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Abstract: Machined surfaces are rough from a microscopic perspective no matter how finely they
are finished. Surface roughness is an important factor to consider during production quality control.
Using modern techniques, surface roughness measurements are beneficial for improving machining
quality. With optical imaging of machined surfaces as input, a convolutional neural network (CNN)
can be utilized as an effective way to characterize hierarchical features without prior knowledge.
In this paper, a novel method based on CNN is proposed for making intelligent surface roughness
identifications. The technical scheme incorporates there elements: texture skew correction, image
filtering, and intelligent neural network learning. Firstly, a texture skew correction algorithm, based
on an improved Sobel operator and Hough transform, is applied such that surface texture directions
can be adjusted. Secondly, two-dimensional (2D) dual tree complex wavelet transform (DTCWT) is
employed to retrieve surface topology information, which is more effective for feature classifications.
In addition, residual network (ResNet) is utilized to ensure automatic recognition of the filtered
texture features. The proposed method has verified its feasibility as well as its effectiveness in actual
surface roughness estimation experiments using the material of spheroidal graphite cast iron 500-7
in an agricultural machinery manufacturing company. Testing results demonstrate the proposed
method has achieved high-precision surface roughness estimation.

Keywords: surface roughness estimation; texture skew correction; dual tree complex wavelet
transform (DTCWT); residual network (ResNet); Hough transform (HT)

1. Introduction

Quality, including all attributes of manufactured products, is an essential objective of industrial
production. Encompassing the measurable quantities and characteristics of the product, quality is
regarded as a summary of the product determining its capability to meet needs, fulfill functions,
and be effective [1]. In the development and production of industrial parts, both the macroscopic
shape and the microstructure of the surface on an µm-scale strongly influence the properties
and performance of machined parts, including friction, wear, precision, fitting, anti-fatigue and
anti-corrosion characteristics [2,3]. Controlling of surface roughness is mandatory to define the
process and validate the quality of the machined part [4]. Due to the friction between the insert
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and the workpiece surface during material removing process, some inevitable phenomena, such as
plastic deformation during chip separation and high-frequency vibrations of the processing system,
emerge and are harmful to machining quality. It is well known that surface roughness is regarded
as a microscale geometry error. Therefore, it can also serve as a useful vehicle that represents the
operational state of the processing system.

In the past few decades, with the advent of tactile profilometers, the stylus tracing (ST) method
has become the most popular way of evaluating the surface quality of components. The principle
of ST is based on measuring the surface texture and calculating the roughness parameter of Ra [5].
A schematic structure of a profilometer is shown in Figure 1. As illustrated, a kinematic mechanism
drives the motion of a stylus, in which a diamond is fixed at the end. This kinematic unit records
the vertical deflection of the stylus that moves over the straight paths on the investigated surface.
In the process of measurement, the stylus is initially loaded on the measured surface and the surface
height variation is obtained as it moves across the surface at a constant velocity [6]. However, there are
some disadvantages to using this type of instrument. Owing to mechanical contact with the measured
surface there is a potential risk of soft material damage. That is, the measuring process, as described
above, inevitably results in scratches by the diamond stylus. On the other hand, the problem of
inefficiency should be seriously considered as it cannot work online [7].
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Figure 1. Profilometer sketch. 

Besides the traditional contact stylus tracing technique, the availability of modern measuring 
technologies emerging from digital computer enhanced machine vision techniques have enabled us 
to evaluate surface quality through non-contact means [1,6]. There are several promising methods to 
measure the roughness of machined surfaces. These methods include laser reflectivity, non-contact 
laser stylus metrology, scanning electron microscopy, compressed air measuring, focus variation, 
fringe projection technique, and a confocal laser scanning microscope [8,9]. In particular, the 
development of a method of measuring surface roughness via machine vision-based techniques has 
attracted attention. Huaian proposed a method based on the difference of RGB color space to develop 
a correlation model between the sharpness and the surface roughness [3]. Krehel reported a novel 
device design for non-contact measuring of the cutting tool as well as the roughness of the machined 
surfaces using an optical sensor [1]. Zheng presented a new method that extracts the characteristic 
parameters of average texture cycle for surface texture with a straight shape to establish the 
relationship between the average texture cycle and the actual surface roughness [10]. Koçer 
investigated the relationship between surface roughness and image grey [11]. Lee reported a 
workpiece profile acquisition method using image processing and fast Fourier transform [12,13]. All 
the above mentioned methods require prior knowledge or equipment transformation for the 
roughness measurement. 

Correcting of the texture skew is also very important for the surface roughness estimation. 
According to the instructions of ISO 4288, the workpiece shall be properly positioned so that the 
direction of the section corresponds to the maximum value of the height of the roughness parameters 
(arithmetic height parameter Ra, 10-point roughness Rz). This direction will be normal to the lay of 
the surface being measured. Generally, this direction can be assessed by visual examination. 
Therefore, some measure errors occur. Figure 2 illustrates the influence of the surface roughness 
measuring direction, where the red plane indicates the idle measure plane of the measured surface 
and the yellow and green planes indicate the measure planes when the incline is 8° and 4°, 
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Figure 1. Profilometer sketch.

