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Abstract: Due to the advantages of resource conservation and less exhaust emissions, compressed
air-powered vehicle has attracted more and more attention. To improve the power and efficiency
of air-powered vehicle, an air-powered hydraulic vehicle was proposed. As the main part of the
air-powered hydraulic vehicles, HP transformer (short for Hydropneumatic transformer) is used
to convert the pneumatic power to higher hydraulic power. In this study, to illustrate the energy
conversion characteristics of air-powered hydraulic vehicle, dimensionless mathematical model of the
vehicle’s working process was set up. Through experimental study on the vehicle, the dimensionless
model was verified. Through simulation study on the vehicle, the following can be obtained: firstly,
the increase of the hydraulic chamber orifice and the area ratio of the pistons can lead to a higher
output power, while output pressure is just the opposite. Moreover, the increase of the output
pressure and the aperture of the hydraulic chamber can lead to a higher efficiency, while area ratio of
the pistons played the opposite role. This research can be referred to in the performance and design
optimization of the HP transformers.

Keywords: hydropneumatic transformer; air-powered vehicle; working characteristic; modelling
simulation; experimental study

1. Introduction

In recent years, to reducing emissions, new energy vehicles has been widely promoted. As a kind
of new energy vehicle, air-powered vehicle has some advantages, such as simple structure, lightweight,
explosion prevention, no pollution emissions, and so on. Hence, it has important potentials in mines,
chemical plants and airports, as well as having attracted more and more engineers’ attention [1–4].

In 2013, Shaw et al. proposed an air-oil converter using an equal-area cylinder [5]. The converter
was driven by the compressed air. In this article, the system efficiency was shown to be nearly 50% at
200 rpm according to the calculations and experimental study. However, because of the areas of air
cylinder and the oil cylinder are equal, so the pressure of the compressed air must be higher than the
output oil pressure, so the residual air pressure may lead to a lower efficiency. Researchers of Yijuan
Zang in the same year has identified a new pressurizing system which can achieve a high pressure
output with the use of a new type bidirectional Pneumatic-hydraulic converter. Because of the saving
of the hydraulic station, it can save the space and can reduce the energy consumption. However, one of
the key issues in this study is that the two hydraulic chamber may have an effect on the efficiency [6].
So in 2016, Yan Shi, Maolin Cai et al. proposed an expansion energy used Hydropneumatic transformer
(short for EEUHP transformer). Compared with before, it has a compact size and excellent flexibility,
and can improve the system efficiency using the expansion energy of the compressed air. However,
one regret is the demand of electricity, so the safety performance need improvement [7].

In this study, firstly, the working principle of the HP transformer has been analyzed. In addition,
according to the analysis, power system of the air-powered vehicle used HP transformer has been
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presented. Furthermore, the mathematic model of the HP transformer was built. By selecting the
appropriate parameter values, a dimensionless model was set up. To confirm the dimensionless
mathematic model, an archetype was built and studied. Moreover, the output characteristics of the HP
transformer can be studied through simulation study. Finally, the influence of the key parameters was
showed to get the most suitable value.

2. Structure of the Power System of the Air-Powered Vehicle

Structure of the power system of the air-powered vehicle was showed as Figure 1. From the
diagram, we can easily get that the power system is primarily comprised by a compressed air tank,
the HP transformer and a hydraulic motor. As the most important component of the system, the HP
transformer consists of a pressure regulator, pneumatic and hydraulic chambers and an accumulator.
Compressed air is stored in the air tank to provide the proper input pressure. The accumulator is used
to accumulate and release energy [8,9].
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Figure 1. Composition of the compressed air-powered vehicle: 1 Air source; 2 Pressure governor;  
3 Silencer; 4 Electromagnetic directional valve; 5 Accumulator; 6 Hydraulic motor; 7 Retaining valve; 
8 Left hydraulic cylinder; 9 Pneumatic cylinder; 10 Right hydraulic cylinder; 11 Mechanical part. 

Using compressed air, the air source can easily provide high enough input pressure. When the 
electromagnetic directional valve change to its left position, the left pneumatic chamber is connected 
with the air source. The compressed air flows into the left pneumatic chamber from the air source 
and drive the piston toward right. The piston then pushes the oil out of the chamber from the right 
hydraulic chamber to the hydraulic motor. When the electromagnetic directional valve change to its 
right position, the compressed air charged into the right chamber and drive the position towards left. 
Oil in the left hydraulic chamber get the force from the piston and was pressurized out to the 
hydraulic motor [10]. 
  

