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Abstract: Ultrafast processes are now accessible on the attosecond time scale due to the availability
of ultrashort XUV laser pulses. Noble-gas and halogen atoms remain important targets due to their
giant dipole resonance and Cooper minimum. Here, we calculate photoionization cross section,
asymmetry parameter and Wigner time delay using the time-dependent local-density approximation
(TDLDA), which includes the electron correlation effects. Our results are consistent with experimental
data and other theoretical calculations. The asymmetry parameter provides an extra layer of access to
the phase information of the photoionization processes. We find that halogen atoms bear a strong
resemblance on cross section, asymmetry parameter and time delay to their noble-gas neighbors.
Our predicted time delay should provide a guidance for future experiments on those atoms and
related molecules.

Keywords: attosecond time delay; giant dipole resonance; Cooper minimum; asymmetry parameter;
noble-gas atoms; halogen atoms

1. Introduction

Photoionization processes are traditionally studied using high-resolution synchrotron
radiations [1,2], which provides detailed information about the electronic structure of the target.
A complete description of photoionization requires information on both the amplitude and
phase of the dipole transition matrix elements, through the measurement of cross sections and
asymmetry parameter.

Thanks to the development of attosecond XUV-IR laser pump-probe technology [3–5], it is possible
to observe and control ultrafast processes in matter on their natural time scale of attoseconds. In general,
an electron is ionized from its parent target by absorbing a XUV photon, then the photoelectron’s
momentum and energy are shifted by the probing IR laser pulse. The time delay between the XUV
and IR pulse can be tuned coherently to record the dynamics of electrons from different initial states.

Experimentally, photoionization time delays have been measured for Helium [6], noble-gas
atoms [7–11], negative ions [12], molecules [13,14], and condensed matter systems [15,16].
Theoretical description often requires an inclusion of many-electron effects for quantitatively accurate
calculations [17–31]. Various aspects of the time delay in single photon ionization have been studied,
such as angular dependence [32–35], relativistic effects [36], Attochirp effect [37], and time delay in
two photon ionization [38]. Only recently, a well-known discrepancy between theory and experiment
on Ne 2p–2s ionization time delay was resolved [39]. For more details on the attosecond physics of
photoionization, a few recent reviews are available [40–43].

Photoionization time delay can be measured using single attosecond XUV pulse in a streaking
experiment [44,45], or using attosecond XUV pulse train in a RABBIT experiment (Reconstruction
of Attosecond Beating by Interference of Two-photon Transitions) [46]. In the frame of two-photon
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perturbation theory [25], both the streaking and RABBIT time delays are decomposed into two parts
τ = τW + τCLC, where τW and τCLC are the Wigner time delay [47,48] and Coulomb-laser coupling
(CLC) time delay, respectively. The Wigner time delay measures the group delay of photoelectron after
absorbing an XUV photon, and its accurate calculation frequently requires inclusion of many-electron
effects. The CLC time delay is the energy derivative of free-free transition phase following single IR
photon absorption. It can be estimated using an analytical formula [25] and does not contain any
information about the target structure, as its name suggests.

There has been a number of theoretical and experimental investigations of photoionization time
delays from noble-gas atoms in the presence of a giant dipole resonance or a Cooper minimum.
However, to the best of our knowledge, detailed theoretical time delay studies on halogen atoms,
such as iodine, are not available. The giant dipole resonance is a well-known feature in many
atomic photoionization spectra, which is a resonance-like broad peak that occurs above single-photon
ionization threshold. It has been interpreted as originating from a potential barrier in a particular
one-electron ionization channel [49,50] or as originating from a many-electron, collective oscillation
of the atomic electrons [51,52]. Cooper minimum is another feature in many atomic photoionization
spectra, which is a cross-section minimum and was explained as being due to a sign change of radial
dipole matrix elements as a function of photon frequency [53–55]. In the vicinity of giant dipole
resonance or Cooper minimum, the dipole transition matrix element usually undergoes π phase
change and results in structured time delay. The giant dipole resonance comes from ionization of
core electrons and is therefore known to persist even when the relevant atom becomes part of a larger
molecule. For instance, methyl iodide possesses a giant resonance at a similar photon energy as its
constituent atom, iodine [56]. Therefore, understanding the giant dipole resonance in non-noble-gas
atoms is highly relevant to streaking and RABBIT experiments on molecules, which have only recently
become available due to advances in data acquisition and analysis [14]. Moreover, to better understand
the nature of the giant dipole resonance, a comparison of Wigner delays between halogen and noble-gas
atoms is instructive.

