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Abstract: Wireless multimedia sensor networks (WMSNs) are increasingly being deployed for
surveillance and monitoring applications. WMSNs applications produce large amount of data, which
require high transmission rates. An efficient and seamless delivery of multimedia services in WMSNs
is still a challenging task. This article proposes an intelligent video surveillance platform (IVSP) for
wireless multimedia sensor networks. IVSP presents the design of a networked system for joint rate
control and error control of video over resource-constrained embedded devices. First, a combination
of two different congestion indicators is introduced to differentiate between congestion levels and
handle them accordingly. Second, a feedback-based rate controller is developed to maximize received
video quality, in which sensor nodes can adaptively adjust their sending rates. Finally, a different
retransmission mechanism for different packets is proposed. Lost packets can be stored temporarily
and resend when free channel is available to avoid congestion. The core component of IVSP is an
open source hardware platform, which is based on Raspberry Pi sensor nodes. IVSP is extensively
evaluated on 7 Raspberry Pi sensor nodes. We present the results of 7-node real-world deployment
of IVSP in a video surveillance application and show that it works well in long-term deployments.

Keywords: wireless sensor networks; congestion control; error control; wireless video transmission;
wireless multimedia sensor networks

1. Introduction

Rapid development in micro electro-mechanical systems (MEMS), embedded computing, and
wireless communication technologies has provided us with low-power, low-cost, and multifunctional
sensor nodes. These sensor nodes can be organized to form a network called wireless sensor networks
(WSNs) [1]. Each sensor node can be equipped with visual and audio information collection modules
such as microphones and video cameras. This has encouraged the development of wireless multimedia
sensor networks (WMSNs) [2]. WMSNs consist of a large number of embedded devices that are
equipped with low power cameras. These camera nodes are able to retrieve multimedia content
from the environment at variable rates and transmit the captured information through multi-hop
communication to base station [3,4]. WMSNs have generated much interest in recent years, and
it is predicted that WMSNs will become useful in our daily life [5–7]. WMSNs have been widely
applied to healthcare [5], video-based environment surveillance [6], biometric tracking [7], and habitat
monitoring [8]. Extensive studies have been carried out in recent years on the physical layer [9],
the media access control layer [10,11], the network layer [12], and the transport layer [13,14] in WMSNs.

Recently, there has been substantial research and extensive development in solving wireless
multimedia sensor network challenges. There are several issues that must be addressed such as high
packet loss rate, mobility, shared channel, limited bandwidth, high variable delays, and lack of fixed
infrastructure in WMSNs [15,16]. However, the main issue of enabling real time video streaming in
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multi-hop WMSNs of embedded devices is still open and largely unexplored. WMSNs produce a large
amount of video data; therefore, the probability of congestion in WMSNs is more than that in low-speed
wireless sensor networks. Congestion degrades the overall performance of the network and affects the
reliability due to the packet loss. Therefore, wireless transmission for multimedia with guaranteed
packet delivery in WMSNs is of substantial significance due to higher data rate requirements.

This paper focuses on the most challenging case in which multimedia data can be transferred from
a source node to sink node through multi-hop communication. We describe efforts that involve system
design and implementation of an embedded platform based on raspberry pi (RPi) sensor nodes. In this
paper, we discuss the design and implementation of IVSP deployed for surveillance applications,
and our intention is to ensure the reliable delivery of video data from collections of sensors to a sink,
while avoiding congestion collapse. This video monitoring data may need to be played back later on.
Therefore, when transmission fails, data packets should not be simply discarded. To the best of our
knowledge, video surveillance application has not been addressed in this context before.

The major contributions of this article are summarized as follows: (1) We design a cost-effective
and computationally intelligent wireless video sensor network platform over multi-hop WMSNs.
Our platform consists of 7 WMSN nodes, and each node is built by a raspberry pi (RPi); (2) To get the
precise measurement of congestion, we introduce a combination of two different congestion indicators
to differentiate congestion levels and handle them correspondingly; (3) We present a method in
which each source node maintains its data sending rate and periodically updates its data sending rate
according to its parents’ congestion level. Each node has a unique IP address and can establish a routing
path from itself to the sink through multi-hop communication; (4) We propose different retransmission
mechanisms for different packets. Lost packets can be stored temporarily and retransmitted when
congestion situation is improved; (5) The proposed platform is flexible, scalable, and suitable for
wireless monitoring of buildings, open terrain, remote areas, etc.

