗1 and π∗2 . The dispersion of these bands is
parabolic near the K point, and their occupation depends on the doping values. In undoped bilayer
graphene, the π1 and π2 bands are fully occupied, while the π∗1 and π∗2 bands are fully unoccupied.
Furthermore, an overlap of the π∗1 and π∗2 bands along K−M leads to an anisotropic dispersion at
energies from 1–1.5 eV.

Research on the collective electronic excitations (plasmons) in freestanding multilayer
graphene [53–55] shows that , similar to single-layer graphene and graphite, the spectra of bilayer
graphene feature two characteristic high-energy plasmon peaks, i.e., the π plasmon below 10 eV
and the π + σ plasmon above 15 eV, but these plasmons are red shifted with respect to graphite.
In the low-energy range, a conventional 2D plasmon was predicted to exist originating from the
intraband transitions.

It is noteworthy to mention that, as reported in [56], when the two layers are near each other
(separated by a distance d in the z direction with the 2D layers in the x− y plane), the 2D plasmons are
coupled by the interlayer Coulomb interaction leading to the formation of in-phase and out-of-phase
interlayer density fluctuation modes: an in-phase optical plasmon mode, where the densities in the
two layers fluctuate in phase with the usual 2D plasma dispersion (ω ∼ √q) and an out-of-phase
acoustic plasmon mode, where the densities in the two layers fluctuate out-of-phase with a linear
wavelength dispersion (ω ∼ q).

In a recent study, the plasmon modes of undoped (intrinsic) and doped (extrinsic) bilayer graphene
were calculated and analyzed carefully based on density-functional theory in an energy range from
a few meV to∼30 eV, along the inequivalent Γ−K and Γ−M directions [33]. In that paper, they found
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an acoustic plasmon mode for momenta along the Γ−M direction for a positive shift in the Fermi
level of 1 eV. Although they have claimed this acoustic plasmon is an undamped collective excitation,
an overdamped acoustic plasmon was predicted by Das Sarma et al. [56].

To investigate the origin of different plasmon modes in bilayer graphene, we calculate the
interband and intraband parts of the non-interacting response function of bilayer graphene, and
we present our results in Figure 5 for only q = 0.084 Å−1. In this case, the Fermi energy is shifted
upward by 0.7 eV towards the bottom of the conduction bands in bilayer graphene, corresponding
to n = 9.5× 1013 cm−2. Our numerical results show that the non-interacting response function of
bilayer graphene is similar to its monolayer, but there is an extra contribution of the interband part at
low-energies that is obviously absent in monolayer graphene.
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Figure 5. The inter- and intra-band terms of the non-interacting response function (χ0(q, ω)) of doped
bilayer graphene in units of the Fermi-level density of states as a function of h̄ω for q = 0.084 Å−1

along the Γ−M direction. The real and imaginary parts of this function are indicated by solid and
dashed lines, respectively.

In Figure 6, we illustrate the loss spectra for various amounts of q and also electronic excitations
for bilayer graphene along the Γ − M direction for n = 9.5× 1013 cm−2. The loss spectra involves
both intraband and interband excitations at energies below 10 eV, but we neglect to show π plasmon
in Figure 6b.
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Figure 6. (a) The loss spectra for different values of q and (b) the plasmon dispersion of doped
bilayer graphene with EF = 0.7 eV corresponding to n = 9.5× 1013 cm−2 along the Γ−M direction.
The diamond symbols refer to the acoustic plasmon mode.

It is clear that the plasmon dispersion of bilayer graphene follows a general
√

q dispersion at
low energies, which is also seen in monolayer graphene. These results are in reasonable agreement
with earlier work reported by Pisarra and coauthors [33]. Our ab initio calculations show the acoustic
plasmon mode, which is highly damped in bilayer graphene structures.