In this paper, we calculate partial photoionization cross sections, asymmetry parameter, phase shift,
and Wigner time delay for both noble-gas and halogen atoms. The results are shown in graphs for
each pair of neighbor atoms, revealing the great resemblance between the two group. Behaviors of the
time delay are discussed for photon energy just above the ionization threshold, in the vicinity of giant
resonance and Cooper minimum. In the following sections, we introduce the theoretical methods in
Section 2, then present our results in Section 3, reveal the resemblance between noble-gas and halogen
atoms, and discuss the features of Wigner time delay near the giant dipole resonance and Cooper
minimum. Finally, a conclusion is drawn in Section 4 with possible future work.

2. Overview of Theoretical Methods

We calculate the photoionization dipole transition amplitudes of a neutral atom using the
formalism as outlined in the review paper [50]. We will first briefly describe the independent-electron
approach using the local-density approximation (LDA), then include the collective effects by TDLDA
code provided in Refs. [57,58]. Atomic units (a.u., h̄ = e = me = 1) are used throughout this paper
unless otherwise indicated.

2.1. Independent-Electron Approach

We first choose the photon polarization along the z axis, and calculate the one-photon dipole
transition amplitude 〈ψk |z|ψ0〉 of the ionization from a bound state ψ0 to a continuum state
ψk. The magnitude of the photoelectron momentum k satisfies the energy conservation relation
E ≡ k2/2 = ω + ε0, where ω is the photon energy and ε0 is energy of the initial state.

In the spherical coordinates, one can separate the radial and angular parts of the initial and final
states, using the partial-wave expansion:
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ψ0(r) = Yl0m0(Ωr)Rn0l0(r), (1)

ψk(r) = k−1/2 ∑
lm

exp
[
−i
(

σl + δl −
π

2
l
)]

Y∗lm(Ωk)REl(r)Ylm(Ωr), (2)

where σl ≡ arg Γ(l + 1− i/k) is the Coulomb phase shift, and δl is the short-range phase shift (with
respect to Coulomb waves) due to the short-range part of the potential. Both the initial and final state
wave functions are calculated using the LDA potential and a set of one-electron orbital equations[

−1
2
∇2 + V(r)

]
ψi(r) = εiψi(r), (3)

ρ(r) = ∑
i
|ψi(r)|2, (4)

V(r) = −Z
r
+
∫

ρ(r′)
|r− r′|dr′ + VXC[ρ(r)], (5)

where index i runs through occupied orbitals, Z is the atomic number, ρ(r) is the charge density,
and VXC is the exchange-correlation functional. Since the exact VXC is unknown, we approximate
it with the Xα model potential VXα[ρ(r)] = −3α[ 3

8π ρ(r)]1/3, in which the exchange parameter α is
adopted from Ref. [59]. Equations (3)–(5) are solved iteratively until a self-consistent result is reached.

After integrating over the angular part depending on Ωr and setting its value to Al , one can
obtain the one-photon dipole transition amplitude as follow:

〈ψk|z|ψ0〉 = k−1/2 ∑
l=l0±1

AlY∗lm0
(Ωk) exp

[
−i
(

σl + δl −
π

2
l
)] 〈

REl(r)|r|Rn0l0(r)
〉

. (6)

From here, we calculate cross sections and asymmetry parameter β (see Ref. [50] for detail).