Figure 1. Composition of the compressed air-powered vehicle: 1 Air source; 2 Pressure governor;
3 Silencer; 4 Electromagnetic directional valve; 5 Accumulator; 6 Hydraulic motor; 7 Retaining valve;
8 Left hydraulic cylinder; 9 Pneumatic cylinder; 10 Right hydraulic cylinder; 11 Mechanical part.

Using compressed air, the air source can easily provide high enough input pressure. When the
electromagnetic directional valve change to its left position, the left pneumatic chamber is connected
with the air source. The compressed air flows into the left pneumatic chamber from the air source
and drive the piston toward right. The piston then pushes the oil out of the chamber from the right
hydraulic chamber to the hydraulic motor. When the electromagnetic directional valve change to its
right position, the compressed air charged into the right chamber and drive the position towards left.
Oil in the left hydraulic chamber get the force from the piston and was pressurized out to the hydraulic
motor [10].
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3. Mathematical Modeling and Experimental Verification

According to the careful study of the principles of the HP transformer, the basic mathematical
was set up as follows [11].

3.1. Pneumatic System Energy Equations

In this study, all the ideal gas formulas can be used because of the hypothesis that the compressed
air can be deemed to be an ideal gas. Ignore the impact of the air leakage, the energy equations for the
charge and discharge side of the pneumatic chamber can be expressed by the following equations [8]:

Cνm
dT
dt

= S× hd(Ta − T) + RqT − pAu (1)

Cνm
dT
dt

= (S× hc + Cν × q)(Ta − T) + RqTa − pAu (2)

where

Cv: specific thermal capacity at constant volume, 718 J/(kg·K);
m: air mass;
T: temperature in pneumatic chamber;
t: time;
S: effective air heat exchange area in pneumatic chamber;
q: air mass flow in pneumatic chamber;
R: gas constant, 287 J/(kg·K);
Ta: ambient temperature;
p: pneumatic pressure;
A: pneumatic piston area;
u: piston velocity;
hc: heat exchange coefficient in the charge side;
hd: heat exchange coefficient in the discharge side.

3.2. Continuity Equations of Pneumatic System

On the basis of the pressure ratio Pd/Pu, equations describing the air mass flow while through
a throttle can be given as follows (here 0.528 is the critical pressure ratio) [7]:

q =


Aep pu√

Tu

√
2κ

R(κ−1)

[(
pd
pu

) 2
κ −

(
pd
pu

) κ+1
κ

]
pd
pu

> 0.528

Aep pu√
Tu

( 2
κ+1
) 1

κ−1
√

2κ
R(κ+1)

pd
pu
≤ 0.528

(3)

where

Aep: effective pneumatic area in intake and exhaust ports;
pu: pressure in upstream side;
pd: pressure in downstream side;
κ: specific thermal ratio;
Tu: upstream side temperature.
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3.3. State Equation of Pneumatic System

By deriving the state equation of ideal gases, we can get the equation which describe the air
pressure changes in the two-pneumatic chamber [12,13]:

dp
dt

=
1
V

[
pV
T
× dT

dt
+ RTq− pAu

]
(4)

where V represents air volume.

3.4. Motion Equations

The velocity of the piston is calculated from Newton’s second law of motion. In this study,
the friction force model is considered to be the sum of the Coulomb friction and viscous friction.
The viscous friction force is considered to be a linear function of piston velocity. The forces on the
piston of the HP transformer are shown in Figure 2.
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The right side was considered to be the positive direction of the vector. The motion equations of
the piston can be given by the following equations:

d2x
dt2 =

 1
M

(
pdA × Adl − pdB × Adr + pbA1 × Abl1 − pbB1 × Abr1 + pbA2 × Abl2 − pbB2 × Abr2 − Ff

)
x 6= 0, L

0 x = 0, L
(5)

Ff =

{
Fs v = 0

Fc + Cu v 6= 0
(6)

where

x: piston displacement;
M: piston mass;
Ff: friction force;

Fs: maximum static friction force;
Fc: Coulomb friction force;
C: viscosity friction coefficient;
pdA: pressure of driving chamber A;
pdB: pressure of driving chamber B;
Adl: left piston area of driving chamber A;
Adr: right piston area of driving chamber B;
pbA1: pressure of the first pumping chamber A;
pbB1: pressure of the first pumping chamber B;
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Abl1: left piston area of the first pumping chamber A;
Abr1: right piston area of the first pumping chamber B;
pbA2: pressure of the second pumping chamber A;
pbB2: pressure of the second pumping chamber B;
Abl2: left piston area of the second pumping chamber A;
Abr2: right piston area of the second pumping chamber B;
L: motion stroke.