Most importantly, by breaking the inversion symmetric of the two layers, a non-zero band gap
can be induced. The potential of a continuously tunable band gap through a gate voltage applied
perpendicularly to the sample is very interesting [51,57,58]. The realization of a widely tunable
electronic band gap in electrically-gated bilayer graphene has been experimentally demonstrated [59].
They showed a gate-controlled, continuously tunable band gap of up to 250 meV by using dual-gate
bilayer graphene field-effect transistor infrared micro-spectroscopy. Moreover, this electrostatic
band gap control suggests nanoelectronic and nanophotonic device applications based on graphene.
Notice that the band gap can be observed in photoemission, magneto transport, infrared spectroscopy
and scanning tunneling spectroscopy.

The low-energy effective model Hamiltonian for a gated bilayer graphene can be written as:

Heff = −
1

2m
(~σ · ~p)σx(~σ · ~p) + ∆σz (18)

where ~σ are Pauli matrices and ∆ is the gated energy. In bilayer graphene, changing the applied
gate voltages will turn into controlling the electron density, n, and the interlayer asymmetry different
potential energies, ∆. In other words, the asymptotic energy ∆V is related to layer density, and the
layer densities depend on ∆, ultimately [60]. Here, we ignore this effect and assume that the band gap
is independent of the electron density.

We have examined first-principle calculations to investigate the plasmon modes of AB stacked
bilayer graphene in the presence of a perpendicular applied electric field. Figure 7 shows the gate
dependence of the optical plasmon modes of bilayer graphene for ∆ = 1.1 and 2.5 eV. Clearly, the
gap reduces the plasmon mode and softens the collective excitation modes, especially at the long
wavelength limit. In this regime, the plasmon mode behaves slightly different from that obtained for

a system with ∆ = 0 given by ωp(q) =
√

e2

4ε0

nq
m [61]. Moreover, the interband contribution decreases

with the gated energy ∆; however, the intraband contribution increases with the bias owing to the fact
that the energy dispersion leads to an enhancement of the density of states near the Fermi energy.
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Figure 7. The gate voltage dependence of the plasmon mode in bilayer graphene. The values of the
gate voltages are 1.1 V/nm and 2.5 V/nm related to band gaps of about 0.1 and 0.2 eV, respectively.

3.3. Monolayer MoS2

The lack of a natural band gap makes graphene unsuitable for developing optoelectronic and
photovoltaic devices [62]. A particularly interesting class of 2D materials is the transition metal
dichalcogenides (TMDC) whose electronic properties range from semiconducting to metallic and
even superconducting. Among them, molybdenum disulfide (MoS2) with a natural band gap is
gaining increasing interest [63]. MoS2 has a hexagonal structure that consists of two planes of
hexagonally-arranged S atoms bonded through covalent bonds to central layer Mo atoms.

In agreement with previous reports [64–67], the MoS2 monolayer is a direct band gap
semiconductor with a maximum of the valence and the minimum of the conduction band located at
the Kpoint of the Brillouin zone (Figure 8). The bands around the energy gap are relatively flat, which
are as expected from the d character of the electron states at these energies. The states around the
Fermi energy are mainly due to the d orbitals of Mo, while strong hybridization between d orbitals of
Mo and p orbitals of S atoms below the Fermi energy has been observed [30].
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Figure 8. (a,b) Top and side view of the atomic structure of molybdenum disulfide (MoS2). (c) The band
structure of MoS2 along the high symmetry Γ − M − K − Γ directions and the associated Brillouin
zone. The Fermi level is set at 0 eV. The blue balls are molybdenum atoms, and the yellow ones are
sulfur atoms.
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The GW approximation, is an approximation made in order to calculate the self-energy of a
many-body system of electrons, has been shown to provide very reliable descriptions of the electronic
and dielectric properties for many semiconductors and insulators [68]. The recent quasiparticle
self-consistent GW calculations have reported that MoS2 is a direct gap semiconductor at both the LDA
and GW levels, and the GW gap is 2.78 eV at both the K and K′ points [69]. In the following, we will
explore the dispersion behavior of plasmon modes of monolayer MoS2 by using our DFT-RPA code.