Besides the traditional contact stylus tracing technique, the availability of modern measuring
technologies emerging from digital computer enhanced machine vision techniques have enabled us
to evaluate surface quality through non-contact means [1,6]. There are several promising methods to
measure the roughness of machined surfaces. These methods include laser reflectivity, non-contact
laser stylus metrology, scanning electron microscopy, compressed air measuring, focus variation, fringe
projection technique, and a confocal laser scanning microscope [8,9]. In particular, the development of
a method of measuring surface roughness via machine vision-based techniques has attracted attention.
Huaian proposed a method based on the difference of RGB color space to develop a correlation model
between the sharpness and the surface roughness [3]. Krehel reported a novel device design for
non-contact measuring of the cutting tool as well as the roughness of the machined surfaces using
an optical sensor [1]. Zheng presented a new method that extracts the characteristic parameters of
average texture cycle for surface texture with a straight shape to establish the relationship between
the average texture cycle and the actual surface roughness [10]. Koçer investigated the relationship
between surface roughness and image grey [11]. Lee reported a workpiece profile acquisition method
using image processing and fast Fourier transform [12,13]. All the above mentioned methods require
prior knowledge or equipment transformation for the roughness measurement.

Correcting of the texture skew is also very important for the surface roughness estimation.
According to the instructions of ISO 4288, the workpiece shall be properly positioned so that the
direction of the section corresponds to the maximum value of the height of the roughness parameters
(arithmetic height parameter Ra, 10-point roughness Rz). This direction will be normal to the lay of the
surface being measured. Generally, this direction can be assessed by visual examination. Therefore,
some measure errors occur. Figure 2 illustrates the influence of the surface roughness measuring
direction, where the red plane indicates the idle measure plane of the measured surface and the
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yellow and green planes indicate the measure planes when the incline is 8◦ and 4◦, respectively. The
measuring profiles (Figure 2a–c) show that measuring direction errors lead to frequency changes
compared with the idle direction. Figure 2d,e also show the measured profile errors. These errors may
result in roughness measuring errors.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 23 

respectively. The measuring profiles (Figure 2a–c) show that measuring direction errors lead to 
frequency changes compared with the idle direction. Figure 2d,e also show the measured profile 
errors. These errors may result in roughness measuring errors. 

 
Figure 2. Surface roughness measuring direction influences of (a) profile when incline is 8°; (b) profile 
in ideal measuring direction; (c) profile when incline is 4°; (d) profile error when incline is 8° and (e) 
profile error when incline is 4°. 

There are many different roughness parameters in use, but Ra is by far the most common, though 
this is often for historical reasons and not for particular merit. National standard (GB/T 1031-2009) 
also recommends Ra as the preferred roughness parameter. Meanwhile, in the given surface roughness 
specification of the agricultural machinery manufacturing company, Ra is the only required surface 
roughness constraint. Therefore, Ra is chosen as the representative of surface roughness in this research. 

Hough transform, projection characteristics, Fourier transform and shearlet transform are 
algorithms commonly used for skew correction [14–17]. However, these algorithms are mainly 
proposed for detecting deviations of the document orientation angles from the horizontal direction 
or the vertical direction. In this research, the investigated subjects are textures of the machined 
surface. Prior researchers have shown that acquired surface images contain strong noise in a 
broadband frequency range [18]. Therefore, in order to ensure more meaningful surface roughness 
estimation results, some proper preprocessing of skew correction is indispensable. 

Recently, the neural network has aroused heated discussion in the scientific and industrial 
communities because it achieves good performance for pattern recognition [19–24]. The concept of 
pattern recognition can be defined as identifying or classifying complex signal samples or objects 
[25]. Surface roughness evaluation can also be considered a special case of pattern recognition. 
Although it is finding more and more applications in pattern recognition problems, the neural 
network of the deeper layers also involves more sophisticated training process. Aiming at handling 
this problem, residual network (ResNet) has recently been proposed for optimizing the deep network 
and has achieved huge success [26]. Gong investigated the change of classification accuracy when the 
acquired images are preprocessed by transformation-based methods [27]. Results indicate that the 
classification accuracy of the convolutional neural network is substantially affected by global 
translation, rotation, and scaling. As such, variations in measurement direction influence not only the 
roughness measurement results but also the classification accuracy. 

Inspired by the idea of ResNet, we present a surface roughness evaluation method using 
complex wavelet-enhanced ResNet. This method is performed on the adjusted images processed by 
the improved texture skew correction algorithm. In this method, 2D-DTCWT with fixed decomposition 
depth is performed to retrieve the main signal component within the adjusted images. ResNet is 
utilized to ensure the automatic classification of the surface roughness. Compared with the traditional 
stylus tracing method, this novel method can be implemented with improved efficiency for surface 
roughness evaluation purpose. Moreover, the proposed method is also promising for finding artificial 
intelligence applications to meet the surface roughness evaluation demands in industrial fields. 

   

 

   

 

 

(a)

(b)

(c)

(d) 

(e) 

Figure 2. Surface roughness measuring direction influences of (a) profile when incline is 8◦; (b) profile
in ideal measuring direction; (c) profile when incline is 4◦; (d) profile error when incline is 8◦ and
(e) profile error when incline is 4◦.

There are many different roughness parameters in use, but Ra is by far the most common, though
this is often for historical reasons and not for particular merit. National standard (GB/T 1031-2009)
also recommends Ra as the preferred roughness parameter. Meanwhile, in the given surface roughness
specification of the agricultural machinery manufacturing company, Ra is the only required surface
roughness constraint. Therefore, Ra is chosen as the representative of surface roughness in this research.

Hough transform, projection characteristics, Fourier transform and shearlet transform are
algorithms commonly used for skew correction [14–17]. However, these algorithms are mainly
proposed for detecting deviations of the document orientation angles from the horizontal direction or
the vertical direction. In this research, the investigated subjects are textures of the machined surface.
Prior researchers have shown that acquired surface images contain strong noise in a broadband
frequency range [18]. Therefore, in order to ensure more meaningful surface roughness estimation
results, some proper preprocessing of skew correction is indispensable.

