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Abstract: As the average age of the urban population increases, cities must adapt to improve the
quality of life of their citizens. The City4Age H2020 project is working on the early detection of the
risks related to mild cognitive impairment and frailty and on providing meaningful interventions that
prevent these risks. As part of the risk detection process, we have developed a multilevel conceptual
model that describes the user behaviour using actions, activities, and intra- and inter-activity behaviour.
Using this conceptual model, we have created a deep learning architecture based on long short-term
memory networks (LSTMs) that models the inter-activity behaviour. The presented architecture
offers a probabilistic model that allows us to predict the user’s next actions and to identify anomalous
user behaviours.
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1. Introduction

As a result of the growth of the urban population worldwide [1], cities are consolidating their
position as one of the central structures in human organizations. This concentration of resources and
services around cities offers new opportunities to be exploited. Smart cities [2,3] are emerging as
a paradigm to take advantage of these opportunities to improve their citizens’ lives. Smart cities use
the sensing architecture deployed in the city to provide new and disruptive city-wide services both
to the citizens and the policy-makers. The large quantity of data available allows for improving the
decision-making process, transforming the whole city into an intelligent environment at the service
of its inhabitants. One of the target groups for these improved services is the “young–old” category,
which comprises people aged from 60 to 69 [4] and that are starting to develop the ailments of old
age. The early detection of frailty and mild cognitive impairments (MCI) is an important step to treat
those problems. In order to do so, ambient assisted living (AAL) [5] solutions must transition from the
homes to the cities.

City4Age is a H2020 research and innovation project with the aim of enabling age-friendly cities.
The project aims to create an innovative framework of ICT tools and services that can be deployed by
European cities in order to enhance the early detection of risk related to frailty and MCI, as well as
to provide personalized interventions that can help the elderly population to improve their daily life
by promoting positive behaviour changes. As part of the tools created for the framework, we have
developed a series of algorithms for activity recognition and behaviour modelling. The recognized
activities and the behaviour variations are then used to ascertain the frailty and MCI risks levels of the
users. In the past, we have worked on creating single-user activity recognition algorithms for home
environments [6–8], but in the case of City4Age, we have created algorithms that take into account
both the large-scale scenarios of the project and the variation in the behaviours of the users.
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In this paper, we present a conceptual classification of the user behaviour in intelligent
environments according to the different levels of granularity used to describe it (Section 3). Using this
classification, we also describe the algorithm developed to automatically model the inter-activity
behaviour (Section 3). This algorithm uses long short-term memory networks (LSTMs) [9] to create
a probabilistic model of user behaviour that can predict the next user action and detect unexpected
behaviours. Our evaluation (Section 4) analyses different architectures for the creation of a statistical
model of user behaviour.

2. Related Work

There are two main monitoring approaches for automatic human behaviour and activity evaluation,
namely, vision- and sensor-based monitoring. For a review of vision-based approaches, [10] can
be consulted. When approaching human behaviour and activity evaluation recognition in intelligent
environments, sensor-based behaviour and activity evaluation are the most widely used solutions [11],
as vision-based approaches tend to generate privacy concerns among the users [12]. Sensor-based
approaches are based on the use of emerging sensor network technologies for behaviour and activity
monitoring. The generated sensor data from sensor-based monitoring are mainly time series of state
changes and/or various parameter values that are usually processed through data fusion, probabilistic
or statistical analysis methods and formal knowledge technologies for activity recognition. There are
two main approaches for sensor-based behaviour and activity recognition in the literature: data- and
knowledge-driven approaches.