The intraband plasmons in metallic single-layer transition metal dichalcogenides (TMDCs) have
been studied using density functional theory in the random phase approximation [70]. They have
found that at very small momentum transfer, the plasmon energy follows the classical

√
q behavior of

free electrons in 2D. For larger momentum transfer, the plasmon energy is significantly red shifted due
to screening by interband transitions.

The non-interacting response function of MoS2 with n = 5.6× 1013 cm−2 and for q = 0.069 Å−1

is plotted in Figure 9 and shows that the intraband term of χ0(q, ω) is dominated at energies below
1.0 eV, and the interband term is inconsiderable.
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Figure 9. The interband and intraband of non-interacting response function (χ0(q, ω)) of doped MoS2

in units of the Fermi-level density of states as a function of h̄ω for q = 0.069 Å−1.

In Figure 10a, the EEL function of MoS2 for different values of q with electron doping of
n = 5.6× 1013 cm−2 is depicted and the plasmon dispersion of system plotted in Figure 10b (black
dots). In the following, we compare the resulting plasmon dispersion calculated by our ab initio model
to that obtained by a model Hamiltonian.
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Figure 10. (a) The EEL functions of MoS2 for different q and n∼5.6 × 1013 cm−2 for ε = 1.
(b) Our optical plasmon mode of MoS2 (dots), obtained from the peaks in the EEL functions in
the (a), in comparison with a model Hamiltonian by Scholz et al. [71] (blue line). The red line is
obtained using the modified bare potential given by Equation (22) by a model Hamiltonian. The black
line shows our ab initio calculation with the modified bare potential (see the text for more details).

We use Eq.11 in the paper by Scholz, et al. [71], where the long wavelength behavior of the
plasmon frequency of monolayer MoS2 can be obtained from:

ω0
q =

√
e2q

2πε0εr

√
(2EF − ∆)[EF(∆ + 2EF)− λ2]

4E2
F − λ2

Here, ∆ is the energy gap and λ = 80 meV. In this case, we consider εr = 1 because it
can be compared to our ab initio results. It is obvious that the plasmon mode obtained within
DFT-RPA approach for monolayer MoS2 differs significantly from with that calculated using the
low-energy model Hamiltonian. The similar comparison was performed for hole doping in the case of
MoS2 in [72], and they observed strongly reduced plasmon energies and concluded that neglecting
the material-specific dielectric function εαβ(q) within the minimal three-band model is a severe
approximation leading to unrealistic plasmonic properties.

This discrepancy could be understood by looking at both the bare potential and the Lindhard
function of the MoS2. In order to perceive the aforementioned discrepancy, we look at the structure
of the MoS2 again, which basically consists of three atomic layers. In ordinary 3D materials, the
effect of lattice screening is simply a re-scaling of the interaction strength by a dielectric constant.
In quasi-2D materials, however, the interaction is modified by the polarizability of the crystalline
material originated from the induced charge, nind = −∇ · P, where P is the polarizability [73].
Therefore, the Poisson equation for the potential of the external point charge takes the form:

∇2V(r, a) = −4πeδ(z)− 4πa∇2
ρV(ρ, z = 0, a)δ(z) (19)

where r = (ρ, z) and ρ = (x, y), and we use the fact that P = −a∇ρV(ρ, z = 0, a)δ(z). In order to
solve this equation, it is convenient to take the Fourier transformation of the equation to obtain V(q, a).
Afterwards, by taking the inverse Fourier transformation of V(q, a), we can find the effective potential
in real space, which is no longer e2/r, and it yields:

V(r, a) =
e2π[−Y0(r/a) + H0(r/a)]

2a
(20)
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where the Bessel function of the second kind is defined by:

Yn(x) =
Jn(x) cos(nx)− J−n(x)

sin(nx)
(21)

where Jn(x) is the Bessel function of the first kind. For n an integer, this formula should be understood
as a limit. The Struve function, Hn(x), solves the inhomogeneous Bessel equation. It would be
worthwhile to mention that this potential was proposed in the Keldysh model [74], which is based on
a slab of constant dielectric value, the potential between two charges in a slab of thickness d. In this
model, a = dε‖/2 where ε‖ is the in-plane dielectric constant of the bulk material.