The remainder of this paper is organized as follows. Section 2 gives the related work. Section 3
discusses the description of WMSNs system. Section 4 briefly describes the design implementation.
Section 5 provides an experimental environment that includes parameter selection, optimization, and
performance evaluation. Section 6 concludes our work.

2. Related Work

In recent years, there have been studies on congestion control, reliable transmission, and
congestion mitigation in WMSNs [17–19], but few of them really consider timing of realistic hardware
constraints. Transmission control protocol (TCP) provides famous rate control scheme [20,21].
TCP applies an additive increase and multiplicative decrease algorithm (AIMD). When the media rate
approaches the bottleneck, the encoding rate also demonstrates sawtooth performance. The algorithm,
which constantly generates sawtooth behavior, is not suitable for multimedia communication [22].
This rate variation in TCP results in poor video quality [23]. Numerous equation-based rate control
schemes have also been investigated [24]. TCP friendly rate control (TFRC) is one of them [25]. TFRC is
an equation-based congestion control algorithm, which uses throughput of TCP Reno. However, TFRC
needs feedback on the basis of per-packet, which generates decrease or increase in the media rate
(sawtooth) in very limited duration [26]. However, in WMSNs, priority should be given to delay
sensitive data instead of delay tolerant flows. For these reasons, in this paper, we do not consider TCP
fairness for our scheme.

Existing work in congestion control can be divided into two sections. In the first section, we
describe protocols with centralized congestion control scheme. In the centralized congestion control
schemes, all the actions related to avoiding or controlling congestion are undertaken by the sink
node.In a typical centralized congestion control scheme, the sink periodically collects data from the
sensor node, detects the possibility of congestion, and accordingly sends messages to the involved
sensor to overcome congestion. Rate-controlled reliable transport protocol (RCRT) is one example of
a centralized congestion control scheme [27]. In RCRT, all functions including rate allocation, rate
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adaptation, and congestion detection are applied at sink node. RCRT uses negative acknowledgement
(NACK) based technique to implement end-to-end explicit loss recovery mechanism. However, RCRT
has very slow convergence when the network has extremely unstable RTTs. Quasi-static centralized
rate allocation for sensor networks (QCRA) is a centralized rate allocation scheme that assigns a
fair and efficient rate to each node given the link loss rate information, topology, and routing tree
information [28]. This scheme determines the traffic levels in the vicinity of a node by computing a
TDMA schedule among all neighbors of that node. The node with the highest traffic level determines
the fair rate allocation. They also derive rate adaptation parameter by observing the behavior of the
network during an epoch. Event-to-sink reliable transport protocol (ESRT) distinguishes network into
five sections [29]. Rate allocation is centrally determined in ESRT. In ESRT, sending rate is regulated in
such a way that packets reach at a sink node without generating congestion. Due to disadvantages of
centralized methods, transient congestion is difficult to manage in ESRT. Centralized congestion control
routing protocol based on multi-metrics (CCRPM) [30] combines the residual energy of a node, buffer
occupancy rate, wireless link quality, and the current number of sub-nodes for the candidate parent
to reduce the probability of network congestion in the process of network construction. In addition,
it adopts a centralized way of determining whether the sub-nodes of the congested node need to be
switched based on the traffic analysis when network congestion occurs.

