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Abstract: In order to enlarge the capability for in-plane manipulation of the Bloch surface wave (BSW),
we investigate 2D gradient index (GRIN) optical components using a finite-difference time-domain
(FDTD) numerical method. To ease difficulties in fabrication to acquire a continuous index profile
of GRIN optical components, we propose a stepwise index profile. For 2D surface wave devices,
such discrete index steps can be achieved by stepwise structuring of the top layer, also called the
device layer. For the demonstration of the stepwise GRIN optics concept, we consider a Luneburg
lens, which is a good example of the GRIN optical component that produces a strong focal spot on
the shadow-side curvature of the lens. The limited index contrast of the BSW systems loosens the
confinement of the focal spot. A mitigation plan is to elongate the circular geometry to the prolate
ellipse. BSW-based Luneburg lenses with a relatively small number of steps and an elliptical geometry
are demonstrated with comparable performances to a standard Luneburg lens.
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1. Introduction

Propagating electromagnetic surface waves are a key technological element for many near-field
and nano-photonics devices. The most frequently studied surface wave is the surface plasmon polariton
(SPP), which propagates along the interface between a dielectric and a metal [1]. Apart from long-range
SPPs available at the expense of burying the field in a dielectric layer [2], SPPs are in general
limited in their propagation length by dissipation. This constitutes limitations for many existing
and potential applications, in particular, in integrated photonic devices. For an alternative solution,
we present a different type of surface wave, which is called “Bloch surface wave” sustained by dielectric
multilayers. The use of lossless dielectric media guarantees a long propagation length. For instance,
a BSW with a propagation length of 3.24 mm at λ = 1.558 µm has been reported [3]. This complementary
character to the SPP makes the BSW a good candidate for integrated photonic devices, and this
has inspired much research in recent years. Devices with basic functionalities have been explored,
e.g., a prism demonstrating refraction of the propagating surface wave [4], a grating generating
2D Talbot images on the chip surface [4], a refractive micro lens for focusing [5], and waveguide
components [6–8]. All these elements came into reach by adding a structured device layer on the top
of the stratified media. This locally changes the dispersion relation of the BSW and allows for control
of the effective refractive index contrast. More advanced functionalities have also been demonstrated,
e.g., linear [9] and circular [10] grating couplers that couple the surface waves without a prism
coupling setup. Furthermore, the research has been extended to demonstrate applications for enhanced
fluorescence detection [10], resonator [11], and bio-sensing [12].

The control of in-plane propagation of surface waves is usually accomplished by modifying the
top surface or adding discrete scattering structures on the top. Those patterned structures have a single
height or depth, which produces a single-step index contrast. To enrich controlling capabilities of
surface waves, Zentgraf et al. have introduced the concept of GRIN optics onto SPP devices [13],
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which is a kind of transformational optics approach. Instead of directly modifying the refractive
index of the dielectric medium, the gradient index profile has been achieved by slowly changing the
thickness of the dielectric top layer (i.e., the height profile modification), which gradually varies the
local effective index of the surface wave. To spatially vary the top layer’s height profile, grey-scale
electron beam lithography (EBL) is used, where the electron dose is continuously varied across the
sample to modulate the height of the resist layer in Reference [13]. However, obtaining the designed
height profile, which is a non-linear and continuous form, with nanometer precision is a challenging
task in fabrication.

In this paper, in order to facilitate more repeatable and controllable fabrication processes,
we propose a stepwise GRIN optics approach, where discrete index steps replace a continuous gradient
index profile. Investigations are carried out exclusively using a 2D FDTD simulation (CST microwave
studio, at λ = 1555 nm). In our previous work [14], the validity of 2D numerical simulations was
confirmed by showing a perfect agreement with the results of 3D simulations and scanning near-field
optical microscopy measurements. Since the large number of height steps will be a time-consuming and
challenging task, we will first determine the smallest number of index steps for optimal performances.
We consider a Luneburg lens for a demonstrator of the GRIN optics devices, which is proven to produce
tight focusing in micro-sized elements of the SPP [13] and the photonic nanojet [15]. Afterwards,
we apply the optimal number of the index profile step to the BSW-based Luneburg lens design.
Conventional optical systems, based on “glass/air” architecture, lead to an index contrast (∆n) equal to
0.5. However, most BSW devices have an index contrast in the range from 0.1 to 0.3. This causes weaker
refractive power when conventional component designs are applied to the BSWs. We will mitigate this
problem by modifying the circular geometry of the lens to the prolate ellipse, which can compensate
the shortened optical path length due to lower ∆n. The remaining part of this paper is organized as
follows. Section 2 presents the investigation of the smallest number of index steps for a conventional
Luneburg lens design. In Section 3, to transit to the Bloch surface wave devices, we briefly introduce
the multilayer and its properties, e.g., band-gap diagram, dispersion curves, and the effective refractive
indices of the surface mode. The mitigation plan by elongation of the lens shape will be discussed in
Section 4. Section 5 summarizes and concludes.