Let us look at the Fourier transformation of the modified bare potential, which is given by:

V(q, a) =
2πe2

ε(q + aq2)
=

2πe2

εq
1

ε lattice(q)
(22)

where ε is the average dielectric constant of the environment, a might depend on the thickness of the
2D crystalline material and ε lattice(q) plays the role as a lattice local field factor. In the case of MoS2, Qiu
et al. [69] fitted the Keldysh model to their ab initio effective dielectric function at small q and obtained
an effective screening length of a = 35 Å or the slab thickness of d = 6 Å. Apparently, the exact value
of the thickness of monolayer MoS2 is just d ' 6.3 Å. It is interesting to note that when we consider the
corrected coefficient of (1+ aq) with a = 35 Å in the bare Coulomb potential, we find better agreement
between plasmon dispersion of the low-energy model Hamiltonian of MoS2 with that obtained using
the DFT-RPA approach, although it is not yet coincident with our result. This difference can be related
to the non-interacting density-density response function in two methods. Notice again that the χ0 in
the DFT scheme consists of many occupied bands together with the structure of the many orbitals,
and as has been discussed [75,76], those play important roles in the physical properties of MoS2. This
means that the χ0 calculated within DFT-RPA contains some effects of the exchange-correlation of
the system. These results also show that for quasi-two-dimensional materials, the Coulomb potential
should be modified properly. At the end of this section, it is worth noting that when the potential in
Equation (22) is used to calculate plasmon modes in MoS2 using DFT simulations, we obtain very
similar results, which are shown with a black line in Figure 10b.

3.4. Bilayer MoS2

The AA’ stacking, in which the layers are exactly aligned, with Mo over S is the stablest stacking
for the MoS2 bilayer, and it is shown in Figure 11a,b. From the band structure plotted in Figure 11c,
based on our DFT simulations, along the high symmetry Γ− M − K − Γ directions, it can be seen
that bilayer MoS2 has an indirect band gap in contrast to the direct band gap of the corresponding
monolayer. In fact, the conduction band minima are located between the Γ and K high symmetry
points (Q point), while the valence band maxima are located at the Γ point of the BZ, revealing the
indirect band gap, and this is in good agreement with previous calculations [77–79].

More analysis of the band structure of MoS2 can show why this material experiences an indirect to
direct band gap transition when its bulk or multilayers are replaced by a monolayer. In fact, the states
originating from mixing of Mo(dz2 ) orbitals and the S(pz) orbitals at Γ are fairly delocalized and have an
antibonding nature. With increasing the separation between consecutive MoS2 layers, the layer-layer
interaction decreases and lowers the energy of the antibonding states, and consequently, the valence
band maximum shifts downward. The states at K, which are of the dxy − dx2−y2 character, are mostly
unaffected by interlayer spacing. Thus, in the limit of widely-separated planes, i.e., monolayer MoS2,
the material becomes a direct gap semiconductor [80].
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Figure 11. (a,b) Top and side view of bilayer molybdenum disulfide (BL.MoS2). (c) The band structure
of BL.MoS2 along the high symmetry Γ− K −M− Γ directions. The Fermi level is set at 0 eV, and
interlayer separation d is 5.89 Å.

The non-interacting response function of bilayer MoS2 for q = 0.084 Å−1 with the charge carrier
concentration of n = 6.9× 1013 cm−2 shown in Figure 12. We can see that in bilayer MoS2, both interband
and intraband contributions of non-interacting response function are considerable. The intraband
contribution of this quantity is quite strong and refers to the main collective mode, although its interband
term is weak, and this can lead to new modes in the system; thus, in the following, we will explain it
further.