In the second section, we describe protocols with distributed congestion control mechanism.
Congestion detection and avoidance (CODA) uses congestion mitigation technique [31]. The source
needs to maintain its data rate using feedback from sink for persistent congestion. For transient
congestion, every sensor node observes buffer occupancy level and channel utilization to detect
congestion. CODA proposes closed loop multi-source regulation technique and an open loop
hop-by-hop backpressure strategy. Fusion uses prioritized MAC, hop-by-hop, and rate-limiting
flow control methods to ease congestion [32]. Fusion has better fairness and higher goodput with
heavy loads than previous techniques. Unlike CODA, Fusion explicitly focuses on per-source fairness.
Our previous work, enhanced congestion detection and avoidance (ECODA), uses dual buffer-based
congestion detection method [33]. ECODA discriminates route through traffic and locally generated
traffic for the queue control. In ECODA, packets are dropped according to their priorities to control
congestion. Both congestion control and fairness (CCF) [34] routing scheme and interference-aware
fair control (IFRC) [35] protocols provide fairness. CCF presents two schemes to ensure fairness. One is
epoch-based proportional selection and other is probabilistic selection. IFRC employs multi-level
buffer threshold. When buffer occupancy goes beyond certain limit, IFRC reduces the sending rate
and sustains its buffer occupancy at less than certain limit. Aghdam et al. [36] propose congestion
control protocol for WMSNs (WCCP). WCCP uses Recipient Congestion Control Protocol (RCCP) at
the intermediate nodes and the Source Congestion Avoidance Protocol (SCAP) at the source nodes.
RCCP uses buffer length to detect congestion, while SCAP uses group of pictures (GOP) to avoid
congestion. In addition, WCCP protects only I-frame data packets and discards less important data
packets in congestion situation. Sergiou et al. [37] propose hierarchical tree alternative path scheme for
WSNs (HTAP).Their work provides reliability and minimizes congestion by giving information to other
nodes about congestion. When congestion is imminent, HTAP securely transmit the data by creating
substitute routes from source to destination. HTAP algorithm consists of four major parts: Alternative
Path Creation Algorithm, Flooding with Level Discovery Functionality, Alternative Path Creation
Algorithm, The Hierarchical Tree Algorithm, and the Handling of Powerless (Dead Nodes). Siphon [38]
provides congestion avoidance, congestion detection, and application fidelity by using virtual sinks
(VSs) with multiple radios in the sensor network. VSs tunnel traffic events that show the signs of
high traffic loads. Siphon employs a combination of end-to-end and hop-by-hop congestion control
based on the location of congestion. In congestion situation, Siphon adopts the end-to-end congestion
control approach between the virtual sinks and sink, and hop-by-hop method between source nodes
and the virtual sinks. Gholipour et al. [39] propose a dynamic and distributed hop-by-hop congestion
control scheme to control congestion by adjusting data rate of nodes. They use virtual gradient field
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to provide a trade-off between possible shortest path and congested path. Sergiou et al. [40] propose
a dynamic alternative path selection scheme for wireless sensor networks (DAlPaS). DAlPaS uses
channel interference, node energy, and buffer occupancy to detect congestion. It dynamically routes
the traffic and selects the shortest path to avoid congestion. DAlPaS consists of two stages: hard stage
and soft stage. In the hard stage, the network protects the receiving node from congestion by forcing
the flows to change their paths. In the soft stage, each node receives data from only one stream to
avoid congestion. Brahma et al. [41] present a distributed congestion control algorithm that adaptively
assigns a fair and efficient transmission rate to all nodes. Each node monitors and controls its aggregate
input and output traffic rate. A node decides to increase or decrease the bandwidth based on the
difference between input and output traffic rates.

The main idea of above mentioned researchers was to classify the priority of the packets and
guarantee the transmission of these packets by the resource assignment. However, they do not consider
the packets with low priority which sometimes may be lost because of no protecting mechanism.

3. Description of WMSNs System

3.1. Sensor Node Architecture

A multimedia sensor node consists of many components including a sensing unit with a camera,
a wireless communication unit, and a processing unit; the whole sensor should be powered by a
power unit as shown in Figure 1. The processing unit is particularly essential to the sensor node.
The processing unit should have low power consumption, high speed calculation, and also should
be small. For these reasons, we use raspberry pi (RPi) (Raspberry Pi Foundation, Cambridge, United
Kingdom) as a processing unit as shown in Figure 2a.The Raspberry pi 2 model B includes 1GB of RAM
and powerful 900 MHz quad-core ARM Cortex-A7 (ARM Holding, Cambridge, United Kingdom)
CPU. It is based on broadcom BCM2835 system on a chip. It has HDMI socket, a SD slot card memory,
a couple of USB connectors, and anethernet connector. With these connections, raspberry pi is a decent
educational desktop PC. We use raspbian operating system, which is based on a debian distribution.
Raspbian operating system (raspbian-wheezy, Raspberry Pi Foundation, Cambridge, United Kingdom,
2015) is a linux/GNU version (3.18) developed for raspberry pi hardware. Our platform consists of
7 raspberry pi model 2B sensor nodes.