Recently, the neural network has aroused heated discussion in the scientific and industrial
communities because it achieves good performance for pattern recognition [19–24]. The concept of
pattern recognition can be defined as identifying or classifying complex signal samples or objects [25].
Surface roughness evaluation can also be considered a special case of pattern recognition. Although it is
finding more and more applications in pattern recognition problems, the neural network of the deeper
layers also involves more sophisticated training process. Aiming at handling this problem, residual
network (ResNet) has recently been proposed for optimizing the deep network and has achieved huge
success [26]. Gong investigated the change of classification accuracy when the acquired images are
preprocessed by transformation-based methods [27]. Results indicate that the classification accuracy of
the convolutional neural network is substantially affected by global translation, rotation, and scaling.
As such, variations in measurement direction influence not only the roughness measurement results
but also the classification accuracy.

Inspired by the idea of ResNet, we present a surface roughness evaluation method using complex
wavelet-enhanced ResNet. This method is performed on the adjusted images processed by the
improved texture skew correction algorithm. In this method, 2D-DTCWT with fixed decomposition
depth is performed to retrieve the main signal component within the adjusted images. ResNet is
utilized to ensure the automatic classification of the surface roughness. Compared with the traditional
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stylus tracing method, this novel method can be implemented with improved efficiency for surface
roughness evaluation purpose. Moreover, the proposed method is also promising for finding artificial
intelligence applications to meet the surface roughness evaluation demands in industrial fields.

The major contributions of this research article are summarized below.

(1) A texture skew correction method, based on the combination of an improved Sobel operator and
Hough transform, is proposed for the surface texture direction adjustment. The results show that
the proposed method is able to correct texture skew.

(2) The paper proposes an intelligent surface roughness evaluation method based on
machine-vision-enhanced artificial intelligence technology for 2D images. After 2D-DTCWT
filtering of adjusted images, ResNet is employed for the surface texture pattern recognition.
Owing to the engagement of ResNet in artificial feature learning, the model does not rely on
prior knowledge.

(3) Surface roughness estimation using the proposed method was performed on the images of milled
metal surfaces made from the material spheroidal graphite cast iron 500-7. The high estimation
accuracy of surface roughness revealed by the experimental results shows that the proposed
method has good generalization ability.

The rest of the paper is organized as follows. The image processing techniques, including skew
correction and 2D-DTCWT, are briefly described in Section 2. The intelligent learning method based
on ResNet is presented in Section 3. The framework of the proposed method is explained in detail
in Section 4. The model training process and the validation experiment with results are shown in
Section 5. Functions of the elements within the proposed method are discussed in Section 6. Some
concluding remarks are given in Section 7.

2. Image Pre-Processing

Regarding engineering applications, proper image pre-processing is indispensable for achieving
high precision in pattern recognition problems when estimating surface roughness. In this section, an
improved skew correction algorithm and the fundamentals of 2D-DTCWT are introduced.

2.1. Improved Texture Skew Correction

In this sub-section, on the basis of an improved Sobel operator and Hough transform, a texture
skew correction algorithm for input surface images is put forward.

2.1.1. Improved Sobel Operator

Edge detection techniques have attracted much attention in recent decades. Among these
algorithms, the Sobel operator is well known for its high computation efficiency. As a special realization
of discrete differentiation, the Sobel operator computes the approximation of the gradient of the image
intensity function. The Sobel operator consists of two kernels of size 3× 3. These kernels are convolved
with input images to derive approximations of partial derivatives on two orthogonal directions, which
are shown as

Gx =

 +1 0 −1
+2 0 −2
+1 0 −1

 ∗ I and Gy =

 +1 +2 +1
0 0 0
−1 −2 −1

 ∗ I, (1)

where the operator ∗ denotes the 2-dimensional convolution and the variable I is defined as the
source image [28]. Because the orthogonality between the two directions, the above partial gradient
approximations can be combined to derive the gradient magnitude at a specified pixel, which is
shown as

G =
(

G2
x + G2

y

)1/2
. (2)
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After selecting the sensitivity threshold for the classical Sobel operator, edge features can be
detected automatically. However, as can be inferred from the above manipulations, the classical
Sobel operator is only sensitive to the horizontal direction and the vertical direction, leading to an
incomprehensive detection effect.

By employing additional templates with directional sensitivity at angles of 45◦, 135◦, 180◦, 255◦,
270◦, and 315◦, an improved Sobel operator was developed by Shi [29]. As shown in Figure 3, the
additional templates can guarantee more comprehensive and accurate edge information.
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Figure 3. Improved Sobel operator.

During the numerical implementation, the matrix {f (m, n)} represents the image to be detected;
v{f (m, n)} represents the mask window of size 3 × 3 (as presented in Figure 3) centering at the pixel
(m, n); ω(m, n) represents the output image after edge detection. The flow chart of the improved Sobel
operator is described below.

Step 1. Conduct the convolution operation between the templates u{t} (t = 1, 2, . . . , 8) and
v{f (m, n)}. Then store the absolute value of the calculation results in the corresponding array v{t}
(t = 1, 2, . . . , 8).

Step 2. Find the maximal value of all data in the corresponding array v{t}.

(1) Initialization such that Max = v{0}, t = 1.
(2) If v{t} > Max, set Max = v{t}
(3) If t < 8, then t = t + 1 and go to (2). If not, go to Step 3.

Step 3. Assign Max to ω(m, n) as the output image.
As a result, edge curves of the original image are extracted.