In Figure 13, we display the EEL function and plasmon spectrum of bilayer MoS2 for the electron
doping with n = 6.9× 1013 cm−2 and for energies below 1 eV and momenta q along the high-symmetry
Γ − K direction. We observe that plasmonic features in electron-doped bilayer MoS2 are mainly
characterized by a square root mode in small q. In the paper by Andersen, plasmons in bilayer NbS2

were studied [70], and they obtained very similar plasmon dispersions.
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Figure 12. The non-interacting response function in units of the Fermi-level density of states as a
function of h̄ω of bilayer MoS2 for q = 0.084 Å−1.
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Figure 13. (a) The loss spectra of bilayer MoS2 for various amounts of q along the Γ− K direction
with EF = 0.05 eV corresponding to n = 6.9× 1013 cm−2. (b) The same as (a) for two different energy
regions. (c) Three different plasmon modes of bilayer MoS2; the black dots refer to the optical plasmon
mode. The results of the acoustic and high energy modes are shown by red diamond and triangle
symbols, respectively. The black line shows the boundary of the electron-hole continuum.

As previously mentioned, in the two-layer systems, we can find two plasmon modes, which can
be regarded as symmetric and antisymmetric combinations of two unperturbed monolayer plasmons.
One of them has a nearly linear dispersion, referred to as the acoustic plasmon mode.

In this case, we find that the low-energy dynamical dielectric function in bilayer MoS2 is controlled
by both interband and intraband contributions, leading to an extra collective mode. Also, there are a
damped high energy mode and a highly damped acoustic mode, which originates from the interband
transitions. More details of these calculations can be found in [81].
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In Figure 14, we display the damping parameter of plasmon modes in bilayer MoS2 for the
electron doping value n = 6.9× 1013 cm−2 for both the acoustic and higher plasmon modes. Since the
=mε(q, ω) at the position of the acoustic and high plasmon modes are finite, it turns out that those
collective modes are damped, and the damping parameter, γ, as a function of the momentum would
be small. In this case, we should verify the condition where ε(q, ωp − iγ) = 0 is satisfied. This equation
leads to two separate equations in which the γ(q) is given by γ(q) = =mχ0(q, ω)/∂<eχ0(q, ω)/∂ω

at ω = ωp and the collective mode is obtained by 1− νq<eχ0(q, ω)− γνq∂=mχ0(q, ω)/∂ω = 0 again
at ω = ωp. Note that a condition required to define those plasmon modes are γ(q)/ωp(q) << 1.
Results shown in Figure 14 indicate that the acoustic mode is highly damped, and the high plasmon
mode is slightly damped.
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Figure 14. The damping parameter of plasmon modes in bilayer MoS2 as a function of the momentum
for n = 6.9× 1013 cm−2. Note that in order to have a well-defined plasmon mode, γ(q)/ωp(q) << 1.

3.5. Monolayer Phosphorene

Although two-dimensional materials such as monolayer graphene and monolayer transition
metal dichalcogenide, the most common component MoS2, have attracted intensive research interest
owing to their fascinating electronic, mechanical, optical and thermal properties, the lack of the band
gap in graphene and low carrier mobility in MoS2 limits its wide applications in electronic devices and
nanophotonics [82,83].

Recently, isolated two-dimensional black phosphorus (BP), known as phosphorene, with a nearly
direct band gap and high carrier mobility has received enormous interest owing to its extraordinary
electronic and optical properties in engineering application [84,85].
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Our DFT calculations for mono- and bi-layer phosphorene were carried out using the
Perdew–Burke–Ernzerhof exchange-correlation functional [86] coupled with the DFT-vdw method.

Figure 15a,b shows that phosphorene is a puckered honeycomb structure with each phosphorus
atom covalently bonded with three neighboring atoms within a rectangular unit cell, and the two lattice
constants are ax = 4.62 Å and ay = 3.30 Å along the armchair and zigzag directions, respectively [87].
As a result of the puckered structure, each single-layer phosphorene contains two atomic layers where
the distances between the two nearest atoms (2.22 Å) and the distance between the top and bottom
atoms (2.24 Å) are slightly different.