The idea behind data-driven approaches is to use data mining and machine learning techniques
to learn behaviour and activity models. These are usually presented as a supervised learning approach,
for which different techniques have been used to learn behaviours and activities from collected
sensor data. Data-driven approaches need big datasets of labelled activities to train different kinds
of classifiers. The learning techniques used in the literature are broad, from simple naive Bayes
classifiers [13] to hidden Markov models [14], dynamic Bayesian networks [15], support vector
machines [16] and online (or incremental) classifiers [17]. The knowledge-driven approaches try
to use the existing domain knowledge in order to avoid using labelled datasets for the training. Rashidi
and Cook [18] tried to overcome the problem of depending on manually labelled activity datasets by
extracting activity clusters using unsupervised learning techniques. These clusters are used to train
a boosted hidden Markov model, which is shown to be able to recognise several activities. Chen et al.
[19] used logic-based approaches for activity recognition, on the basis of previous knowledge from the
domain experts. Others have adopted ontology-based approaches, which allow for a commonly agreed
explicit representation of activity definitions independent of algorithmic choices, thus facilitating
portability, interoperability and reusability [20–22]. User behaviour in intelligent environments builds
on user activities to describe the conduct of the user. Modelling user behaviour entails an abstraction
layer over activity recognition. Behaviour models describe how specific users perform activities
and what activities comprise their daily living. User behaviour prediction is an important task in
intelligent environments. It allows us to anticipate user needs and to detect variations in behaviour
that can be related to health risks. In the Mavhome project [23], the authors created algorithms
to predict the users’ mobility patterns and their device usage. Their algorithms, based mainly on
sequence matching, compression and Markov models [24], allowed the intelligent environments to
adapt to the user needs. Other authors have used prediction methods to recognize the user activities
in smart environments [16]. An analysis of the importance of prediction in intelligent environments
can be found in [25]. Prediction has also been used in intelligent environments for the control of
artificial illumination [26] using neuro-fuzzy systems or for the control of climate parameters on the
basis of user behaviour [27]. A more in-depth analysis of the use of user behaviour prediction for
comfort management in intelligent environments can be found in [28]. As explained in the following
section, we identify two types of behaviours: intra-activity behaviour (which describes how the user
performs activities) and inter-activity behaviour (which describes the actions and activity sequences
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that compose the user’s daily life). To model and predict the inter-activity behaviour, we use action
sequences, as this allows us to have a fine-grained description of the user conduct while abstracting
the model from specific sensor technology.

3. Actions, Activities and Behaviours

User behaviours are comprised of a large collection of defining elements, making them a complex
structure. In order to properly describe it, we have defined a series of concepts on the basis of
those proposed in [29]: actions, activities and behaviours. Actions describe the simplest conscious
movements, while behaviours describe the most complex conduct (see Figure 1). We have extended
the model proposed in [29] dividing the behaviours into two different types, intra-activity behaviours
and inter-activity behaviours. This allows us to better model different aspects of the user’s behaviour.

Figure 1. Elements of the user behaviour.

The different elements of the user behaviour are the following:

1. Actions are temporally short and conscious muscular movements made by the users (e.g., taking
a cup, opening the fridge, etc.).

2. Activities are temporally longer but finite and are composed of several actions (e.g., preparing
dinner, taking a shower, watching a movie, etc.).

3. Behaviours describe how the user performs these activities at different times. We have identified
two types of behaviours. The intra-activity behaviours describe how a single activity is performed
by a user at different times (e.g., while the user is preparing dinner, sometimes they may gather
all the ingredients before starting, while on other occasions, the user may take them as they
are needed). The inter-activity behaviours describe how the user chains different activities
(e.g., on Mondays after having breakfast, the user leaves the house to go to work, but in the
weekends they go to the main room).

The algorithm we present in this paper models the inter-activity behaviour, using actions to
describe it. One of the characteristics of our algorithm is that it works on the action-space instead of the
sensor-space. To be able to work with a more flexible representation of the information in the intelligent
environments, we map the raw sensor data to actions [19]. Other authors have proved that actions are
a suitable approach to model behaviours [30,31]. Using actions for behaviour recognition has also been
tackled in the domain of plan and goal recognition. Hoey et al. [32] use the same definition of actions
(short and conscious muscular movements) to analyse the hand-washing process of patients with
dementia. In their case, the mapping is from a video to a set of actions. Krüger et al. [33] use actions to
model activities using computational state-space models. In their case, the mapping is from inertial
measurements to actions, and the actions are grouped in different classes. Although different types
of sensors (video by Hoey et al., inertial measurements by Krüger et al., and binary sensors in our
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evaluation) and mapping methods are used, the same concept is present, working on the action-space
instead of the sensor-space. The mapping procedure changes according to the sensors used.

The advantage of working on the action-space is that different sensor types may detect the same
action type, simplifying and reducing the hypothesis space. This is even more important when using
semantic embeddings to represent these actions in the model (as we explain in Section 3.1), as the
reduced number of actions produces more significant embedding representations.