2.1.2. Hough Transform

Hough transform is another popular feature extraction technique used in image analysis to derive
image inclination angles of specified pixels. As known, surfaces of mechanical rubbing are rough
from the microscopic viewpoint. In a zoomed-in area with sufficient resolution, cures of the milled
mechanical components texture can be approximated as straight lines. Generally, the mathematical
model of a straight line can be parametrized as

y = kx + b. (3)

The parameters k, b in Equation (3) are the slope and intercept, respectively.
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For straight lines to go through a specified pixel in the original plane, all possible slope intercept
pairs associated with this point correspond to a straight line in the parameter space. Considering a
group of collinear pixels in the original plane, we can infer that their equivalents in the parameter
space intersect with each other at the point (k, b). However, in such a form, the value of the slope of
a vertical line would give rise to unbounded values. Alternatively, Duda and Hart [30] proposed an
equivalent Hesse normal form:

r = x cos θ + y sin θ, (4)

where r is the distance from the origin to the closest point on the straight line; θ is the angle between
the x axis and the line connecting the origin with that closest point. In Hesse normal form, a straight
line in the x–y plane corresponds to a sinusoidal curve in the r–θ plane. Therefore, the problem of
detecting collinear points can be converted to the problem of finding concurrent curves.

After the pre-processing combining edge detection and Hough transform, the main incline angle
can be computed. Thus, the image is rotated by the main inclination angle.

2.2. Two-Dimensional Dual Tree Complex Wavelet Transform (2D-DTCWT)

In the literature, DTCWT is reported to enjoy a higher degree of designing freedom because it is
an overcomplete frame expansion method [31]. DTCWT is usually utilized for enhancing multi-scale
decompositions for the raw data acquired.

2.2.1. Framework of DTCWT

Wavelet transform has been exploited with great success across many applications in both the
scientific and engineering fields. In the theory of wavelet transform, a continuous signal x(t) of finite
energy can be decomposed in terms of wavelets and scaling functions via

x(t) =
∞

∑
n=−∞

c(n)φ(t− n) +
∞

∑
j=0

∞

∑
n=−∞

d(j, n)2j/2ψ(2jt− n), (5)

where φ(t) is the scaling function and ψ(t) is the wavelet function. The scaling coefficient series c(n)
and wavelet coefficient series dj(n) are computed via the inner products

c(n) =
∫ ∞

−∞
x(t)φ(t− n)dt (6)

dj(n) = 2j/2
∫ ∞

−∞
x(t)ψ(2jt− n)dt. (7)

Discrete wavelet transform (DWT) is the fast implementation of the continuous wavelet transform.
Although DWT has many advantages, there are still some fundamental problems such as oscillations,
shift variance, aliasing, and lack of directionality. Inspirited by Fourier transform, complex wavelet
transform (CWT) is proposed with a complex-valued scaling function and complex-valued wavelet
function, shown as

ψC(t) = ψ<e(t) + j · ψ=m(t). (8)

The filter-bank topology of DTCWT is shown in Figure 4, where the wavelet functions in ‘Tree <e’
and in ‘Tree =m’ form an approximate Hilbert transform pair:

ψ<e(t) ≈ Hilbert
[
ψ=m(t)

]
, (9)

where Hilbert[·] denotes the Hilbert transform operator.
In the time domain, there is an equivalent expression,

h=m
1 (n) = h<e

1 (n− 0.5), (10)
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where h<e
1 (n) and are real-valued finite impulse response (FIR) filters corresponding to ψ<e(t) and

ψ=m(t). In each filtering tree, the scaling functions of ψ(·)(t) and ϕ(·)(t) satisfy the following two-scale
relationship

ϕ(·)(t) =
√

2 ∑
n∈Z

h(·)0 (n)ϕ(·)(2t− n) (11)

ψ(·)(t) =
√

2 ∑
n∈Z

h(·)1 (n)ϕ(·)(2t− n), (12)

where the superscript (·) can be either <e or =m. The complex-valued wavelet coefficient series dCl (k)
are calculated via inner product computation between the input signal and the wavelet systems of
{Ξj,k[ψ

<e]} and {Ξj,k[ψ
=m]}. These complex-valued series are computed using the following expression:

dCl (k) =
〈

x, Ξj,k(ψ
<e)
〉
+ j ·

〈
x, Ξj,k(ψ

=m)
〉

= d<e
l (k) + j · d=m

l (k)
, (13)

where the notation Ξj,k[·] denotes the translation and dilation operations simultaneously on a function
belonging to L2(R). The mathematical definition of Ξj,k[·] is

Ξj,k[ψ] = ψj,k(t) = 2j/2ψj,k(2
jt− k), (14)

where the binary operator 〈·, ·〉 represents the inner product transform. While, in the reconstruction
phase, dl(t) and ai(t) can be computed via

dl(t) = 2
l−1

2

[
∑
n

d<e
l (k)ψh(2

lt− n) + ∑
m

d=m
l (k)ψg(2lt−m)

]
(15)

aJ(t) = 2
J−1

2

[
∑
n

c<e
J (k)ϕh(2

Jt− n) + ∑
m

c=m
J (k)ϕg(2Jt−m)

]
. (16)

Let J be the decomposition stage depth of dual tree wavelet decomposition in Figure 3; J + 1
wavelet subbands, including

{
d1(t), . . . , dJ(t)

}
as the detail coefficient series and c1(t) as the

approximation series, will be produced.
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2.2.2. Nearly Analytic Complex Wavelet Basis

In this paper, the basis for implementing DTCWT is constructed via the method in [32]. The
time-frequency atoms of the wavelet basis are shown in Figure 5. This quarter-shift basis is adopted
due to its smooth envelope. On the other hand, this quarter-shift basis also has the merit of annihilating
energy leakage.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 23 
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2.2.3. Directional Filtering Atoms of 2D-DTCWT

Associated with the row-column implementation of the wavelet transform, wavelets of
2D-DTCWT can be presented as

ψ(x, y) = ψ(x)ψ(y),

where ψ(x) is a complex wavelet given by

ψ(x) = ψh(x) + jψg(x).