The wireless communication unit has the responsibility of transmitting video data in WMSNs.
For wireless communication, we use commercially available EDIMAX wi-fi dongle as shown in
Figure 2b. EDIMAX wi-fi dongle (EW-7811Un, Edimax, Taipei, Taiwan) is attached to USB port
of each raspberry pi board. The dongle has data rates up to 150 Mbps, complies with wireless
802.11 b/g/n, and it supports smart transmit power control and auto-idle adjustment. With low power
consumptions, these dongles are particularly suitable for fast prototyping for wireless multimedia
sensor network applications.
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3.2. Network Architecture

Our wireless multimedia sensor network system consists of N number of WMSN nodes with a
single sink node, as shown in Figure 3. The sink is capable of handling all the complex calculations.
All sensor nodes are capable of creating and relaying video traffic. All sensor nodes are capable
of retrieving multimedia contents and transmitting the captured video to the sink via multi-hops.
The topology of our networks is a linear topology. In linear topology, each node (except leave and sink)
has exactly two neighbors: one parent and one child node. Each node gets packets from its child node
and forwards these packets to its parent node to reach the destination. The intermediate nodes forward
all the incoming packets from their children to its single parent to reach the sink node. The video
stream generated from each sensor node arrives at the sink through multi-hops.
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4. Design Implementation

4.1. The Formation and Transmission of Video Packet

Our aim is to send video streams with high frame rate and good quality. For these reasons, IVSP
uses H.264 standard for video compression. The server application generates a video stream from
either live or stored source and converts video data in H.264 streams. According to H.264 standard,
there are I, P and B frames. We do not use B frames in experiments, because the decoding and encoding
of these frames is dependent on the next frame. In our experiments, we use I frames and P frames.
I frame priority is always much higher than P frame. The length of a packet should be adjusted in such
a way that it can fulfill the requirements of transmission. If a packet has very small amount of data,
every node needs to transmit quickly. This will increase the probability of congestion, energy waste,
and more collisions in wireless channel. If a packet has large amount of data, which may consist of
many frames, every packet has to wait until all the video frames are made. This will cause more delay.
Therefore, length of packet must be chosen in appropriate way.

We assume that maximum packet length is l. If the length goes beyond this threshold, the video
data will be divided into many packets. The packet will be I frame packet, if a packet contains the data
of I frame. Otherwise, packet will be P frame packet. We know that wireless transmission is unreliable,
so packet loss is an obvious feature. An I frame packet loss will result in loss of all P frame packets,
because they will not be decoded properly and will be useless. If P frame packets are lost, video
decoding will carry on with some disturbances in video data. If I frame packets are retransmitted very
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quickly, the consequence of loss packets will not be prominent. Therefore, retransmission of I frame
packets is very important for good quality video data.

4.2. Queue Scheduler

As we discussed in Section 4.1, different kinds of packets have different retransmission
requirements. According to the degree of significance, packets can be divided into four priorities
from high to low: The I frame packets have highest priority, P frame packets have high priority,
lost I frame packets that need retransmission have low priority, and lost P frame packets that needs
retransmission have lowest priority. Figure 4 shows the packet storage and transmission process at a
sensor node. When a node generates or receives a data packet, the packet is moved to the I-Frame
packet queue or P-Frame packet queue depending on its attribute. These two queues are used to
store the unconfirmed packets temporarily, waiting for the retransmission if needed. I frame packets
are of significant importance in supporting the real time traffic. Therefore, we give the maximum
priority to I frame packets, because our main aim is to protect I frame packets. If I-frame packet is lost,
it goes into lost I frame queue, and if a P frame packet is lost it goes into lost P frame queue. In our
experiments, in order to deal with traffic classes with different priorities in an efficient way, weighted
round-robin scheduler is used [42]. In the weighted round-robin scheduler, we allocated a weight wi,
i ε{I Frame, P Frame}, that is, it is assigned wi slots during each round. A traffic source with a higher
weight receives more network bandwidth than a traffic source with less weight.
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4.3. Congestion Detection