3.5. Pressure Equations of Hydraulic System

The continuous equations of the driving chamber and can be written as [14]:

dplh
dt

=
β

Vlh
(Qlhin −Qlhout − Ahu) (7)

dprh
dt

=
β

Vrh
(Qrhin −Qrhout + Ahu) (8)

where

β: effective bulk modulus;
Vlh: hydraulic volume in left chamber;
Qlhin: input hydraulic volume flow in left chamber;
Qlhout: output hydraulic volume flow in left chamber;
Ah: hydraulic chamber area;
Vrh: hydraulic volume in right chamber;
Qrhin: input hydraulic volume flow in right chamber;
Qrhout: output hydraulic volume flow in right chamber;
plp: pneumatic pressure in left chamber;

prp: pneumatic pressure in right chamber;
plh: hydraulic pressure in left chamber;
prh: hydraulic pressure in right chamber.

3.6. Flow Equation of Hydraulic System

The volume flow of oil through a throttle can be described as:

Qh = Cd Aeh

√
2(puh − pdh)

ρh
(9)

where

Cd: pore throttling coefficient;
Aeh: effective throttle area;
ρh: flow density.

According to Equation (9), when the effective area of intake and exhaust port was fixed, output
flow of oil can be increased through increasing the pressure in the working boosting chambers and
decreasing output oil pressure [15].

3.7. Power of Pneumatic System

In this study, an energy consumption evaluation criterion of pneumatic system, namely air power,
is adopted. This energy consumption evaluation criterion of compressed air has been formulated as
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a National Standard of China (GB/T 30833-2014). According to the references [16–18], the air power of
compressed air is expressed as:

Pp = paQp

[
ln

pp

pa
+

k
k− 1

(
Tp − Ta

Ta
− ln

Tp

Ta

)]
(10)

where

pa: ambient air pressure.
θa: ambient air temperature.

3.8. Power of Hydraulic System

The power of pressurized oil is given as [19–22]:

Ph = phQh (11)

4. Dimensionless Modelling of HP Transformer

By selecting the appropriate reference values, in this part, the basic mathematical model is
transformed to a dimensionless expression for simulation. Therefore, based on the reference values,
the dynamic characteristics of the HP transformer can be obtained through checking diagrams of
dimensionless parameters. Moreover, through the analysis of the dimensionless model and reference
values, the influences of independent parameters on the dynamic characteristics of the HP transformer
can be obtained. In addition, that is significant to grasp the essential characteristics of the HP
transformer [17].

4.1. Reference Values

When the pressure in the pneumatic cylinder is as the same as the atmosphere pressure,
the air mass flow from air source to the pneumatic cylinder, named the maximum air mass flow,
can be obtained:

qpmax =
Aep ps√

Ts

(
2

κ + 1

) 1
κ−1
√

2κ

R(κ + 1)
(12)

The maximum charged air mass of a pneumatic chamber is named as the maximum air mass,
mmax. The time to discharge mmax of air at qmax of air mass flow is named as the minimum time, which
can be calculated as:

tmin =
mpmax

qpmax
(13)

To expel a full pneumatic chamber of oil to the oil tank with the minimum time, Tmin, the hydraulic
oil volume flow and the pressure in the hydraulic chamber are named as the maximum hydraulic
volume flow, Qhmax, and the highest hydraulic pressure, pf, which can be gotten as:

Qhmax =
Vh

tmin
= Cd Aep

√√√√2
(

p f − pa

)
ρh

= Ahu (14)

p f =
ρhV2

h
2C2

d A2
ept2

min
+ pa (15)

The reference values and the dimensionless variables are shown in Table 1. The basic mathematical
model can be made dimensionless as described in the following section.
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The ratio of the maximum power of compressed air (Ppmax) and the maximum power of hydraulic
oil (Phmax) is defined as the efficiency coefficient (η0) of HP transformer, which is used for calculation
of the efficiency of HP transformer. The efficiency coefficient (η0) of HP transformer is given as

η0 =
Ppmax

Phmax
(16)

Table 1. Reference values and dimensionless variables.

