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Abstract: In this study, N-propyl-benzoguanamine-SO3H magnetic nanoparticles (MNPs) were
used as a catalyst for the synthesis of new Schiff base ligands from condensation reaction of
terephthalaldehyde and ortho-aniline derivatives. The bioactive ligands and their cobalt (II)
complexes were characterized with nuclear magnetic resonance (1H-NMR), Fourier-transform
infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Visible), mass spectroscopy studies and molar
conductance. The antibacterial activity of ligands and their metal complexes were screened
using disc diffusion and broth dilution methods against Escherichia coli, Serratia marcescens,
Pseudomonas aeruginosa (gram negative bacteria), Bacillus Subtilis and Staphylococcus aureus (gram
positive bacteria). The ligands with hydroxyl group showed better biological activity when compared
to other ligands. The results showed that the metal complexes have much higher antibacterial
activity compare to the parent ligands. It was found that the CoL3 complex was more effective than
other metal complexes used against all types of bacteria tested and it was more effective against
Pseudomonas aeruginosa with diameter inhibition zone of 17 mm and minimal inhibitory concentration
value of 0.15 mg/mL.

Keywords: terephthalaldehyde; ortho-aniline derivatives; Schiff base ligand; antibacterial activity;
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1. Introduction

Schiff base ligands with oxygen or nitrogen donor atoms are a good class of organic compounds
capable of binding to different metal ions with interesting medical and non-medical properties and
very popular in the last decade [1,2]. These ligands can be easily synthesized by condensation reaction
of aldehyde or ketone with a primary amine [3]. The multifarious role of transition complexes of Schiff
base ligands in inorganic, metallo-organic and biochemistry have received considerable attention
because of their extensive applications in a wide range of areas [4,5].

They display diverse chemical, optical and magnetic properties by modifying with different
ligands [6–8]. It has been revealed that Schiff bases play an important role by serving as chelating
ligands in the main groups and transition metal coordination chemistry; owing to their stability in
different oxidative and reductive conditions [9]. The interaction of these donor ligands and metal
ions gives complexes of different geometries and literature survey reveals that these complexes are
potentially more biologically active compounds [10] such as anticancer, antifungal, antibacterial,
antimalarial, anti-inflammatory, antiviral, and antipyretic properties [11–14]. It should be noted that
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metal chelation can tremendously influence the antimicrobial/bioactive behavior of the organic ligands;
therefore, the synthesis of various transition metal complexes has been attempted in this field [15].

In the past few years, bacterial infection and their resistance for many antibacterial agents is a
growing problem [16,17]. While there are already several classes of antibacterial agents, there has been
some considerable emerging resistance in most pathogenic bacteria to these drugs [18]. For prevention
of this serious medical problem, it is necessary to develop some new antibacterial agents or to expand
the bioactivity of the previously used drugs [19,20]. Metal-based antibacterial compounds seem to
be a promising research for designing a novel therapeutic methodology for new antibiotic drugs to
control and prevent the growth of bacterial strains [21,22].

Herein, we report the synthesis of bidentate Schiff base ligands by the condensation of
terephthalaldehyde with ortho-aniline derivatives in the presence of N-propyl-benzoguanamine-SO3H
MNPs as a catalyst. The cobalt (II) complexes were prepared in methanol as a solvent. The synthesized
compounds were characterized with several spectroscopic methods and screened for their antibacterial
activity against Gram (+) and Gram (−) bacteria strains.

2. Materials and Methods

2.1. Materials

All the chemicals and solvents purchased from Merck (Darmstadt, Germany) and Sigma-Aldrich
Company (St. Louis, MO, USA) and were used without further purification unless otherwise
mentioned. UV-Vis (see Supplementary Materials) absorption spectra were recorded on a Cary 100
spectrophotometer (Santa Clara, CA, USA) using a 1 cm path length cell. 1H-NMR (see Supplementary
Materials) spectra of ligands were collected on BRUKER 250 MHz spectrometer (Seiko, Japan) in
DMSO-d6 using tetramethylsilane as internal standard. The Fourier-transform infrared spectroscopy
(FTIR) spectra (see Supplementary Materials) (KBr pellets) were recorded using a Shimidzo 300
spectrometer. Melting points of compounds were obtained by an electro thermal melting point
apparatus and were not corrected. Thin-Layer chromatography (TLC) was performed using
n-hexane/EtOAC (1:3) as an eluent.