3.1. Semantic Embeddings for Action Representation

Traditionally in activity recognition or behaviour modelling tasks, the inputs (when using actions)
have been represented as IDs, strings or one-hot vectors. The problem with this type of representation
is that it does not contain any information about the action meaning. Using a one-hot vector alone,
it is not possible to compute how similar two actions are, and this information is not available for the
model that will use the actions. A similar problem occurs in the area of natural language processing
(NLP) with the representation of words. The solution to this is to use embeddings [34] to represent the
words, and we have used the same approach for the actions.

While one-hot vectors are sparse and the features of the model increase with the action dictionary
size, embeddings are dense and more computationally efficient, with the number of features being
constant, regardless of the number of action types. Most significantly for our model, embeddings
provide semantic meaning to the representation of the actions. Each action is represented as a point in
a multidimensional plane, which place them at a distance of the other actions, thus providing relations
of similitude and significance between them. It is important to note that the system proposed in this
paper does not compute explicitly the distances between the actions as an input for the model. Figure 2
shows an example of action embeddings. Given a sequence of actions Sact = [a1, a2, ..., ala ], where
la is the sequence length and ai ∈ <da indicates the action vector of the ith action in the sequence,
we let Context(ai) = [ai−n, . . . , ai−1, a1+1, . . . , ai+n] be the context of ai, where 2n is the length of the
context window. We let p(ai|Context(ai)) be the probability of the ith action in the sequence for action
ai. The target of the model used to create the embeddings is to optimize the log maximum likelihood
estimation (logMLE):

La(MLE) = ∑
ai∈S

log p(ai|Context(ai)) (1)

Figure 2. Representation of actions as embeddings.

In our model, we use the Word2Vec algorithm proposed by Mikolov et al. [34] to calculate the
embeddings, a widely used embedding model inspired originally by the neural network language
model developed by Bengio et al. [35]. Word2Vec has been used successfully in recent years in
very varied tasks, such as knowledge path extraction [36], sentiment analysis [37] or sentence
classification [38]. This combination of positive results and an easy to perform unsupervised learning
process are the reason why we have decided to use the Word2Vec algorithm. In our model, we use the
Word2Vec implementation in Gensim to calculate the embedding values for each action in the dataset.
Gensim is one of the most popular Python vector-space modelling libraries. We represent each action
with a vector of 50 float values, because of the small number of action instances compared with the
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number of words that are usually used in NLP tasks. Instead of providing the values directly to our
model, we have included an embedding layer as the input to the model. In this layer, we store the
procedural information on how to transform an action ID to its embedding. Adding this layer allows
us to train it with the rest of the model and, in this way, fine-tune the embedding values to the current
task, improving the general accuracy of the model.

3.2. LSTM-Based Network for Behaviour Modelling

In order to create a probabilistic model for behaviour prediction, we have used a deep neural
network architecture (https://github.com/aitoralmeida/c4a_behavior_recognition) (see Figure 3)
based on recurrent neural networks, specifically on LSTMs [9]. LSTMs are universal, in the sense that
they can theoretically compute anything that a computer can, given enough network units. These types
of networks are particularly well suited for modelling problems in which temporal relations are
relevant and the time gaps between the events are of unknown size. LSTMs have also been shown to
be prepared for sequential data structures [39]. In inter-activity behaviour modelling, the prediction
of the activity label for an action depends on the actions registered before. The recurrent memory
management of LSTMs allows us to model the problem considering those sequential dependencies.

While the LSTMs are the central element of the proposed architecture, they can be divided
into three different parts: the input module, the sequence modelling module and the predictive
module. The input module receives raw sensor data and maps it to actions using previously defined
equivalences [6]. These actions are then fed to the embedding layer. As discussed in Section 3.1,
embeddings provide a more expressive and dense model for the actions. The embedding layer receives
the action IDs and transforms them into embeddings with semantic meaning. This layer is configured
as trainable, that is, able to learn during the training process. The layer weights are initialized using
the values obtained by using the Word2Vec algorithm, as explained in the previous section. The action
embeddings obtained in the input module are then processed by the sequence modelling module.
As discussed before, LSTMs are the type of network layer most suitable to do this. The layer has a size
of 512 network units.