2.2. Inclusion of Collective Effects by Time-Dependent Local-Density Approximation

If collective effects are important, for example, in low-energy ionization of heavy atoms,
the single-electron picture is only good as a qualitative description. In the linear response regime,
a TDLDA code provided in Refs. [57,58] is employed to calculate the collective effects of an atom in
the external dipole field z. A change of charge density δρ(r; ω) occurs under the influence of the laser
field, inducing a change, δV(r; ω), in the potential. Formally, the dipole transition amplitude should
be updated as

〈ψk|z|ψ0〉 → 〈ψk|z + δV(r; ω)|ψ0〉 , (7)

assuming the initial and final state wave functions are still calculated from the LDA potential
Equation (5). Both the induced charge density and potential can be solved iteratively from the
following equations

δρ(r; ω) =
∫

χ0(r, r′; ω)
[
z′ + δV(r′; ω)

]
dr′, (8)

δV(r; ω) =
∫

δρ(r′; ω)

|r− r′| dr′ +
∂VXC[ρ(r′)]

∂ρ(r′)

∣∣∣∣
r′=r

δρ(r; ω). (9)

In the above equation, χ0(r, r′; ω) is the susceptibility in the independent-electron approximation.
It is constructed from the single-electron orbitals

χ0(r, r′; ω) = ∑
i

ψ∗i (r)ψi(r′)G(r, r′; εi + ω) + ∑
i

ψi(r)ψ∗i (r
′)G∗(r, r′; εi −ω), (10)

where i runs over the occupied states and G is the Green’s function that satisfies the equation
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[
1
2
∇2 −V(r) + E

]
G(r, r′; E) = δ(r− r′). (11)

The Green’s function can be expanded in the spherical basis:

G(r, r′; E) = ∑
lm

Gl(r, r′; E)Y∗lm(Ωr)Ylm(Ωr′), (12)

where the radial part Gl(r, r′; E) satisfies the radial equation[
1
2

∂2

∂r2 +
1
r

∂

∂r
−V(r)− l(l + 1)

2r2 + E
]

Gl(r, r′; E) =
δ(r− r′)

r2 . (13)

Letting jl(r; E) and hl(r; E) be the regular and irregular solution to the homogeneous version of
Equation (13), one can construct the radial component of the Green’s function as

Gl(r, r′; E) =
jl(r<; E)hl(r>; E)

W[jl , hl ]
, (14)

where r< (r>) refers to the smaller (larger) one between r and r′. The Wronskian W[jl , hl ] is defined as

W[jl , hl ] ≡
1
2

r2
[

jl(r)
dhl(r)

dr
− hl(r)

djl(r)
dr

]
r=a

, (15)

which is independent of an arbitrary distance a. In practice, both the regular and irregular functions
jl(r; E) and hl(r; E) are solved numerically.

In summary, the collective effects of a many-electron atom are included as a frequency-dependent
induced potential δV(r; ω). It was shown in Ref. [57] that this induced potential has the same angular
part Y10(Ωr) as the external dipole field z, which enables us to perform an angular decomposition of
the dipole transition amplitude as follows

〈ψk|z + δV(r; ω)|ψ0〉 =k−1/2 ∑
l=l0±1

AlY∗lm0
(Ωk) exp

[
−i
(

σl + δl −
π

2
l
)]

×
〈

REl(r)|r + δV(r; ω)|Rn0l0(r)
〉

, (16)

=k−1/2 ∑
l=l0±1

AlY∗lm0
(Ωk) exp

[
−i
(

σl + δl + ηl −
π

2
l
)]

×
∣∣〈REl(r)|r + δV(r; ω)|Rn0l0(r)

〉∣∣ , (17)

where the induced potential δV(r; ω) is a complex function in general and contributes a induced phase
shift ηl ≡ − arg

〈
REl(r)|r + δV(r; ω)|Rn0l0(r)

〉
to the radial integration.

We solve the LDA potential Equation (5) and the induced potential Equation (9) using the code
provided in Ref. [58]. The Wigner time delay, which is the energy derivative of the dipole transition
phase, is calculated as

τW =
d

dE
arg 〈ψk|z + δV|ψ0〉 . (18)

For a linearly polarized laser, the most probable ionization is along the z direction and hence
m0 = 0. The dipole transition amplitude is evaluated for Ωk = 0 or integrated on Ωk over a solid
angle that depends on how the photoelectron spectrum is measured in the experiment.