Variable Reference Value Dimensionless Variable

Affective area Ap
Area of e piston of the
pneumatic chamber

Ae
∗ = Ae

Ap

Time tmin
Time to totally exhaust Wb of air

at Gmax of air mass flow
t∗ = t

tmin

Velocity u = L
tmin

Average velocity u∗ = u
u

Pressure Ps Supply pressure P∗ = P
Ps

Temperature Ta Atmosphere temperature T∗ = T
Ta

Air mass flow qmax Maximum air mass flow q∗ = q
qmax

Volume flow Qmax = Vh
tmin

= Ahu Maximum oil volume flow Q∗ = Q
Qmax

Air mass mpmax = roupn ∗Vp Maximum air mass m∗ = m
mpmax

Displacement L Piston stroke x∗ = x
L

Volume Vpmax = L× Ap
Maximum volume of pneumatic

chamber
V∗ = V

Vpmax

Power of compressed air Ppmax =
paqmax

ρa
ln ps

pa

Maximum power of
compressed air P∗p =

Pp
Ppmax

Power of hydraulic oil Phmax = psQmax

Maximum power of hydraulic
oil when its pressure equals the

supply pressure (ps)
P∗h = Ph

Phmax

4.2. Dimensionless Energy Equations of Pneumatic System

The dimensionless energy equations for the discharge side and the charge side can be written
as follows:

m∗
dT∗

dt∗
=

S∗

S∗pt∗d
(1− T∗) + (k− 1)(p∗u∗ − q∗T∗) (17)

m∗
dT∗

dt∗
=

(
S∗

S∗pt∗c
+ q∗

)
(1− T∗) + (k− 1)(q∗ − p∗u∗) (18)

where, the parameter Td*, which is the dimensionless temperature settling time of the discharge side,
is the ratio of the temperature settling time constant, Thd, and the isothermal pressure time constant,
Tp. The dimensionless and dimensional time constant can be written as follows:

t∗d =
td

tmin
(19)

td =
Cvmpmax

Sphd
(20)

Sp = 2Ap + 2L
√

πAp (21)

The dimensionless maximum heat transfer area can be given as:

S∗p =
2Ap + 2L

√
πAp

Ap
= 2 + 2L

√
π

Ap
(22)
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For the charge side:

t∗c =
tc

tmin
(23)

tc =
Cvmpmax

Sphc
(24)

4.3. Dimensionless Continuity Equations of Pneumatic System

Dimensionless Continuity Equations of Pneumatic System can be given as:

q∗ =


ppu
∗

√
Tu∗

[(
p∗d

pu∗

) 2
κ −

(
p∗d

pu∗

) κ+1
κ

]
p∗d

pu∗
> 0.528

ppu
∗

√
Tu∗

p∗d
pu∗
≤ 0.528

(25)

4.4. Dimensionless State Equation of Pneumatic System

Dimensionless State Equation of Pneumatic System can be given as:

dpp
∗

dt∗
=

pp
∗

Tp∗
dTp

∗

dt∗
+

Tp
∗q∗

Vp∗
−

pp
∗u∗

Vp∗
(26)

4.5. Motion Equations

Motion Equations can be given as:

d2x∗

d(t∗)2 =


(

1
t∗f

)2(
plh
∗ × Ah

∗ − prh
∗ × Ah

∗ + plp
∗ − prp

∗ − Ff
∗
)

x∗ 6= 0, 1

0 x∗ = 0, 1
(27)

Ff =

{
Fs
∗ u∗ = 0

Fc
∗ + C∗u∗ u∗ 6= 0

(28)

where

Fs*: dimensionless maximum static friction force;
Fc*: dimensionless Coulomb friction force;
C*: dimensional viscous friction force coefficient.