Finally, after the LSTM layer, we have the predictive module, which uses the sequence models
created by the LSTMs to predict the next action. This module is composed by densely connected layers
with different types of activations. This is a standard design in deep neural models. These densely
connected layers are those that learn to predict the next actions on the basis of the models extracted
by the previous layers. First we use two blocks of densely connected layers with rectified linear unit
(ReLU) activations [40]. ReLU activations are one of the most widely used activations for intermediate
densely connected layers in both classification and prediction problems. Each of these layers has a size
of 1024 network units. After the ReLU activation, we use dropout regularization [41] with a value
of 0.8. Dropout regularization prevents the complex co-adaptations of the fully connected layers by
ignoring randomly selected neurons during the training process. This prevents overfitting during the
training process. Finally, we use a third fully connected layer with a softmax activation function to
obtain the next action predictions. As we want to select the most probable actions for a given sequence,
softmax activation is the natural choice for the output layer.

In Section 4, we describe and analyse the different architectures and configurations that we have
evaluated, which include combinations of multiple LSTMs and fully connected layers.

https://github.com/aitoralmeida/c4a_behavior_recognition
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Figure 3. Long short-term memory network (LSTM) for behaviour modelling.

4. Evaluation

4.1. Experimental Setup

In order to validate our algorithm, we have used the dataset published by Kasteren et al. [14].
The dataset has been selected because it is widely used in the activity recognition and intelligent
environment literature. This allows other researchers working in both areas to better compare the
results of this paper with their own work. The dataset is the result of monitoring a 26-year-old man
in a three-room apartment where 14 binary sensors were installed. These sensors were installed in
locations such as doors, cupboards, refrigerators, freezers or toilets. Sensor data for 28 days was
collected for a total of 2120 sensor events and 245 activity instances. The annotated activities were the
following: “LeaveHouse”, “UseToilet”, “TakeShower”, “GoToBed”, “Prepare Breakfast”, “Prepare
Dinner” and “Get Drink”. In this specific case, the sensors were mapped one to one to actions,
resulting in the following set of actions: “UseDishwasher”, “OpenPansCupboard”, “ToiletFlush”,
“UseHallBedroomDoor”, “OpenPlatesCupboard”, “OpenCupsCupboard”, “OpenFridge”,
“UseMicrowave”, “UseHallBathroomDoor”, “UseWashingmachine”, “UseHallToiletDoor”,
“OpenFreezer”, “OpenGroceriesCupboard” and “UseFrontdoor”.

For the training process, the dataset was split into a training set (80% of the dataset) and
a validation set (20% of the dataset) of continuous days. These sets were composed by the raw
sensor data provided by Kasteren et al. In order to make the training process more streamlined,
we apply the sensor to action mappings offline. This allows us to train the deep neural model faster
while still having the raw sensor data as the input. To do the training, we use n actions as the
input (as described in the sequence-length experiments) to predict the next action (see Section 4.2
for a description of how accuracy is evaluated). That is, the training examples are the sequences of
actions, and the label is the next action that follows that sequence, being a supervised learning problem.
The proposed architectures have been implemented using Keras and were executed using TensorFlow
as the back-end. Each of the experiments was trained for 1000 epochs, with a batch size of 128, using
categorical cross-entropy as the loss function and Adam [42] as the optimizer. After the 1000 epochs,
we selected the best model using the validation accuracy as the fitness metric. The action embeddings
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were calculated using the full training set extracted from the Kasteren dataset and using the Word2Vec
[34] algorithm, and the embedding layer was configured as trainable.

To validate the results of the architecture, we performed three types of experiments:

• Architecture experiments: we evaluated different architectures, varying the number of LSTMs
and fully connected dense layers.

• Sequence length experiments: we evaluated the effects of altering the input action sequence
length.

• Time experiments: we evaluated the effects of taking into account the timestamps of the input
actions.

For the architecture experiments (see Table 1), we tried different dropout values (with a dropout
regularization after each fully connected layer with a ReLU activation), different numbers of LSTM
layers, different types of LSTM layers (normal and bidirectional [43]), different numbers of fully
connected layers and different sizes of fully connected layers. We also compared using embeddings
for the representation of the actions versus the more traditional approach of using one-hot vectors,
in order to ascertain the improvements that the embeddings provide.

Table 1. Architecture experiments. Dropout is the value of the dropout regularizations. LSTM No. is
the number of long short-term memory network (LSTM) layers in the architecture. LSTM size is the
size of the LSTM layers. Dense No. is the number of fully connected layers with a rectified linear unit
(ReLU) activation (all the architectures have a final fully connected layer with a softmax activation).
Dense size is the size of the fully connected layers with a ReLU activation. Sequence length is the length
of the input action sequence. Coding is the codifying strategy used for the actions, either embeddings
or a one-hot vector.