3. Results and Discussion

In this section, we present our calculations of partial photoionization cross sections, asymmetry
parameters, phase shifts, and Wigner time delay for noble-gas and halogen atoms. The similarity
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between the two groups is revealed, and Wigner time delay in the vicinity of giant dipole resonance
and Cooper minimum is discussed.

3.1. General Features

Figures 1 and 2 shows the results for three outermost subshells of xenon, iodine, krypton,
and bromine atoms, while Figure 3 shows that for two outermost subshells of argon and chlorine
atoms. Our first impression is the great similarity between any two neighbor atoms on the periodic
table, which is not a surprise due to their similar electron configurations. Another reason is that
in the LDA approximation, the multiplet splitting of the halogen atoms is not included. The LDA
potential is a mean-field potential only depending on the radial wave functions Rnl , which indicates
spherical symmetry for the target atoms. However, due to electron interactions, open-shell atoms (like
halogen) don’t have exact spherical symmetry and there will be an energy splitting among different
ionic states. For example, the singly-ionized iodine configuration 5s25p4 has three ionic states 3P,
1D, and 1S, whose energy splitting is shown in Table 1 of Ref. [60]. Even though the LDA potential
can not resolve the energy splitting, it still provides valuable results for the halogen atoms. This is
because for deeply-bound subshells, the energy splitting is much smaller than its binding energy,
which suggests spherical symmetry is not a bad approximation. The partial photoionization cross
sections can be seen as a total cross sections from all the ionic states, while the asymmetry parameters,
phase shifts, and Wigner time delay can be treated as average values among the different ionic states.

For noble-gas atoms, both their partial cross sections and asymmetry parameters presented
in Figures 1–3 agree well with other theoretical and experimental data (Ref. [61] and references
there in). For halogen atoms, our calculations also have good qualitative agreement with Ref. [62].
More comparison is available for iodine atom in Refs. [60,63–65].

The asymmetry parameter β measures the channel interference effects for the photoionization
process. In the central-potential model, β for photoionization of an electron with initial orbital angular
momentum l0 is given by the Cooper-Zare formula [66]

β =
l0(l0 − 1)P2

l0
+ (l0 + 1)(l0 + 2)− 6l0(l0 + 1)Pl0 cos ∆

(2l0 + 1)
[
l0P2

l0
+ (l0 + 1)

] , (19)

Pl0 =

∣∣〈REl0−1(r)|r + δV(r; ω)|Rn0l0(r)
〉∣∣∣∣〈REl0+1(r)|r + δV(r; ω)|Rn0l0(r)
〉∣∣ , (20)

∆ = σl0+1 − σl0−1 + δl0+1 − δl0−1 + ηl0+1 − ηl0−1, (21)

where Pl0 is the ratio of the radial dipole transition amplitude and ∆ is the phase different between
two channels. Since β depends on the phase difference ∆, it provides an accuracy check of our phase
shift calculations by comparing with other available theoretical and experimental values. There are
two cases in which β does not depends on ∆ or only depends on it weakly, thus it does not provide
direct access to the phase shift. First, within LDA approximation, the s subshell has only one ionization
channel ns→ εp, thus Pl0 = 0 and its asymmetry parameter is a constant (not shown in all the figures).
It is known that the asymmetry parameter for s subshell will depends on energy if including the
initial-state correlations, spin-orbit and other relativistic interactions [67–69]. Secondly, at the Cooper
minimum, one ionization channel dominates and the channel interference effects are weak. In most
of the cases, Cooper minimum appears in the l0 → l0 + 1 channel, therefore Pl0 → ∞ and β→ l0−1

2l0+1
shows weak dependence on ∆.

Since Wigner time delay is an energy derivative of dipole transition phase, it is important
to examine the behavior of the phase shifts for a better understanding of Wigner time delay.
The short-range phase shift, δl , plus induced phase shift, ηl , are plotted in the third row of all figures.
Only the phase shifts of l0 → l0 + 1 channel are shown because this is where the interesting giant
resonance and Cooper minimum happens. The phase shifts of l0 → l0 − 1 channel just decrease
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monotonically. We did not plot the Coulomb phase shift σl due to its known analytical form and trivial
behavior. It increases quickly within 10 eV above the ionization threshold, then slowly approaches
zero at higher photon energy. The dramatic increase of the Coulomb phase shift near the threshold,
has a great impact on the Wigner time delay. As shown in the fourth row of all figures, Wigner time
delays tend to be infinity near the threshold, because of the large positive energy derivative of the
Coulomb phase shift.