It should be mentioned that monolayer phosphorene is a nearly direct band gap semiconductor
because the exact top of the valence band is slightly away from the Γ point. However, they are sufficiently
close to be considered as a direct band gap as previous first-principles calculations mention [88].

Our DFT calculations predict that the band gap of monolayer phosphorene is 0.98 eV, and the
self-energy correction enlarges the band gap to 2.0 eV, which is ideal for potentially broad electronic
applications [89]. The optical gap of phosphorene was reported to be 1.6 eV by using the GW and
Bethe-Salpeter equation method, and it is much lower than the electronic band gap of 2.15 eV, which
shows significant excitonic effects in phosphorene [90].

The electronic band structure of monolayer phosphorene is plotted in Figure 15c, and it shows the
high anisotropic band structure with very different effective masses along the armchair and zigzag
directions for both electrons and holes. This anisotropic electronic structure is useful for thermoelectric
materials, because for the direction with a smaller effective mass, the carrier mobility and thus the
electrical conductivity can be high, while the larger effective mass along the other direction contributes
to an overall large density of states that improves the Seebeck coefficient [84,91].
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Figure 15. (a,b) Top and side view of the atomic structure of monolayer phosphorene. (c) The band
structure of monolayer phosphorene along the high symmetry X− Γ−Y directions and the associated
Brillouin zone. The Fermi level is set at 0 eV.

In Figure 16, the plasmon spectrum of monolayer phosphorene with EF = 0.07 eV along the
armchair direction based on our DFT simulations is compared to the result recently reported in [92],
and they show an acceptable agreement.
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Figure 16. Our calculated plasmon dispersion (dots) of monolayer phosphorene with EF = 0.07 eV
along the armchair direction, in comparison with results obtained by Ghosh et al. for monolayer
phosphorene and with the same concentration along the armchair direction (open symbols) [92].

To know the origin of the electronic excitations in the monolayer phosphorene, we obtain the
different contributions (interband and intraband) of the non-interacting response function, and they
are shown in Figure 17 for q = 0.046 Å−1 and n = 3.9× 1013 cm−2 along the armchair direction.
These results show that the intraband term of this quantity plays an important role, and its interband
term is negligible.

The loss spectra for different values of the q and dispersion curve of the intraband plasmons of
phosphorene for charge carrier concentration of n = 3.9× 1013 cm−2 along the armchair and zigzag
directions are plotted in Figure 18. The anisotropic band structure of monolayer phosphorene along
the zigzag and armchair directions makes anisotropic features in the collective plasmon excitations,
although they follow a low energy

√
q dependence at the long wavelength limit. This is due to the

paraboloidal band dispersion of phosphorene at low-energies, but the plasmon modes in the armchair
direction have higher plasmon energy compared to the zigzag direction at the same momenta [93,94].
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Figure 17. The real (solid line) and imaginary (dashed line) parts of interband and intraband
contributions of the non-interacting response function of monolayer phosphorene in units of the
Fermi-level density of states as a function of h̄ω for q = 0.046 Å−1 along the armchair direction.
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3.6. Bilayer Phosphorene

The stable stacking order of bilayer phosphorene is of the AB type such that the bottom layer
is shifted half the lattice period along the x or y directions, and this is in agreement with previous
studies [95,96]. The crystal structure of AB-stacked bilayer phosphorene is shown in Figure 19a,b.
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Figure 18. The electron-energy loss function of monolayer phosphorene for different values of q along
the ΓX and ΓY directions (upper panel). In the bottom panel, the plasmon modes corresponding to the
peaks in the EEL function in the upper panel are plotted. In this case, the Fermi level is shifted up by
0.1 eV, corresponding to n = 3.9× 1013 cm−2.
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Figure 19. (a,b) Top and side view of the atomic structure of bilayer phosphorene (BLP). (c) The band
structure of bilayer phosphorene along the high symmetry X− Γ−Y directions. The Fermi level is set
at 0 eV. The optimized interlayer separation between the closest phosphorus atoms is indicated with d,
being 3.56 Å.
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When two monolayers are combined to create a bilayer, the gap reduces and two additional bands
emerge around the gap at the Γ point [97]. Bilayer phosphorene possesses a direct band gap of 0.63 eV,
in agreement with the band gap recently reported in [98]. Importantly, the inclusion of many-body
effects using GW increases the band gap to 1.45 eV.