Therefore, the expression of ψ(x, y) = ψ(x)ψ(y) is

ψ(x, y) =
[
ψh(x) + jψg(x)

][
ψh(y) + jψg(y)

]
= ψh(x)ψh(y)− ψg(x)ψg(y) + j

[
ψg(x)ψh(y)− ψh(x)ψg(y)

]
.

(17)

The extension of the complex wavelets in Figure 5 into 2D decomposition is shown in Figure 6.
2D-DTCWT produces six strong directional atoms at angles of ±15◦, ±45◦, and ±75◦. As comparison,
only three directional atoms can be produced by a classical 2D wavelet transform. Therefore,
features in high spectral bands can be preserved by 2D-DTCWT more effectively at the price of
redundancy filtering.
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3. Intelligent Learning Method Based on ResNet

3.1. Convolutional Layer

A convolutional neural network (CNN) was originally invented to deal with the variability of
2D shapes. A basic CNN is composed of a convolutional layer and a pooling layer [33]. Each level
consists of a certain number of feature maps, meaning that CNN possesses good hierarchical feature
representation ability from the lower level to higher level [34]. Through the propagation of CNN, the
feature maps’ size will decrease layer by layer and the extracted features are more global.

Let a time-domain signal to be processed be represented as x(t). After the multi-scale
decomposition, the resulted signals can be represented as xS = [x1

S, x2
S, . . . , xL

S ], where S is the number
of the training samples and L is the decomposition level. The corresponding network output can
be written as y = [y1, y2, . . . , yS]. Each yj means a specific output class from the finite set of classes.
Defining wl

ji as the filters with a sliding filter bank and bl
j as the bias, the convolutional layer output

feature maps can be expressed as

gl
j = relu

(
m

∑
i=1

xl−1
i ∗ wl

ji + bl
j

)
, (18)

where i means the i-th input feature map; j means the j-th output feature map; l means the l layer ; and
relu(·) means the activation function in the network is rectified linear units (ReLU).

An example of the convolutional layer is shown in Figure 7. The input of the layer is filtered
images using 2D-DTCWT. After the sliding filtering, several feature maps are acquired according to
the filter setting.
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3.2. Polling Layer

Pooling operations significantly reduce the computational complexity. Max-pooling and
average-pooling are the two most common pooling methods across various tasks [35]. In this research,
max-pooling can be expressed as

X j
l = down(Xi

l−1), (19)
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where down(·) is the sub-sampling function to computer the max value of each m × n (m is the vertical
downscale; n is the horizontal downscale) region in the Xi

l−1 map [36].

3.3. Output Layer

The output layer determines the relation label of input signal, and it consists of a full-connected
layer and a softmax layer [37,38]. The full connected layer can be expressed as

al
j = sig

(
n

∑
i=1

xl−1
i × wl

ji + bl
j

)
, (20)

where sig(·) means the activation function in the network is sigmoid.
The final layer is composed of softmax units. Accordingly, the conditional probability is

computed as

p(ys = j| as; θ) =
eθT

j as

∑K
j=1 eθT

j as
, (21)

where ys is the actual output of the network; K is the number of the class; as is the feature vector
derived by the full connected layer; θ is the parameter set to be learned via an algorithm for first-order
gradient-based optimization of stochastic objective functions Adam.

3.4. Residual Block

The estimation accuracy of deeper networks may become saturated due to degradation problems.
To address this problem, He Kaiming proposed a residual network (ResNet) and verified that
ResNet achieves considerable accuracy improvements with the increase in the network depth [26]. A
fundamental structure of ResNet is shown in Figure 8. The residual mapping to be learned, F(x), can
be represented as

F = W2σ(W2x), (22)

where x is the input vector and σ is the rectified linear unit. Inserting a shortcut connection, the output
vector, y, can be represented as

y = F(x, {Wi}) + x. (23)

The form of the residual function F is flexible. It can be inferred from Equation (23) that a
function F with only a single layer is similar to a linear layer. Therefore, more layers are necessary for
better effect.
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3.5. Network Architectures

The network employed in this research is shown in Figure 9a. There are 64 kernels in convolutional
Layer 1 and the size of each kernel is set as 7× 7. The convolution layer is accompanied by an activation
ReLU layer and a maxpolling layer. The rest of the layers are the identity block. When the input and
output dimensions do not match up, it is necessary to add a convolutional layer in the shortcut path.
The convolutional identity block and identity block are given in Figure 9b,c, respectively. As can be
seen, in the identity block and the convolutional identity block there are four layers. The four layers
are 1 × 1, 3 × 3, 1 × 1, and 1 × 1 convolutions, where the 1 × 1 layers are responsible for reducing and
then increasing the dimensions.
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Appl. Sci. 2018, 8, 381 13 of 24

4. The Proposed Intelligent Surface Roughness Estimation Method

As a type of feed-forward artificial neural network, CNN possesses good hierarchical feature
representation ability from lower levels to higher levels [39]. In this paper, a novel intelligent surface
roughness estimation method based on 2D-DTCWT and CNN is proposed for surface roughness
estimation problems. The flow chart of the proposed method is presented in Figure 10. Relevant details
are also described below.

Step 1. Place the camera on a machined workpiece surfaces to capture the surface images. The
surface roughness is estimated by the measuring instrument.

Step 2. Correct the texture skew of the original image with the proposed skew correction algorithm
in Section 2.

Step 3. Decompose the adjusted images using 2D-DTCWT with a depth of n to retrieve the useful
surface textures. The 2D-DTCWT decomposition depth is set to 3.