All of the parameters can be given as follows:

Fs
∗ =

Fs

Ps Ap
(29)

Fc
∗ =

Fc

Ps Ap
(30)

C∗ =
C× u0

Ps Ap
(31)

Dimensionless parameter, Tf* corresponds to the J-parameter that is used in the current selection
method of a pneumatic cylinder. The J-parameter is given by Equation (35).

t f
∗ =

t f

tmin
(32)
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t f =

√
ML

ApPs
(33)

J =
t2

pPs Ap

LM
(34)

J =

(
1

t f
∗

)2

(35)

As the J-parameter represents a coefficient of acceleration, it was considered that this parameter
related to the inertia of the HP transformer, and it is known as the inertia coefficient. The dimensionless
parameter, Tf*, is regarded as the dimensionless natural period of the HP transformer.

4.6. Dimensionless Pressure Equations of Hydraulic System

Dimensionless Pressure Equations of Hydraulic System can be given as:

dplh
∗

dt∗
= β∗(Ah∗ ∗Q∗lhin − Ah∗ ∗Q∗lhout − u∗) (36)

dprh
∗

dt∗
= β∗(Q∗rhin −Q∗rhout + u∗) (37)

where
β∗ =

β

ps
(38)

4.7. Dimensionless Flow Equations of Hydraulic System

Dimensionless Flow Equations of Hydraulic System can be given as:

Qhin
∗ = A∗ehin

√
p∗uh − p∗dh
p∗f − p∗a

(39)

Qhout
∗ = A∗ehout

√
p∗uh − p∗dh
p∗f − p∗a

(40)

A∗ehin =
Aehin
Aep

(41)

A∗ehout =
Aehout

Aep
(42)

4.8. Power of Pneumatic System

Power of Pneumatic System can be calculated as:

Pp
∗ =

qp
∗
[
ln pp

∗

pa∗
+ k

k−1

(
Tp
∗ − 1− ln Tp

∗)]
ln 1

pa∗
(43)

4.9. Power of Hydraulic System

Power of hydraulic System can be calculated as:

Ph
∗ = ph

∗Qh
∗ (44)
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5. Simulation and Experimental Study on a HP Transformer

5.1. Experimental Verification of the Mathematical Model

To verify the dimensionless mathematical model, a compressed air-powered hydraulic system
was set up. Its schematic structure can refer to Figure 3. The compressed air, charged from the air
source, flowed through a regulator (IR3010-03BG, SMC, Tokyo, Japan), and its pressure was reduced
to a fixed value (about 0.6 MPa). When the compressed air was supplied to the Hydropneumatic
transformer (SWB-100D-5, SIWELL Supercharger Technology, Suzhou, China), pressurized hydraulic
oil was output from the HP transformer. In order to stabilize the output pressure of the HP transformer,
an accumulator (GXQA-0.35/25-L-A, AOQI, Guangdong, China) and a relief valve (DBDS6P1X/315,
Rexroth, Lohr am Main, Germany) were installed in the downstream of the compressed air-powered
hydraulic system. A pressure sensor (AK-4B, 701, Beijing, China), a data acquisition card (USB4711,
Advantech, Taipei, Taiwan) and a computer (X430, Lenovo, Beijing, China) were utilized to measure
the output pressure of the HP transformer.

A dedicated test bench for the HP transformer, as shown in Figure 4, was designed and built to
measure the output pressure of the HP transformer.
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Figure 4. Dedicated test bench for the HP transformer.

According to previous study [17], because the temperature of the compressed air is almost same
as the atmospheric temperature, so the influence of the temperature on the working characteristics
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of a pneumatic booster can be neglected. As the structure and working principle of the pneumatic
booster like the structure and working principle of the HP transformer, in this study, the working
process of the HP transformer is considered to be an isothermal process.

In simulation and experimental study on the HP transformer, the values of the dimensionless
area of the hydraulic chamber and dimensionless output oil pressure were set to 0.25 and 2.92. As the
output pressure of the HP transformer can be acquired with a pressure sensor, which is more precise
and cheaper than a hydraulic flow sensor. Figure 5 depicts the simulation and experimental output
hydraulic pressure characteristics.
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Figure 5. Simulation and experimental contrast curves. (a) Simulation and experimental curves
of the dimensionless output hydraulic pressure; (b) Simulation and experimental curves of the
dimensionless flow.

As shown in Figure 5, it is clear that the simulation results are consistent with the experimental
results, and that verifies the mathematical model above. However, there are two differences between
the simulation results and the experimental results: (1) The dimensionless output pressure in the
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experiment results increases more sluggishly than the dimensionless output pressure in the simulation
results; (2) There is a fluctuation in the dimensionless output pressure of the HP transformer, when the
dimensionless output pressure gets to its top.