ID Dropout LSTM # LSTM Dense # Dense Sequence CodingSize Size Length

A1 0.4 1 (Standard) 512 1 1024 5 Embedding
A2 0.8 1 (Standard) 512 1 1024 5 Embedding
A3 0.8 1 (Standard) 512 2 1024 5 Embedding
A4 0.8 2 (Standard) 512 2 1024 5 Embedding
A5 0.2 1 (Standard) 512 5 50 5 Embedding
A6 0.8 1 (Bidirectional) 512 2 1024 5 Embedding
A7 0.8 1 (Standard) 512 2 1024 5 One-hot vector
A8 0.8 1 (Standard) 512 1 1024 5 One-hot vector
A9 0.8 2 (Standard) 512 2 1024 5 One-hot vector

For the sequence-length experiments (see Table 2), we varied the length of the input action
sequence in a network, but maintained the rest of the values to a dropout regularization of 0.8,
one LSTM layer with a size of 512, two fully connected layers with ReLU activation with a size of 1024
and one final fully connected layer with softmax activation. This was the same configuration used in
experiment A3.
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Table 2. Sequence-length experiments. Each experiment followed the same configuration used in A3
(see Table 1).

ID Sequence Length

S1 3
S2 1
S3 4
S4 6
S5 10
S6 30

Finally for the time experiments (see Figure 4), we tried different ways of taking into account
the timestamps of the actions in the input sequence. We analysed three different options. In the
first configuration (T1), we used two parallel LSTM layers, one for the action embeddings and the
other for the timestamps, concatenating the results of both layers before the fully connected layers
(late fusion strategy [44]). In the second configuration (T2), we concatenated the action embeddings
and the timestamps before a single LSTM layer (early fusion strategy [44]). In the third configuration
(T3), the embeddings were connected to an LSTM layer, whose output was concatenated with the
timestamps and sent to another LSTM layer (slow fusion strategy [44]). All the configurations used
a dropout regularization of 0.8, a LSTM layer size of 512, two fully connected layers with ReLU
activation with a size of 1024 and one final fully connected layer with softmax activation, as in
experiment A3. In all three architectures, the timestamps were represented as a two-position vector
([xt, yt]), representing the time in a circle with a radius of 1 and centred at the (0,0) coordinate. The xt

and yt values were calculated respectively as the cosine and sine of the angle angsec:

angsec =
secstimestamp ∗ 2 ∗ π

secsday
(2)

where secstimestamp is the timestamp expressed as seconds since midnight and secsday are the total
seconds in a day. Using angsec, xt is expressed as

xt = cos(angsec) (3)

and yt is expressed as
yt = sin(angsec) (4)

4.2. Metrics

To properly validate the predicting capabilities of the proposed architectures, we evaluated how
they perform using the top-k accuracy. The top-k accuracy is a standard metric in different prediction
and modelling tasks. The top-k accuracy (acc_at_k) is defined as

acc_at_k =
1
N

N

∑
i=1

1[ai ∈ Ck
i ] (5)

where ai is the expected action and Ck
i is the set of the top k predicted actions; 1[.]→ {0, 1} represents

the scoring function; when the condition in the first part is true, the function value is 1; otherwise,
the value is 0. In our case, if the ground-truth action is in the set of k predicted actions, the function
value is 1. To evaluate our models, we provide the accuracy for k values of 1, 2, 3, 4 and 5.
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Figure 4. Architectures used in the time experiments. Each of the experiments used a different fusion
strategy: T1 used late fusion, T2 used early fusion and T3 used slow fusion.

4.3. Results and Discussion

Tables 3–5 show the results for each type of experiment. In the case of the architecture experiments
(Table 3), adding more LSTM layers (A4) or more smaller, densely connected layers (A5) reduced
the overall accuracy of the model no matter the number of predictions. The usage of bidirectional
LSTMs (A6) was also detrimental. Generally, higher dropout regularization values (A2 and A3)
produced better results. Overall, the A3 configuration offered the best results across the board.
As can be seen in the table, the use of embeddings obtained better results when compared to
the same configurations using one-hot vectors (A3 vs. A7, A2 vs. A8 and A4 vs. A9). A more
semantically rich representation of the actions allows the same architecture to better model the user
behaviour. The advantage of using embeddings is that the training process to obtain them is completely
unsupervised, not requiring a significant overheat when comparing them against other representation
strategies such as one-hot vectors.