Step 4. Divide the processed images into two groups, namely the training dataset and test dataset.
The processed images are classified into 10 classes according to the surface roughness measured by
the measuring instrument. In this model, each example is a combination of an input object (an image
in this research) and a desired output value (designated roughness class). The model is trained with
such iterations. The test dataset is utilized to validate the trained ResNet. In this paper, 14 layers are
employed for the intelligent surface roughness estimation.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 23 

Figure 9. Schematic of network: (a) network architectures; (b) convolutional identity block; and (c) 
identity block. 

4. The Proposed Intelligent Surface Roughness Estimation Method 

As a type of feed-forward artificial neural network, CNN possesses good hierarchical feature 
representation ability from lower levels to higher levels [39]. In this paper, a novel intelligent surface 
roughness estimation method based on 2D-DTCWT and CNN is proposed for surface roughness 
estimation problems. The flow chart of the proposed method is presented in Figure 10. Relevant 
details are also described below. 

Step 1. Place the camera on a machined workpiece surfaces to capture the surface images. The 
surface roughness is estimated by the measuring instrument.  

Step 2. Correct the texture skew of the original image with the proposed skew correction 
algorithm in Section 2. 

Step 3. Decompose the adjusted images using 2D-DTCWT with a depth of n to retrieve the useful 
surface textures. The 2D-DTCWT decomposition depth is set to 3. 

Step 4. Divide the processed images into two groups, namely the training dataset and test dataset. 
The processed images are classified into 10 classes according to the surface roughness measured by the 
measuring instrument. In this model, each example is a combination of an input object (an image in 
this research) and a desired output value (designated roughness class). The model is trained with 
such iterations. The test dataset is utilized to validate the trained ResNet. In this paper, 14 layers are 
employed for the intelligent surface roughness estimation. 

 
Figure 10. Flow chart of the proposed method. 

5. Surface Roughness Estimation 

5.1. Experiment and Data Acquisition 

In order to verify the effectiveness of the proposed method, a series of spheroidal graphite cast 
iron 500-7 milling cutting experiments were carried out. The milling cutting experiments are conducted 
on three machining centers (VMC650E/850E produced by Shenyang Machine Tool Company 
(Shenyang, China), XK63100 produced by Kaichuang Equipment Technology Company (Luoyang, 
China), and NBH800 produced by Huller Hille (Mosbach, Germany)). The dimension of the 
workpiece is 200 × 140 × 100 mm. The experimental setup for the milling test is shown in Figure 11. 
Machining parameters for the milling tests are shown in Table 1. A mobile roughness measuring device 

Figure 10. Flow chart of the proposed method.

5. Surface Roughness Estimation

5.1. Experiment and Data Acquisition

In order to verify the effectiveness of the proposed method, a series of spheroidal graphite
cast iron 500-7 milling cutting experiments were carried out. The milling cutting experiments
are conducted on three machining centers (VMC650E/850E produced by Shenyang Machine Tool
Company (Shenyang, China), XK63100 produced by Kaichuang Equipment Technology Company
(Luoyang, China), and NBH800 produced by Huller Hille (Mosbach, Germany)). The dimension of the
workpiece is 200 × 140 × 100 mm. The experimental setup for the milling test is shown in Figure 11.
Machining parameters for the milling tests are shown in Table 1. A mobile roughness measuring
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device (type: Marsurf PS1 (produced by Mahr (Goettingen, Germany)), Figure 11d) is engaged to
measure the machined surface roughness.
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Figure 11. Milling experiment setup (a) VMC650E/850E; (b) XK63100; (c) NBH800; and (d) mobile
roughness measuring instrument.

Table 1. Information of the milling cutting experiment.

Property VMC650E/850E XK63100 NBH800

Milling mode Down milling Up milling Up milling
Milling tool Carbide disc milling tool Carbide disc milling tool Carbide disc milling tool

Feeding speed 200 mm/min 500 mm/min 700 mm/min
Spindle speed 960 rpm 450 rpm 2228 rpm
Cutting depth 0.5 mm 4 mm 0.5 mm

Images used to train the proposed algorithm in this paper are collected by a self-made image
acquisition system. The schematic sketch of the structure of the image acquisition system is shown in
Figure 12.
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Figure 12. Structure sketch of the image acquisition system.

As can be seen in Figure 12, this image acquisition system is constructed by an industrial camera,
a coaxial light source (blue light), and other auxiliary mechanisms. Coaxial lights generated by an LED
array are reflected by a semi-reflective mirror to ensure their reflected light directions are identical
to the axis of the camera lens, such that the reflected coaxial lights are sent to the workpiece without
unevenness. After machining, the image acquisition device was placed on workpiece surfaces and
captured digital images of the surface. Details about the parameters for capturing the images are listed
in Table 2.

Table 2. Capture parameters.

Property Information

Exposure time 150 ms 10 µs
Gamma 0

Goal 49
Gain 1.375×

Saturation 100

5.2. Surface Roughness Classification

There are 2040 acquired samples in the experiment, where the surface roughness Ra is estimated
by a mobile roughness measuring instrument. Values of the surface roughness Ra are randomly
distributed between 0.244 and 7.376. The mean surface roughness Ra is 3.727276 and the standard
deviation is 2.217645. As a state-of-art approach in pattern recognition problems [40], CNN can make
proper classifications on the labeled dataset.

In practical applications, balanced datasets have been empirically shown to outperform
imbalanced datasets [39]. In this research, oversampling which duplicating instances of
under-represented classes until a balanced dataset is created is used to lessen the impact of imbalanced
datasets. Ten roughness conditions are considered: [−Inf, 0.957), [0.957, 1.67), [1.67, 2.38), [2.38, 3.1),
[3.1, 3.81), [3.81, 4.52), [4.52, 5.24), [5.24, 5.95), [5.95, 6.66) and [6.66, ∞). The description of the surface
roughness condition is listed in Table 3. After adjustment, the total sample numbers is 3700.
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Table 3. Description of the surface roughness condition.