2. 2D Luneburg Lens and Stepping GRIN Profile

The refractive index distribution of the conventional Luneburg lens in a background medium
with refractive index n0 satisfies the equation

n(r) = n0

√
2 − (

r
R
)

2
(1)

where R denotes the radius of the lens and r the transverse distance to the center. For a conventional
Luneburg lens in air, i.e., n0 = 1, Figure 1a shows the gradient index profile calculated by Equation (1)
with R = 7.5 µm. Here, the size of the lens is benchmarked from the SPP Luneburg lens in Reference [13].
Note that a small variation of the lens size will not cause a distinctive response, as long as the lens
is larger than the operating wavelength. Figure 1b shows the schematic of 2D Luneburg lenses for
surface wave systems. The surface topology of the lens corresponds to the continuous and stepwise
index profiles, respectively, where the surface wave propagates along the z-axis towards the lenses.
Note that the index profiles are acquired by thickness variation of the element along the y-axis.

For discretizing a continuous gradient index profile, we propose two schemes. The first is the
equilateral step (ELS) profile that consists of the same step width. The second is the equi-index step
(EIS) profile that consists of the same index value (i.e., the step height). Graphical examples are shown
in Figure 2 with the corresponding surface topology of the devices for each scheme.
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Figure 1. (a) Gradient index profile for a standard Luneburg lens in air with n0 = 1 and R = 7.5 μm. (b) 
Schematic of 2D Luneburg lenses for continuous and stepwise index profiles. Surface wave 
propagates along the z-axis. 
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(EIS) profile that consists of the same index value (i.e., the step height). Graphical examples are shown 
in Figure 2 with the corresponding surface topology of the devices for each scheme. 

 
Figure 2. (a) Equilateral step (ELS) scheme of the index profile and (b) the corresponding surface 
topology of the device; (c) Equi-index step (EIS) scheme and (d) the corresponding surface topology 
of the device. 

In the EIS scheme, the step width at the rim of the element gradually becomes narrower, which 
reflects the steeper slope at the rim of the index profile. Although this approach resembles the multi-
level phase encoding of diffractive microlenses [16], the operation mechanism is different. Surface 
wave illuminates a 2D Luneburg lens from the side, i.e., along the in-plane direction (see Figure 1b), 
whereas conventional diffractive lenses are orthogonally illuminated (i.e., along the out-of-plane 
direction). The large number of steps will create too narrow steps at the rim, which are difficult to 
fabricate. Therefore, the smallest number of steps for an optimal performance is of great interest. The 
2D FDTD simulations are applied to verify the performance by assessing the field distributions near 
the Luneburg lens. The upper limit for the number of steps (N) is set to be 20 for both ELS and EIS 
schemes, and N is varied down to 2 with an interval of 1. When the number of steps is sufficiently 
large, e.g., N > 6, the response of the lens shows no difference form the case of the continuous index 
profile. For instance, ELS N = 10 case in Figure 3d leads to an identical result as the continuous-profile 
device in Figure 3e. For the qualitative comparison, the simulated intensity distributions of N = 4, 5, 

Figure 1. (a) Gradient index profile for a standard Luneburg lens in air with n0 = 1 and R = 7.5 µm.
(b) Schematic of 2D Luneburg lenses for continuous and stepwise index profiles. Surface wave
propagates along the z-axis.
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Figure 2. (a) Equilateral step (ELS) scheme of the index profile and (b) the corresponding surface
topology of the device; (c) Equi-index step (EIS) scheme and (d) the corresponding surface topology of
the device.