The main reasons for the differences are listed as follows. In the experiment, the accumulator
absorbed the fluctuation of the dimensionless output pressure, which slowed down the increase of
the dimensionless output pressure of the HP transformer. Moreover, the opening size of the relief
valve was regulated according to the output pressure of the HP transformer. With a decrease in the
output pressure of the HP transformer, the opening size of the relief valve got smaller, then the output
pressure of the HP transformer rose accordingly.

5.2. Dynamic Power Characteristics of the HP Transformer

The simulation study on the HP transformer was proceeded according to the study above, and
the input power and output power dynamics of the HP transformer can be obtained, which are shown
in Figure 6.
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Figure 6. Dimensionless input power output power characteristics of the HP transformer.
(a) Dimensionless input power of the HP transformer; (b) Dimensionless output power of the
HP transformer.

As shown in Figure 6, it is clear that, firstly, the dimensionless input power and output power
fluctuate regularly. Furthermore, when the HP transformer starts to work when the piston moves from
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its destination, after a pause, the dimensionless input power and output power increase rapidly and
get their platforms. However, when the piston reaches another destination, the dimensionless input
power and output power decrease to zero immediately. Finally, as the efficiency coefficient (η0) of
HP transformer is about 0.6522, when the dimensionless input power and output power reach their
platforms, the efficiency of the HP transformer is 47.52% approximately.

6. Study on the Power and Efficiency of the HP Transformer

Based on the structure and principle of HP transformer, in order to get the parameters which can
make the HP transformer better, we carried out the study about the efficiency and output power. After
that, the parameters affecting these two properties were clarified.

To illustrate the influence of the dimensionless parameters on the output power and efficiency
of HP transformer, each parameter changed for comparison when the other parameters are constant.
The values of the dimensionless parameters are shown in Table 2.

Table 2. Values of the dimensionless parameters.

Parameters Tf* Fs* C* Fc* Ah* Po* Aeh*

Values 0.1425 0.00018 0.0004 0.00036 0.25 2.857 0.000625

6.1. Influence of the Output Pressure

In this part, for getting the change rules of the output power and efficiency when change the
output oil pressure, we keep other parameters such as the dimensionless aperture of the hydraulic
chamber orifice (set to 0.028), the area ratio of the pistons (set to 4) stay the same when setting
the dimensionless output oil pressure to 2.42, 2.57, 2.71, 2.85 and 3.00. After careful analysis and
professional simulation study, we get the results shown in Figures 7 and 8. As we can see, curves in
Figure 1 depicts the dynamic characteristics of the dimensionless output power, and curve in Figure 8a
shows the variation relationship of the dimensionless output power and the dimensionless output oil
pressure. Curve in Figure 8b shows the corresponding efficiency of the system with different output
oil pressure.Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 19 
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Figure 7. Dimensionless output power–time curves of the power system.
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Figure 8. Relationships of the output power, efficiency and the output pressure. (a) Output power trend
curve influenced by the output pressure; (b) Efficiency trend curve influenced by the output pressure.

Through careful study on curves in Figures 7 and 8, two results can be obtained as follows:

(1) When the dimensionless output oil pressure increases with a proper difference from 2.42 to 3.00,
the output power decreases from 0.043 to 0.0322 at the same time. This phenomenon can be
explained as the rise of the output oil pressure may result in the decrease of the output flow,
so the output oil pressure which is calculated by output flow and output oil pressure decreases.

(2) As we can see in Figure 8, the curves of the dimensionless output power, system efficiency and
dimensionless output oil pressure are similar to the trend line.

6.2. Influence of the Aperture of the Orifice of the Hydraulic Chamber

In this part, for getting the change rules of the dimensionless output power and efficiency when
change the aperture of the orifice of the hydraulic chamber, we keep other parameters such as the
dimensionless output oil pressure (set to 2.71), the area ratio of the pistons (set to 4) stay the same
when setting the dimensionless aperture of the orifice of the hydraulic chamber to 0.0256, 0.0267,
0.0278, 0.0289 and 0.030. After careful analysis and professional simulation study, we get the results
shown in Figures 9 and 10. As we can see, curves in Figure 9 depicts the dynamic characteristics
of the dimensionless output power, and curve in Figure 10a shows the variation relationship of the
dimensionless output power and the dimensionless aperture of the orifice of the hydraulic chamber.
Curve in Figure 10b shows the corresponding efficiency of the system with different aperture.
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Figure 9. Dimensionless output power–time curves of the power system.
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Figure 10. Relationships of dimensionless output power, efficiency and the aperture of the orifice
of the hydraulic chamber. (a) Output power trend curve influenced by the aperture of the orifice
of the hydraulic chamber; (b) Efficiency trend curve influenced by the aperture of the orifice of the
hydraulic chamber.
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Through careful study on curves in Figures 9 and 10, two results can be obtained as follows:

(1) When the dimensionless aperture increases with a proper difference from 0.0256 to 0.030, the
output power increase from 0.015 to 0.05 and the efficiency increase from 33.56% to 34.7% properly.
This phenomenon can be explained as follows: when the aperture of the orifice of the hydraulic
increase, the output flow is sure increase, so the output power increase while the output pressure
keep constant

(2) As we can see in Figure 10, the curves of the dimensionless output power, system efficiency and
dimensionless aperture of the hydraulic chamber orifice are similar to the trendline.

6.3. Influence of the Area Ratio of the Pistons

In this part, for getting the change rules of the dimensionless output power and efficiency when
change the area ratio of the pistons, we keep other parameters such as the dimensionless output oil
pressure (set to 2.71), the dimensionless aperture of the hydraulic chamber orifice (set to 0.028) stay the
same when setting the dimensionless area ratio of the pistons to 3.6, 3.8, 4.0, 4.2 and 4.4. After careful
analysis and professional simulation study, we get the results shown in Figures 11 and 12. As we
can see, curves in Figure 11 depicts the dynamic characteristics of the dimensionless output power,
and curve in Figure 12a shows the variation relationship of the dimensionless output power and the
area ratio of the pistons. Curve in Figure 12b shows the corresponding efficiency of the system with
different area ratio of the pistons.
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Figure 11. Dimensionless output power–time curves of the power system.
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Figure 12. Relationships of the output power, efficiency and the area ratio of the pistons. (a) Output
power trend curve influenced by the area ratio of the pistons; (b) Efficiency trend curve influenced by
the area ratio of the pistons.

After the detailed analysis of Figures 11 and 12, two results can be obtained.

(1) With the increase of the dimensionless area ratio of the pistons, the output power increases from
0.028 to 0.048 while the efficiency decreases from 34.79% to 33.42%. This is because when the
area of the pneumatic piston is constant and the area of the hydraulic piston increase, the output
pressure increases correspondingly. So the output power, which is calculated by output pressure
and output flow, will increase.

(2) As we can see in Figures 8, 10 and 12, the curves of the dimensionless output power, system
efficiency and dimensionless area ratio of the pistons are almost linear.

7. Conclusions

In this study, a dimensionless mathematic model of the power systems of air-powered hydraulic
vehicle was set up. The dimensionless model, which is different from the original model, has many
advantages: firstly, unit conversion needs to be considered when the original model is calculated,
but the dimensionless model is clearly easy; secondly, the dimensionless model is convenient to make
the comparison of parameters, but the original model plays opposite.

To confirm the dimensionless mathematic model, a protocol was built and studied. Through
experimental and simulation studies on the power system of air-powered hydraulic vehicle, it can be
obtained as follows:

(1) The experimental curve of the archetype has a good match with the simulation curve of the
dimensionless model, so it can be derived that the mathematical model is effective and accurate.

(2) When the dimensionless output pressure increase from 2.42 to 3.00, the dimensionless output
power decrease from 0.043 to 0.0322, while the system efficiency increase from 33.54% to 34.8%.

(3) While the dimensionless aperture increases from 0.0256 to 0.030, the dimensionless output power
increase from 0.015 to 0.05, the system efficiency increase from 33.56% to 34.7% at the same time.

(4) When the area ratio of the pistons increase from 3.6 to 4.4, the dimensionless output power
increase from 0.028 to 0.048, and the system efficiency decrease from 34.79% to 33.42% properly.

From the simulation and analysis, we can get the conclusion that the increase of the aperture of the
hydraulic chamber orifice and the area of the pistons can lead to a higher output power, and the increase
of the output pressure and the aperture of the hydraulic chamber orifice can lead to a higher efficiency.
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This research can be referred to in the performance and design optimization of the HP transformer.
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