Roughness Original Sample Number Adjusted Sample Number Label

[−Inf, 0.957) 308 370 C1
[0.957, 1.67) 152 370 C2
[1.67, 2.38) 100 370 C3
[2.38, 3.1) 135 370 C4
[3.1, 3.81) 120 370 C5
[3.81, 4.52) 200 370 C6
[4.52, 5.24) 365 370 C7
[5.24, 5.95) 370 370 C8
[5.95, 6.66) 190 370 C9
[6.66, ∞) 100 370 C10

5.3. Texture Skew Correction and DTCWT Filtering

One of the captured images is shown in Figure 13a. It can be observed that the phenomenon of
texture skew obviously occur in the original image. Texture skew influences not only the roughness
measurement but also the classification accuracy. As presented in Section 2, an improved Sobel
operator enhanced by Hough transform is proposed for the surface texture direction adjustment. The
detected edge information is shown in Figure 13b. The adjusted image is shown in Figure 13c. The
skewed image results show that the proposed method has good skew correction ability.
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With 2D-DTCWT performed on the adjusted image, the decomposition images representing
wavelet sub-spaces are shown in Figure 14. Compared with interfering noises, the low frequency
periodic component (Figure 14d) contains more useful information of the surface topology. The
first two sub-bands located in higher frequency range contain much more irregular contents
(Figure 14a,b). w3(t) sub-band (Figure 14c) can be seen as generated random noises of the boundary
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noise. Therefore, low frequency periodic component (Figure 14d) will be used as the surface topology
in the following research.

A step of normalization is applied to the filtered image such that the image gray value ranges
from 0 to 255 in the 8-bit grayscale. In this paper, an additional step is also employed to scaling all
values into the range of [0,1]. The feature scaling formula is defined as

X′ =
X− Xmin

Xmax − Xmin
=

X
255

, (24)

where X is the original signal, X’ is the new signal after normalization.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 23 

A step of normalization is applied to the filtered image such that the image gray value ranges 
from 0 to 255 in the 8-bit grayscale. In this paper, an additional step is also employed to scaling all 
values into the range of [0,1]. The feature scaling formula is defined as 

min

max min
255

X X X
X

X X

-
¢ = =

-
, (24) 

where X is the original signal, X’ is the new signal after normalization. 

 
(a) (b)

 
(c) (d)

Figure 14. Image DTCWT (a) w1(t); (b) w2(t); (c) w3(t) and (d) c3(t). 

5.4. Network Training 

Surface images were collected from the milled spheroidal graphite cast iron 500-7 workpiece. In 
the experiment, as mentioned in the previous part, 370 images acquired for each condition. Therefore, 
the dataset contains 3700 records of images in total. Among these 3700 samplers, 370 images are 
randomly selected from the testing dataset and the rest are used as the training dataset. Some typical 
samples of input images are displayed in Figure 15. 

Figure 14. Image DTCWT (a) w1(t); (b) w2(t); (c) w3(t) and (d) c3(t).

5.4. Network Training

Surface images were collected from the milled spheroidal graphite cast iron 500-7 workpiece.
In the experiment, as mentioned in the previous part, 370 images acquired for each condition. Therefore,
the dataset contains 3700 records of images in total. Among these 3700 samplers, 370 images are
randomly selected from the testing dataset and the rest are used as the training dataset. Some typical
samples of input images are displayed in Figure 15.
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Figure 15. Typical samples of input images (a) Uneven texture; (b) High contrast; (c) Strong noise and
(d) Insufficient exposure.

As can be seen in Figure 15, throughout the whole image sensing process, noise is added from
various sources, which may include fixed pattern noise, dark current noise, shot noise, amplifier noise
and quantization noise. These additional irregular noises would strongly influence the generated
image gray-scale value [41]. Therefore, the actual camera settings are unstable fluctuated in every
single capture process.

In this research, the employed ResNet is shown in Figure 9. The input shape of the network for
each image is a normalized patch. After the convolutional layer (the kernel number is 64) there is a
batch normalization layer. The size of the kernels in the first layer was chosen to be 7 × 7. Following
the first convolutional layer, there is a ReLU. After that, there are one convolutional identity block
and two identity blocks. In the final output layer, softmax activation is chosen for the classification to
represent the categorical distribution. Adam is a first-order gradient-based algorithm, designed for
the optimization of stochastic objective functions with adaptive weight updates based on lower-order
moments. In this study, Adam optimizer is used to minimize the categorical entropy.

All of the experiments in this research were performed under a desktop (operating system:
Microsoft Window 7, CPU: Intel Xeon E5-2609 v4 @ 1.7 GHz, GPU: NVIDIA Quadro M2000). Because
of the hardware limit, the batch size is set to 5 and 0.003 in learning rate. The performance curves
representing the training of the established model are shown in Figure 16. The blue solid ascending
curve shows the accuracy rate change during the training process where accuracy is the most intuitive
performance measure and it is simply a ratio of correctly predicted observation to the total observations.
The red solid descending curve corresponds to the loss function values (cross entropy in each epoch).
The results show that the loss function value reaches a stable value after 25 epochs, and the accuracy
rate achieves stability after epochs 25 with almost 92%.
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Figure 16. (a) Accuracy rate curves and (b) loss function value curves during the training process of
the proposed model.

5.5. Experiment Results

Confusion matrix is an effective visualization tool to estimate the performance of classification
algorithm. Each column of the confusion matrix represents the instances in a predicted class (output
class), while each row represents the instances in an actual class (target class). Figure 17 illustrates
the confusion matrix using ResNet model for the 10-pattern recognition problem, where Ci means the
surface roughness condition in Table 3. As can be seen in Figure 17, the trained model presents a good
generalization result, with only 18 misclassifications in the entire 370 testing records. Therefore, the
accuracy rate of the proposed method is calculated at 95.14%.