In the EIS scheme, the step width at the rim of the element gradually becomes narrower, which
reflects the steeper slope at the rim of the index profile. Although this approach resembles the multi-level
phase encoding of diffractive microlenses [16], the operation mechanism is different. Surface wave
illuminates a 2D Luneburg lens from the side, i.e., along the in-plane direction (see Figure 1b), whereas
conventional diffractive lenses are orthogonally illuminated (i.e., along the out-of-plane direction).
The large number of steps will create too narrow steps at the rim, which are difficult to fabricate.
Therefore, the smallest number of steps for an optimal performance is of great interest. The 2D
FDTD simulations are applied to verify the performance by assessing the field distributions near the
Luneburg lens. The upper limit for the number of steps (N) is set to be 20 for both ELS and EIS schemes,
and N is varied down to 2 with an interval of 1. When the number of steps is sufficiently large, e.g.,
N > 6, the response of the lens shows no difference form the case of the continuous index profile.
For instance, ELS N = 10 case in Figure 3d leads to an identical result as the continuous-profile device
in Figure 3e. For the qualitative comparison, the simulated intensity distributions of N = 4, 5, 6 and 10
for the ELS scheme are presented in Figure 3. The focal spot starts to show noticeable degradation
from N = 4, see Figure 3a. Therefore, the case of N = 5 is determined to be the optimal number of
steps (Nopt) for the ELS scheme. Figure 4 shows the simulation results for N = 3, 4, 5 and 10 of the EIS
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scheme. Here, the case of N = 3 still shows a relatively good focal spot. However, stronger side lobes
start to be prominent. The case of N = 4 produces a focal spot as good as that of larger Ns. Therefore,
we determine Nopt = 4 for the EIS scheme. In the following section, we will investigate the Luneburg
lens on the BSW platform by directly applying the optimal number of steps, Nopt = 5 and 4 for the ELS
and EIS schemes, respectively.
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3. Bloch Surface Wave and Multilayer Design 

BSWs are supported at the edge of a truncated 1D periodic dielectric media, i.e., a dielectric 
multilayer serving as 1D photonic crystal [17]. BSW are sustained in the frequency region of the 
localized photonic band-gap. The band-gap denies propagation into the half space containing the 
multilayer structure. Since the propagation constant of the mode is outside the light cone of the 
medium in the other half space, a surface mode is supported. For designing the multilayer for desired 
BSWs, the band-gap diagram and dispersion curves can be calculated by the transfer matrix method 
(TMM) [17] or numerical methods, e.g., eigenmode solver CAMFR [18]. In this study, the designed 
multilayer stack consists of six periods of silicon nitride (Si3N4, nSi3N4 = 1.94, t = 283 nm) and silicon 

Figure 3. Simulated intensity distributions of Luneburg lenses with the ELS index profile: (a) N = 4,
(b) 5, (c) 6 and (d) 10, respectively. Larger Ns (>6) show almost the same response as a Luneburg lens
with a continuous GRIN profile. The intensities are normalized. Concentric circles depict the step
boundary of the index profile in (a); Here, the smallest step number for an optimal performance (Nopt)
is determined to be 5; (e) The result of the continuous-profile device shows an identical result as that of
N = 10 shown in (d).
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Figure 4. Simulated intensity distributions of Luneburg lenses with the EIS index profile: (a) N = 3,
(b) 4, (c) 5 and (d) 10, respectively. Larger Ns (>6) show almost the same response as the Luneburg
lens with a continuous GRIN profile. The intensities are normalized. Concentric circles depict the step
boundary of the index profile in (a). Here, the smallest step number for the optimal performance (Nopt)
is determined to be 4.

3. Bloch Surface Wave and Multilayer Design

BSWs are supported at the edge of a truncated 1D periodic dielectric media, i.e., a dielectric
multilayer serving as 1D photonic crystal [17]. BSW are sustained in the frequency region of the
localized photonic band-gap. The band-gap denies propagation into the half space containing the
multilayer structure. Since the propagation constant of the mode is outside the light cone of the
medium in the other half space, a surface mode is supported. For designing the multilayer for desired
BSWs, the band-gap diagram and dispersion curves can be calculated by the transfer matrix method
(TMM) [17] or numerical methods, e.g., eigenmode solver CAMFR [18]. In this study, the designed
multilayer stack consists of six periods of silicon nitride (Si3N4, nSi3N4 = 1.94, t = 283 nm) and silicon
dioxide (SiO2, nSiO2 = 1.47, t = 472 nm), where t being thickness. We call this stage of the multilayer
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“bare multilayer (BML)”. An additional 20-nm Si3N4 is added on the top of the periodic layers as
a defect layer. Finally, the device layer, 140-nm titanium dioxide layer (TiO2, nTiO2 = 2.23), is added
on the defect layer. The dispersion curves with corresponding band-gap diagram of the current chip
design is shown in Figure 5a, where ω (=2π·c/λ) being the angular frequency with c the speed of light
and β (=k·sinθ) being the wave number of the BSW with k the wave number in the glass substrate and
θ the incident angle in the Kretschmann configuration. Accordingly, an effective index (neff) of a BSW
is defined as