To measure congestion in wireless sensor networks, we present a combination of two different
congestion indicators to accurately detect congestion at each sensor node. The first indicator is buffer
occupancy T, and second indicator is buffer occupancy change rate δ. The buffer occupancy is a
very important indicator of congestion. It is adopted to evaluate the amount of buffer occupied by
the packets at a node over its end-to-end transmission. The advantage of buffer occupancy is that
congestion at each node can be directly and quickly detected. Buffer occupancy T can be expressed
into three states: normal state, slow state, and urgent state as shown in Figure 5. To distinguish
between different buffer states, we use two different thresholds T1 and T2, as shown in Figure 5.
Buffer occupancy change rate δ is used to detect the network congestion and can be defined as:

δi =
Tc

i − TL
i

Tmax − Tc
i

, i ε{I f rame, P f rame} (1)
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in which Tc
i and TL

i , i ε{I Frame, P Frame} show the buffer occupancy in current and last round,
respectively. From above equation, we can get the buffer occupancy change rate δ

δ =
∑i wi × δi

∑i wi
, i ε{I f rame, P f rame} (2)
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All priority queues have the same buffer size Tmax. The buffer occupancy change rate δ reflects
the tendency of buffer occupancy. For a given buffer occupancy, the larger the value of δ, the higher
the probability of queue overflow is. Similarly, a negative δ shows that congestion has been alleviated
and buffer occupancy is reduced. According to these two congestion indicators, the sensor nodes have
a total of three states.

4.3.1. Normal State

Initially, the buffer of a sensor node is empty. When a packet arrives, a sensor node immediately
switches to normal state. The buffer occupancy during this state is within [0, T1] and buffer occupancy
change rate is also less than $. $ is predefined limit of δ. All packets are delivered successfully;
therefore, queue utilization is low.

4.3.2. Slow State

The sensor node is in slow state when its buffer occupancy is within [T1, T2].During this state,
the traffic around the node is close to congestion. Large amount of data are injected into the buffer,
so the buffer occupancy will increase rapidly until δ exceeds ρ. The node transfers to slow state,
which indicates that it may have congestion soon, and then activates the rate adjustment algorithm,
which will be described later.

4.3.3. Urgent State

In this state, congestion happensatthe sensor node. The packets in this state have a loss probability.
The buffer occupancyis fluctuating between [T2, Tmax] regardless of value of δ. At this state, the children
of the sensor node should slow down their sending rates to transmita smalleramount of data to the
sensor node. Usually only high priority packets are buffered, because their father’squeue utilization is
too high.

4.4. Distributed Source Sending Rate Control

The rate control increases the video quality of several videos sent through the network.
Source nodes should control their rates to reduce the packets loss due to buffer overflow. To avoid
buffer overflow, sensor nodes should reduce their sending rate if buffer increases to stage that network
cannot maintain. We present a method in which each source node maintains its data sending
rate and periodically updates its data sending rate according to its neighbor’s congestion level.
Each node has a unique IP address and can establish a routing path from itself to the sink through
multi-hop communication.

In the beginning, the sink node broadcasts the assigned maximum transmission rate of its
child through feedback mechanism. Then, the sink’s child broadcasts and calculates the maximum
transmission rate to its child again. After a while, every node will have a maximum transmission rate.
The goal of this feedback mechanism is to maximize the quality of the played streams. The feedback
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process analyses the occupancy at each node and sends feedback information to the sender node.
The sender node gets the feedback information, analyses it, and makes required adjustments to its
transmitted streams. The idea is to modify the quantity of transmitted data according to the feedback
information: when the network appears to be heavily loaded, the quantity of transmitted data is
reduced; when the network appears to be lightly loaded, the quantity of transmitted data can be
increased again. In this way, the source sending rate can be adjusted more efficiently and accurately.

We use β to denote the falling speed of the sending rate at each time when a state turns to its
next slower one. Therefore, the sending rate at node n can be expressed as (3), where Sn represents
minimum sending rate of node, and SN represents normal sending rate of state.

Sn = βSN (3)

The normal sending rate, minimum sending rate, and β can be obtained from the experiments.