The metrics used for evaluating the final classification results also include precision, recall and F1
score. Precision is the ratio of correctly predicted positive observations to the total predicted positive
observations. Recall is the ratio of correctly predicted positive observations to the all observations in
actual class. F1 score is the weighted average of Precision and Recall. Denoted TP as true positives (the
value of actual class is yes and the value of predicted class is also yes), FP as false positives (actual
class is no and predicted class is yes), FN as false negatives (actual class is yes but predicted class in
no), the three evaluation parameters can be defined as [42]:

Precision = TP/TP + FP
Recall = TP/TP + FN
F1 Score = 2 × (Recall × Precision)/(Recall + Precision)

The results evaluation effects of different surface roughness condition are shown in Table 4. The
acquired mean precision, recall and F1 score were 0.9543, 0.9514 and 0.9512 respectively. The result
validates the effectiveness of proposed classification method in surface roughness estimation.

Table 4. Precision, recall and F1 score.

Parameters C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Mean

Precision 1 0.95 0.94 0.86 1 1 0.97 0.95 0.88 1 0.95
Recall 1 0.95 0.84 1 0.95 0.97 1 1 0.95 0.86 0.95

F1 score 1 0.95 0.89 0.93 0.97 0.99 0.99 0.97 0.91 0.93 0.95

Through visual inspection on the various layers in Figure 18, filter characteristics can be obtained.
Filters on the first layer (row 1) show that their main functions lie in the utilization of different
brightness contrast ratio to eliminate disturbances of ambient light. Filters on the middle layer
(row 2) are used to distinguish background information and main surface roughness information.
However, the functions of the filters on the last layer (row 3) are difficult to be explained. It should
be noticed that the network function is similar to the surface roughness comparison specimens,
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which used to tactile and visual comparison of the workpiece surface. Generally, the effect of
surface roughness comparison specimens is strongly influenced by the operator prior knowledge and
experience. Therefore, the proposed surface roughness estimation method can be a superior alternative
for the surface roughness estimation.Appl. Sci. 2018, 8, x FOR PEER REVIEW  19 of 23 
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6. Discussion and Comparison

(1) The accuracy of surface roughness estimation can be significantly enhanced by the skew
correction preprocess. As presented in introduction part, measuring direction errors could lead to
frequency change compare with idle direction. Related research also reports that direction inclination
can directly affect the classification accuracy [27].
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As the comparison, the authors have tested a similar method without texture skew correction
preprocess. The results show an inferior accuracy of 74.62%. Moreover, a CNN model of over 30 layers
without skew correction preprocess is also explored and the accuracy was found to be 69.73%. The
above comparison results are listed in Table 5. In contrast, with the texture skew correction process,
the classification accuracy reveals a remarkable improvement in accuracy.

The sources of these differences may be caused by the convolutional kernel weights. Once the
convolutional kernel weights are trained, the kernel weights are fixed and not able to respond to
directional changes. Therefore, proper skew correction is definitely indispensable for the surface
roughness estimation via CNN model.

(2) Proper image filtering is beneficial to reduce the training model complexity. As described in
relevant sections, the shallow layers mainly focus on the brightness contrast ratio adjustment and
feature enhancement. Therefore, instead of feeding the network with raw data, properly processed
image (based on the prior knowledge) is helpful to reduce the model complexity.

As the comparison, the authors also explored a contrasting method without image filtering
preprocess and acquired an accuracy rate of only 79.88%. While the classification accuracy rises to
91.14% when the layer number is set to be 18. The above comparison results are listed in Table 5.

Table 5. Comparisons the results.

Method Accuracy

The proposed method
(Texture skew correction + 2D-DTCWT + ResNet) 95.14%

2D-DTCWT + ResNet 74.62%
CNN with over 30 layers 69.73%

Texture skew correction + ResNet 79.88%
Texture skew correction + ResNet with 18 layers 91.14%

7. Conclusions

In this paper, we proposed an intelligent surface roughness estimation method. This novel
technique consists steps of texture skew correction, image filtering, and image feature classification.
An improved Sobel operator combined with Hough transform is used to correct image skew
phenomena. 2D-DTCWT is employed to preserve features more effective for pattern recognition.
The resulted images are used to train a ResNet based intelligent model. Major findings of this work
can be summarized below:

(1) ResNet has proven to be an effective method for the surface roughness evaluation. Compared
with traditional surface roughness measuring methods, the proposed method is a non-contact
one without additional surface damages on the workpiece. Because of the engagement of ResNet
in feature learning, this model does not rely on prior knowledge.

(2) Surface milling experiments show that the proposed texture skew correction method is a feasible
way to adjust image variabilities.

(3) Effectiveness of the proposed novel method is verified by the surface roughness estimation on
milled components. Results indicate that this method can distinguish different surface roughness
classes with high precision.

(4) Analysis of filters has demonstrated the function networks can be regarded as an automatic
and intelligent realization of comparison specimen based manual surface roughness estimation.
Despite similarities in principle the proposed method is also not sensitive to ambient light and
does not rely on staffs’ experience. Therefore, it can be served as a superior alternative scheme
for this task.

Limited by the measurement mean and the concrete manufacturing condition, only arithmetic
mean roughness is investigated in this research. However, authors believe that the proposed method
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is also capable for more roughness parameters and worth to do further research. In the future,
it is worthwhile to investigate the surface roughness recognition for machining tasks of higher
machining accuracy requirements based on acquisitions of huge datasets. Besides, investigations of
surface roughness estimation applications on other concrete engineering products are also worthy
further explorations.
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