In all the graphs of Figure 1, there are spikes located roughly at 63 eV, 140 eV and 180 eV for Xe,
and 50 eV, 120 eV and 165 eV for iodine. These are resonances generated from excited Rydberg states
when the ionization channels are opened for the 4d, 4p and 4s subshells. Since Rydberg resonances are
not the focus of this paper, we have removed some of the resonance data points to smooth the curve.
Spikes appearing in Figures 2 and 3 have the same origin.Version February 18, 2018 submitted to Appl. Sci. 8 of 13
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Figure 1. Left to right columns: calculations for xenon and iodine atoms. Top to bottom rows: total
cross section, asymmetry parameter, short-range plus induced phase shift, and Wigner time delay for
subshells 5p, 5s and 4d.

Figure 1. Left to right columns: calculations for xenon (a,c,e,g) and iodine (b,d,f,h) atoms. Top to
bottom rows: partial cross section (a,b), asymmetry parameter (c,d), short-range plus induced phase
shift (e,f), and Wigner time delay (g,h) for subshells 5p, 5s and 4d.
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Figure 2. Left to right columns: calculations for krypton and bromine atoms. Top to bottom rows: total
cross section, asymmetry parameter, short-range plus induced phase shift, and Wigner time delay for
subshells 4p, 4s and 3d.

Figure 2. Left to right columns: calculations for krypton (a,c,e,g) and bromine (b,d,f,h) atoms. Top to
bottom rows: partial cross section (a,b), asymmetry parameter (c,d), short-range plus induced phase
shift (e,f), and Wigner time delay (g,h) for subshells 4p, 4s and 3d.
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Figure 3. Left to right columns: calculations for argon and chlorine atoms. Top to bottom rows: total
cross section, asymmetry parameter, short-range plus induced phase shift, and Wigner time delay for
subshells 3p and 3s.

Figure 3. Left to right columns: calculations for argon (a,c,e,g) and chlorine (b,d,f,h) atoms. Top to
bottom rows: partial cross section (a,b); asymmetry parameter (c,d); short-range plus induced phase
shift (e,f); and Wigner time delay (g,h) for subshells 3p and 3s.
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3.2. Phase Shift and Time Delay in the Vicinity of Giant Resonance and Cooper Minimum

In this section, we discuss the general features of the Wigner time delay for noble-gas and halogen
atoms. A simple observation of the bottom row of Figures 1–3 suggests that one can divide the time
delay into three parts based on the photon energy. Within about 10 eV above the photoionization
threshold, all Wigner time delays show large positive values and decrease dramatically due to the
dominant Coulomb phase shift explained in the previous section. For photon energy larger than 200 eV
in Figures 1 and 2, or 70 eV in Figure 3, the phase shift (third row in all figures) becomes constant
and structureless, thus the time delay goes to zero. The photon energy range from tens of eV to a few
hundred eV is where the giant resonance and Cooper minimum happens, and we will discuss how
these cross section features affect the time delay.

Let us first investigate Figure 1 for Xe and I atoms. The calculations for these two atoms look very
similar. The following discussion applies to both of them and we will not distinguish them unless
it is necessary. A resonance, including the Cooper minimum, usually means a phase change of π.
The broad 4d giant resonance Figure 1a,b is dominated by the 4d→ ε f channel and stretches roughly
from 60–160 eV. Within the same photon energy range, the phase shift of 4d→ ε f channel increases
approximately at a constant slope from π to 2π, as shown in Figure 1e,f. Since the Wigner time delay is
the energy derivative of the phase shift, we can estimate the time delay in the giant resonance regime
using the average phase change slope

τW =
phase change π

energy change of 100 eV
=

π

3.675 a.u.
= 0.855 a.u. = 21 as. (22)

The calculated time delay Figure 1g,h decreases slowly across the giant resonance regime and is about
30 as at the resonance peak 100 eV. The estimated 21 as is therefore not too far off from the calculation.
In Figure 1a,b, the ionization cross sections of 5p and 5s subshells also have giant resonances due
the interchannel interaction with 4d subshell. Across the giant resonance energy range from 70 to
110 eV, Wigner time delays of 5p and 5s subshells in Figure 1g,h shows plateaus of roughly 10 as,
corresponding to a monotonic phase change across the giant resonance regime.