4.5. Traffic Control Protocol

Figure 6 shows the retransmission mechanism of IVSP. The traffic control is different for both I
and P frame packet transmission. If parent node receives any packet, it sends an acknowledgement
(ACK) to tell its child node and transmission of that particular packet is completed. If parent node
does not receive packet, it returns sequence number of lost packet to the child node. The child node
retransmits the lost packet again. The child node must guarantee to receive these return packets.
Each packet needs to be confirmed by both the child node and the parent node in order to protect the
loss of packet in an efficient manner. If child node is not able to receive any confirmed packet, it will
send a timeout message to its parent. The parent node will send the return packet again. If the parent
node successfully receives the packet, the packet is immediately removed from the child node queue.
If the parent still cannot receive the requested packets after calling for retransmission for several times,
it thinks that the packets are lost at its son and will not recall these packets anymore. The lost packets
will be transferred to lost I frame queue or lost P frame queue, and these packets will be retransmitted
during normal state.
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The differences between the lost I frame queue and the lost P frame queue are retransmission
time and packet priority. The retransmission of the lost I-frame packet has low priority, and the
retransmission of the lost P-frame packet has the lowest priority. The retransmission of these packets
should be arranged when link is not busy to avoid congestion. When sink node gets out of order
packets, it adjusts the packet order of packets according to packet sequence number. If parent node
has lost few packets, the parent node sends their sequence number. If these packets are found, these
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packets will be retransmitted when congestion is alleviated. If parent node cannot receive the lost
packets after few attempts, it will not recall the lost packets.

Retransmission probability of I frame and P frame packets is an important parameter in IVSP.
If retransmission probability is very small, there is not enough of a chance to retransmit the lost packets.
Therefore, packet loss rate will be much higher. If I frame packet is lost in transmission, all P frame
packets after it cannot be decoded correctly and will be useless. Therefore, we give more retransmission
probability to lost I frame packets and less retransmission probability to P frame packets. However,
too many retransmissions can increase delay, which is not desirable in wireless multimedia sensor
networks. Therefore, the appropriate retransmission probability should be carefully chosen to meet
the retransmission requirements so that the impact of retransmissions on normal network traffic can
be minimized.

5. Experimental Results

We have deployed our platform at Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences for development and testing purposes. The algorithms are implemented in
C. We must emphasize that every experiment reported in this paper is based on actual implementation
running on a real test-bed. Experimental setup consists of 7 raspberry pi sensor nodes. All multimedia
data can be transferred from a source node to sink node through multi-hop communication. In each
raspberry pi, we stored a stream of pre-recorded video that was recorded in cubicle environment.

Figure 7 shows the network topology analyzed in this paper. All the nodes are statically deployed
in the deployment area. Node 7 is connected to the PC computer, in which the collected data of each
node are visualized. Since the distance between nodes is short, we assign each node an IP address.
We establish the network using IP address. For example, we write the destination address of node 1
as IP address of node 2, the destination address of node 2 as IP address of node 3, and so on. In the
experiments, the following metrics are compared: buffer occupancy, I-frame packet loss, and P-frame
packet loss. The parameters used in our experiments are shown in Table 1. The following three schemes
are implemented:

(1) IVSP: It is the scheme proposed in this paper.
(2) ECODA [33]: Enhanced congestion detection and avoidance for multiple class of traffic in

sensor networks
(3) No congestion control: This is the baseline and no congestion control scheme is used. In this

scheme, packets are dropped by congested sensors, and no further action is taken. We call this
scheme as NoIVSP.
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Table 1. Parameters used in our experiments.

Parameter Value

Number of video sensor nodes 7
Number of sink nodes 1
Frames per second (fps) 15
Number of retransmissions for I frame packets 3
Number of retransmissions for P frame packets 1

Figure 8 presents the status of the buffer occupancy at different data rates for the NoIVSP. Figure 8a
shows that just node 7 gets congested and remaining nodes do not experience any congestion at data
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rate of 0.1 Mbps. Increment in the data rate at up to 0.5 Mbps involves two other nodes in congestion,
which can be seen in Figure 8b. However, nodes 1 to 4 do not experience any congestion so far.
Similarly, Figure 8c shows that node 4 gets congested by further increase in the data rate. Results in
Figure 8d indicate that at the data rate of 2 Mbps, congestion happens at every node except node 1;
it does not suffer any congestion, because data is only generated at node 1 and it does not relay any
traffic. Therefore, probability of congestion is very minimal at node 1.