The electronic band structure of AB-stacked bilayer phosphorene is illustrated in Figure 19c based
on our DFT simulations. We find that the valence band maximum is contributed by the localized states
of P atoms, while the conduction band minimum is partially contributed from the delocalized states,
especially in the interfacial area between the top and bottom layers [99].

In order to investigate more, we illustrate the real and imaginary parts of interband and intraband
contributions of the non-interacting response function of bilayer phosphorene in Figure 20 for a specific
momentum transfer in the amount of 0.046 Å−1 and EF = 0.05 eV. Our ab initio calculations [100]
show that the collective electronic excitations in bilayer phosphorene originated from intraband term
of χ0(q, ω), and the other one is not be important enough to be considered.
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Figure 20. The non-interacting response function in units of the Fermi-level density of states as a
function of h̄ω of bilayer phosphorene for q = 0.046 Å−1.

We illustrate the loss functions for different amounts of q and also the plasmon modes of bilayer
phosphorene along the armchair direction in Figure 21. For this system, we have shifted the Fermi level
up by 0.05 eV to imitate the effect of finite doping. As expected, bilayer phosphorene involves two
plasmon modes. One of them follows the

√
q behavior as the optical mode, as seen in its monolayer.

The other one is a damped acoustic mode with a linear dispersion at the long wavelength limit.
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Figure 21. The optical (black dots) and acoustic plasmon modes (red diamond) of bilayer phosphorene
that correspond to the peaks in the EEL functions in the upper panel for n = 3.2 × 1013 cm−2

(EF = 0.05 eV) along the armchair direction. The black line shows the boundary of the electron-hole
continuum.

4. Conclusions

In this article, we have focused on collective modes of some pristine two-dimensional crystalline
materials including graphene, MoS2 and phosphorene in monolayer and bilayer structures. Our studies
were based on density-functional theory simulations together with random phase approximation. In
the DFT approach, we have considered all electron band structures, and therefore, the non-interacting
density-density response function could bring some effects beyond the normal Lindhard function.
Furthermore, the Kohn–Sham wave functions in the vicinity of the Fermi energy are quite similar
to the real and exact wave functions of the system when the system is doped. Therefore, for the
doped 2D crystalline materials, the density-density response function is calculated by the Kohn–Sham
wave functions and can describe the many-body effects of the system well enough to use these to
explore the physical quantities of the system. In addition, the definition of the dielectric constant
given by Equation (11) provides some many-body effects, which could describe why the ab initio-RPA
calculations provide a better dispersion relation of the plasmon mode in electronic systems. It is
essential to emphasize that the material-specific dielectric function considering the multi-orbital and
multiband structures (or quasi-two-dimensional polarization) such as MoS2 are needed to obtain
realistic plasmon dispersions. We have used a full DFT simulations together with RPA analysis
to calculate the band structure, non-interacting density-density response function, the energy loss
functions and, finally, plasmon dispersions of the extrinsic crystalline materials. For each material
studied here, we have found different collective modes and described their physical origins. In all
studied materials, the in-phase mode, which refers to the optical mode, the plasmon dispersion is
displayed as a

√
q originating from low-momentum carrier scattering. An acoustic mode on some

systems is observed; however, this mode is damped. In bilayer MoS2, we have observed that the
plasmon modes of the electron and hole doping are not equivalent, and the discrepancy is owed to the
fact that the Kohn–Sham band dispersions are not symmetric for energies above or below the zero
Fermi level. The anisotropic band structure of monolayer phosphorene along the zigzag and armchair
directions make anisotropic features in the collective plasmon excitations, and the plasmon mode in
the armchair direction has higher energy compared to the zigzag direction at the same momenta.
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