ne f f =
βc

ω
(2)

which can be simplified to be
ne f f = nsub · sin θ (3)

with nsub the refractive index of the substrate. The dispersion curves of the BML indicates the lowest
effective index, neff = 1.141 for λ = 1555 nm with nsub = 1.444 and θ = 52.2◦. Adding the defect layer and
the top device layer augments the effective index and increasing the thickness of the top layer moves
the dispersion curve towards the right-side band edge, where the larger wavenumber imposes the
larger index of the surface mode. Like this, varying the thickness of the top element allows adjusting
the effective index contrast. Therefore, the thickness stepping of this device layer can produce the
stepwise index profile. The relation between the top layer thickness and the effective index are obtained
by TMM for the target λ = 1555 nm, see Figure 5b, where the empty circle markers are the calculated
data points and the dashed line is the result of interpolation. The interpolation shows a good linear
behavior. For higher thickness of the top layer, the increase of the effective index will be saturated.
Only the linear range of the neff is taken into account. In this design, the maximum index contrast
(∆nmax) equals approximately 0.3.
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Figure 5. (a) Band-gap diagram and dispersion curves, obtained by TMM. The clear area is the localized
photonic band-gap. The dispersion curve of the BML indicates the lowest effect index, n = 1.141 at
λ = 1555 nm. Adding the defect layer and the top device layer moves the dispersion curve towards the
right-side band edge, where the larger wavenumber indicates the larger effective index; (b) The relation
between the thickness of the top layer and the effective refractive index at λ = 1555 nm. The maximum
index contrast equals approximately 0.3.

4. Stepwise Luneburg Lens on the BSW Platform

To adapt the gradient index profile of Figure 1 to the effective index range of the BSW, we linearly
scale the index profile with n0 = 1.14, which is the effective index of the surface mode in the surrounding
background (i.e., the BML). This adapted index profile is applied to both the ELS and EIS schemes
shown in Figure 6 as solid curves. We apply the optimal number of steps to discretize the continuous
profile, Nopt = 5 and 4 for the ELS and EIS schemes, respectively. Such stepping schemes of the gradient
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index profile for the BSW are depicted in Figure 6. For the simplicity in the profile stepping, we set
the radius of the lens R = 5 µm, which leads to the lateral width of the step for the ELS scheme equal
to 1 µm. As shown in Figure 5b, designed BSW devices allow almost linear conversion between the
top layer thickness and the effective index. Therefore, the stepwise index profile can be obtained by
patterning the top layer similar to the surface topologies shown in Figure 2b,d.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 8 

the continuous profile, Nopt = 5 and 4 for the ELS and EIS schemes, respectively. Such stepping 
schemes of the gradient index profile for the BSW are depicted in Figure 6. For the simplicity in the 
profile stepping, we set the radius of the lens R = 5 μm, which leads to the lateral width of the step 
for the ELS scheme equal to 1 μm. As shown in Figure 5b, designed BSW devices allow almost linear 
conversion between the top layer thickness and the effective index. Therefore, the stepwise index profile 
can be obtained by patterning the top layer similar to the surface topologies shown in Figure 2b,d. 

 
Figure 6. (a) Equilateral step (ELS) scheme of the refractive index profile with N = 5, where the step 
width = 1 μm and R = 5 μm. (b) Equi-index step (EIS) scheme with N = 4. The solid curve is the adapted 
gradient index profile for the effective index range of the designed BSW system, where the Δnmax = 0.3 
and n0 = 1.141. Equivalent height stepping of the top layer will resemble the surface topologies shown 
in Figure 2b,d. 