Besides giant resonance, Cooper minimum is also accompanied by a π phase change. In Figure 1e,f,
there are two Cooper minima at 50 and 150 eV for the 5p→ εd channel, and one Cooper minimum at
170 eV for the 4d→ ε f channel. The width of these minima is much narrower than the giant resonance
but still has a π phase change. One would expect large value (negative or positive) Wigner time
delay. But these dramatic phase changes does not contribute much to the time delay, because the
decreased angular momentum channels 5p→ εs and 4d→ εp dominate the ionization cross section
and have a monotonically-decreased phase shift (not shown in the figure), which will generate
moderate-value negative time delays. Our calculated time delays in Figure 1g,h support the above
analysis, showing negative sinks at the Cooper minimum regime. At both Cooper minima, 50 eV
for the 5p → εd channel and 170 eV for the 4d → ε f channel, the phase shifts quickly increase by π,
indicating large positive time delay, but the actual time delays are about −50 as due to the dominance
of l0 → l0 − 1 channels. In the vicinity of Cooper minimum, while the sign of time delay is determined
by the l0 → l0 − 1 channels, the width of the negative time delay sinks reflect the width of the Cooper
minimum. For example, in the 5p→ εd channel, the phase shift shows a wider Cooper minimum at
150 eV than at 50 eV, thus the time delay sink at 150 eV is broader.

The time delay in ionization from xenon and iodine 5s subshell is determined by a single ionization
channel 5s→ εp. The 5s time delay shows a deep narrow negative sink at 30 eV, and a shallow broad
negative sink at 130 eV, which are both determined by the phase shift at the Cooper minima. However,
as mentioned previously, the LDA approximation is unable to reproduce the β parameter deviations at
the Cooper minima [67–69], which raises concerns about the qualitative accuracy of current phase shift
calculations for s subshell. In order to reproduce the correct β parameter and phase shift, one needs to
include the initial-state correlations and relativistic effects.
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The cross section, β parameter, phase shift and time delay calculations for krypton, bromine,
argon and chlorine are presented in Figures 2 and 3. When the atoms become lighter, the dependence of
these quantities on photon energy becomes less structured compared to xenon and iodine. Except the
Kr 3d cross section shows a very broad giant resonance, ionizations from other subshells just contain a
single Cooper minimum. The behavior of time delay near the vicinity of giant resonance and Cooper
minimum is similar to the case of xenon and iodine.

4. Conclusions

In conclusion, we have calculated partial photoionization cross sections, asymmetry parameter,
phase shift, and Wigner time delay for both noble-gas and halogen atoms, finding great similarity
between these two groups in the presence of the giant dipole resonance. Our calculated cross sections
and asymmetry parameters agree well with other theoretical and experimental values. Wigner time
delay presents a flat plateau across the giant resonance regime, due to its slow and monotonic phase
change. Near the Cooper minimum, the Wigner time delay forms a negative sink, because the
l0 → l0 − 1 channel with decreasing phase dominates. If the breakdown of spherical symmetry
is considered, Wigner time delay should be calculated for different ionic states of halogen atoms.
For photoionization from s subshells, the TDLDA method is not able to reproduce the right asymmetry
parameters near the Cooper minimum. Future studies including the initial-state correlations and
relativistic effects should give the right asymmetry parameters and different time delays for these
cases as well. Our predicted time delays should be useful for future experiments on those atoms and
related molecules.
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Abbreviations

The following abbreviations are used in this manuscript:

as attosecond (10−18 s)
a.u. atomic units
CLC Coulomb-laser coupling
IR Infrared
RABBIT Reconstruction of attosecond harmonic beating by interference of two-photon transitions
(TD)LDA (Time-dependent) local-density approximation
XUV extreme ultraviolet
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