Figure 9a,b represents the progress made with IVSP. In Figure 9a,b, the y-axis is buffer occupancy,
and the x-axis is time in minutes. We can observe that IVSP efficiently adopts the buffer occupancy
of sensor nodes according to network condition. Therefore, IVSP achieves superior congestion-free
rate. The buffer occupancy over-shoots first and then falls down. The reason is that the network was
not congestedwhen sensor nodes started sending the packets at the beginning. Figure 8 shows that in
the case of NoIVSP, the buffer begins to overflow immediately, because it has no congestion control
mechanism. Whereas, whenever IVSP determines the network is congested, it applies the rate decrease
step we have described, computes a new rate allocation, and sends the new rate to its child node.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 15 
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Figure 9a,b also represents the variation of β at different values. When β is small, we have less
incoming data, which shows that congestion probability is reduced. Therefore, buffer occupancy
shuffles between normal state, slow state, and urgent state. Whereas, when β is large, incoming
data becomes very high, which shows that there is more probability of congestion. Therefore, buffer
occupancy continuously fluctuates between slow and urgent state. Therefore, β should be carefully
chosen. From Figure 9a, for small β, we can observe that buffer occupancy comes to the normal state
and then goes back to the urgent state. Whereas in Figure 9b, for large β, buffer occupancy does not go
to the normal state at all and continuously fluctuates between urgent and normal state.
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Figure 9. (a) Buffer occupancy with IVSP when β = 0.25; (b) buffer occupancy with IVSP when β = 0.5.

Figure 10 shows the packet delivery ratio of I frame packets with respect to time. The x-axis
shows the time and y-axis represents packet delivery ratio. The objective of our protocol is to protect
the packets with high priority; therefore, IVSP has more mechanisms to protect I Frame packets. If I
frame packet is lost in transmission, all P frame packets after it cannot be decoded correctly and will
be useless. Since there is no retransmission mechanism for lost packets in ECODA and NoIVSP, the
packet delivery ratio of I frame packets in NoIVSP and ECODA is much lower than IVSP. ECODA
protocol drops some packets with high dynamic priority in severe congestion, whereas IVSP saves
high priority packets in congestion situation and retransmits those high priority packets when free
channel is available. Figure 10 shows that I frame packets have 98.7%, 93.5% and 69.2% packet delivery
ratio for IVSP, ECODA and NoIVSP, respectively, when time approaches 2 min. Less I-frame packet
loss in IVSP means that the video will not be interrupted and video quality in IVSP will be much
superior to NoIVSP and ECODA.
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Figure 11 represents the packet delivery ratio of P frame packets with respect to time. Similar
to I frame packets, lost P-frame packet retransmission in IVSP should be arranged when the link is
not busy to avoid congestion. ECODA drops P frame packets in congestion situations to save I frame
packets. Therefore, P frame packet loss in ECODA and NoCC is much higher than P frame packet
loss in IVSP. Figure 11 shows that P frame packets has 95.8%, 87.5%, and 65.3% packet delivery ratio
for IVSP, ECODA, and NoIVSP, respectively, when time approaches to 2 min. Again, NoIVSP has
the highest number of lost P-frames. IVSP shows lower number of lost P-frames in comparison with
NoIVSP and ECODA.
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6. Conclusions

Providing reliable data transmission over WMSNs is a challenging open issue due to the inherent
features of these kinds of networks. The proposal is motivated by the unreliability of data transmission
over WMSNs. In this paper, to resolve high packet loss rate in WMSNs, an intelligent video surveillance
platform for wireless multimedia sensor networks (IVSP) is proposed. We classify the traffic into
two classes and correspondingly maintain priority queues in each sensor nodes. To predict the
congestion more accurately, we detect congestion by combining buffer length and its change rate
together. We adopt a procedure in which every node has unique IP address and can establish a
route from itself to sink through multi-hop communication. Our rate control mechanism analyses
the occupancy at each node and sends feedback information to the sender node. The sender node
gets the feedback information, analyses it, and makes any required adjustments to its transmitted
streams. We propose the different retransmission mechanisms for different packets. The packets with
lower priority can be retransmitted when the link is not busy to avoid congestion. We analyze the
performance of proposed IVSP and show that IVSP outperforms ECODA and NoIVSP in terms of
packet delivery ratio.
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