The intrinsic limitation of BSW systems is the maximum achievable index contrast, which is 
rather lower than that of conventional “glass/air” optical systems, where typical Δn equals 0.5. In this 
study, the designed multilayer yields Δnmax equal to approximately 0.3. Therefore, the lower 
refractive power loosens the focusing effect, and eventually pushes the focal spot position away from 
the shadow-side curvature of the lens, as shown in Figure 7, where the conventional circular 
geometry Luneburg lenses with the ELS N = 5 and EIS N = 4 are simulated. This lower Δn can be 
compensated for by increasing the optical path length of the component [14]. To do this, we elongate 
the circular geometry to a prolate ellipse. Figure 8 shows the prolate elliptical geometries with the 
aspect ratio (A = h/w) varying from 1.1 to 1.5, where the minor axis diameter w is fixed to 10 μm and 
the major axis diameter h is varied from 11 to 15 μm with an interval of 1 μm. 

 
Figure 7. Intensity distributions of stepwise Luneburg lens with circular geometry for (a) the ELS and 
(b) EIS profiles shown in Figure 5. The intensities are normalized. Concentric circles depict the step 
boundary of the index profile. 

Figure 6. (a) Equilateral step (ELS) scheme of the refractive index profile with N = 5, where the step
width = 1 µm and R = 5 µm. (b) Equi-index step (EIS) scheme with N = 4. The solid curve is the adapted
gradient index profile for the effective index range of the designed BSW system, where the ∆nmax = 0.3
and n0 = 1.141. Equivalent height stepping of the top layer will resemble the surface topologies shown
in Figure 2b,d.

The intrinsic limitation of BSW systems is the maximum achievable index contrast, which is rather
lower than that of conventional “glass/air” optical systems, where typical ∆n equals 0.5. In this study,
the designed multilayer yields ∆nmax equal to approximately 0.3. Therefore, the lower refractive power
loosens the focusing effect, and eventually pushes the focal spot position away from the shadow-side
curvature of the lens, as shown in Figure 7, where the conventional circular geometry Luneburg lenses
with the ELS N = 5 and EIS N = 4 are simulated. This lower ∆n can be compensated for by increasing
the optical path length of the component [14]. To do this, we elongate the circular geometry to a prolate
ellipse. Figure 8 shows the prolate elliptical geometries with the aspect ratio (A = h/w) varying from
1.1 to 1.5, where the minor axis diameter w is fixed to 10 µm and the major axis diameter h is varied
from 11 to 15 µm with an interval of 1 µm.
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Figure 8. Intensity distributions of the elliptical shape Luneburg lens of the ELS profile with N = 5:
(a) the aspect ratio A = 1.1, (b) 1.2, (c) 1.3, (d) 1.4, and (e) 1.5, respectively. The intensities are normalized.
Concentric ellipses depict the step boundary of the index profile.

When the aspect ratio rises, the focal spot comes closer to the lens and the confinement becomes
tighter. When the aspect ratio is too large, e.g., A = 1.5, the focal spot is totally buried in the lens
body. For the ELS case, A = 1.4 shows the best confinement of the focal spot just on the curvature of
the Luneburg lens. The same elongation scheme is applied to the EIS profile (see Figure 9). Similar
behavior of the focal spot is observed, the increase of A brings the focal spot back to the lens and the
confinement gets better. However, for the EIS case, dragging the focal spot towards the lens is stronger
than the ELS case, see Figure 9d,e, which show totally buried focal spots. In the EIS case, the best focal
spot is acquired for A = 1.3.
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Concentric ellipses depict the step boundary of the index profile.

5. Conclusions

We have investigated the GRIN optics components on the BSW devices using a 2D FDTD
numerical method. For the demonstration, we consider a Luneburg lens, which generates a strong
focal spot on the shadow-side curvature. Our approach is to use a stepwise index profile instead of
a continuous gradient index profile, which is difficult to achieve in fabrication. We propose two stepping
schemes, the equilateral step and equi-index step. First, we determine the smallest number of index
profile steps Nopt for optimal performances. We have found that Nopt = 5 for the ELS and 4 for the
EIS schemes perform as good as the continuous index profile. We apply Nopt to the BSW platform,
whose ∆nmax = 0.3. Lower ∆n loosens the confinement of the focal spot and pushes it away from the
lens. We mitigate this by elongating the lens shape from a circle to a prolate ellipse to compensate
the shortened optical path length. The stepwise Luneburg lenses with an elliptical geometry show
comparable performance to a standard Luneburg lens. The EIS scheme Luneburg lens seems slightly
better than the ELS in terms of the smaller number of steps and the smaller aspect ratio of the ellipse.
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Considering the fabrication, the EIS is also better because it leads to equal step height of the patterning,
which is more practical. Our study can shed a new light on flexible beam shaping and manipulation of
the Bloch surface waves with GRIN optics concept.
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