For the sequence-length experiments (Table 4), the best results were achieved using sequences
with a length of 4 (S3) or 5 (A3) actions. In this specific case, the optimal sequence length was closely
related with each deployment, being determined by the average action length of the activities in each
scenario. This value should be adjusted in each specific case in order to achieve the best results, and it
cannot be generalized.

Finally for the time experiments (Table 5), the evaluation shows that none of the proposed options
to take into account the timestamps (T1, T2 and T3) improved the results. When comparing these
with an architecture with a similar configuration and no timestamps (A3), the results were clearly
worse. Our initial intuition was that taking into account the timestamps would help to model the
temporal patterns in the actions, but the results show that this information is not so relevant for the
behaviour modelling task. We expect that the temporal data will be much more relevant in the activity
recognition task, particularly when discriminating between activity patterns with similar actions that
happen at different periods (preparing breakfast vs. preparing dinner).
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Table 3. Architecture experiments: Accuracy for different number of predictions.

ID acc_at_1 acc_at_2 acc_at_3 acc_at_4 acc_at_5

A1 0.4487 0.6367 0.7094 0.7948 0.8461
A2 0.4530 0.6239 0.7222 0.7692 0.8504
A3 0.4744 0.6282 0.7179 0.7905 0.8589
A4 0.4444 0.5940 0.6965 0.7735 0.8247
A5 0.4402 0.5982 0.7136 0.7820 0.8418
A6 0.4487 0.6068 0.7136 0.7905 0.8376
A7 0.4572 0.6153 0.7094 0.7820 0.8376
A8 0.4529 0.5811 0.7051 0.7735 0.8376
A9 0.4102 0.5940 0.7008 0.7777 0.8247

Table 4. Sequence-length experiments: Accuracy for different number of predictions.

ID acc_at_1 acc_at_2 acc_at_3 acc_at_4 acc_at_5

A3 0.4744 0.6282 0.7179 0.7905 0.8589
S1 0.4553 0.5957 0.7021 0.8 0.8553
S2 0.4255 0.6255 0.7021 0.8085 0.8382
S3 0.4658 0.6452 0.7264 0.7948 0.8504
S4 0.4700 0.6196 0.6965 0.7692 0.8461
S5 0.4592 0.6351 0.7210 0.7896 0.8369
S6 0.4192 0.5589 0.6593 0.7554 0.8122

Table 5. Time experiments: Accuracy for different number of predictions. The A3 experiment depicted
in the first row did not use any time information.

ID acc_at_1 acc_at_2 acc_at_3 acc_at_4 acc_at_5

A3 0.4744 0.6282 0.7179 0.7905 0.8589
T1 0.4487 0.6239 0.7094 0.7692 0.8076
T2 0.4487 0.6111 0.7008 0.7692 0.8247
T3 0.3846 0.5940 0.7051 0.7564 0.8076

A summary of the best results can be seen in Figure 5.

Figure 5. Best results in all the experiments.
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5. Conclusions and Future Work

In this paper, we have proposed a multilevel conceptual model that describes the user behaviour
using actions, activities, intra-activity behaviour and inter-activity behaviour Using this conceptual
model, we have presented a deep learning architecture based on LSTMs that models inter-activity
behaviour. Our architecture offers a probabilistic model that allows us to predict the user’s next
actions and to identify anomalous user behaviours. We have evaluated several architectures, analysing
how each one of them behaves for a different number of action predictions. The proposed behaviour
model is being used in the City4Age H2020 project to detect the risks related to the frailty and MCI in
young elders.

As future work, we plan to continue studying how the temporal and spatial information could be
integrated into the architecture to improve the statistical model. We would like to explore other deep
learning architectures, for example, using convolutional neural networks (CNNs) instead of LSTMs.
Using CNNs, we intend to model the different action n-grams that occur in the inter-activity behaviour.
This will allow us to compare different sequence modelling approaches using deep neural models.
We also plan to develop architectures that will cover other aspects of the proposed multilevel conceptual
model, starting with the activity recognition task. We plan to use the insights gained with the deep
learning architectures proposed in this paper in order to create an activity recognition algorithm.
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