2.2. Preparation of Schiff Base Ligands

Condensation reaction of Terephthalaldehyde with o-nitroaniline, o-Anisidine and 2-aminophenol
in molar ratio 1:1 and 1:2 afforded the corresponding Schiff base ligands as described below:

MNPS-N-propyl-benzoguanamine-SO3H catalyst was prepared by chemical co-precipitation
according to the previous literature [23]. To a mixture of terephthalaldehyde and aniline derivative was
added to N-propyl-benzoguanamine-SO3H catalyst (6 mg) in 10 mL ethanol as solvent. The reaction
mixture was refluxed (100 ◦C) for 2–3 h. The progress of the reaction was checked with TLC.
After completion of the reaction the mixture was cooled to room temperature. The catalyst was
then separated by using an external magnet. The solvent was evaporated under reduced pressure and
the resulting solid was obtained. The resulting was then recrystallized in ethanol.

(1,4-phenylenebis(methanylylidene))bis(2-nitroaniline) (L1): Dark Yellow solid. Yield: 84%. M.P.
208–210 ◦C. Selected IR data (ν, cm−1): 2924, 1630, 1449, 1348, 1012. 1H-NMR (500 MHz, DMSO-d6, δ,
ppm): 10.04 (s, 2H, CH=N), 8.02–7.97 (q, 12.5 Hz, 8H, Ar-H), 7.90–7.87 (d, 7.5 Hz, 2H, Ar-H), 7.53–7.50
(d, 7.5 Hz, 2H, Ar-H). UV-Vis (DMSO): λmax (nm) = 260, 340.

(1,4-phenylenebis(methanylylidene))bis(2-methoxyaniline) (L2): Orange solid. Yield: 86%. M.P. 190–192 ◦C.
Selected IR data (ν, cm−1): 3062, 3018, 2965, 2835, 1620, 1116. 1H-NMR (250 MHz, DMSO-d6, δ, ppm):
10.08 (s, 2H, CH=N), 8.66–8.60 (m, 2H, Ar-H), 8.14–8.02 (m, 5H, Ar-H), 7.35–6.95 (m, 8H, Ar-H), 3.80 (s,
6H, CH3). UV-Vis (DMSO): λmax (nm) = 290, 390.

(1,4-phenylenebis(methanylylidene))bis(azanylylidene))diphenol (L3): Brown solid . Yield: 64%. M.P.
295–297 ◦C. Selected IR data (ν, cm−1): 3412, 3100, 1614, 1059. 1H-NMR (500 MHz, DMSO-d6, δ,
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ppm): 9.72 (s, 2H, CH=N), 8.34–8.32 (d, 5Hz, 2H, Ar-H), 8.19–8.17 (d, 5Hz, 2H, Ar-H), 7.86–7.82 (m, 2H,
Ar-H), 7.67–7.66 (d, 2.5 Hz, 1H, Ar-H), 7.48–7.42 (m, 2H, Ar-H), 7.07–7.03(m, 2, OH). UV-Vis (DMSO):
λmax (nm) = 330.

4-(((2-nitrophenyl)imino)methyl)benzaldehyde (L4): Yellow solid. Yield: 68%. M.P. 203–205 ◦C. Selected IR
data (ν, cm−1): 2948, 2900, 1702, 1619, 1568, 1356, 1073. 1H-NMR (250 MHz, CDCl3, δ, ppm): 10.99 (s,
1H, CHO), 10.06 (s, 1H, CH=N), 8.16–8.02 (m, 5H, Ar-H), 7.79–7.69 (m, 3H, Ar-H). UV-Vis (DMSO):
λmax (nm) = 250, 320.

4-(((2-methoxyphenyl)imino)methyl)benzaldehyde (L5): Pale Yellow solid. Yield: 73%. M.P. 181–183 ◦C.
Selected IR data (ν, cm−1): 3011, 2966, 2838, 1693, 1620, 1102. 1H-NMR (500 MHz, DMSO-d6, δ, ppm):
10.07 (s, 1H, CHO), 8.64 (s, 1H, CH=N), 8.03–8.01 (d, 5 Hz, 4H, Ar-H), 7.21–6.95 (m, 4H, Ar-H), 3.79 (s,
6H, CH3). UV-Vis (DMSO): λmax (nm) = 290, 370.

4-(((2-hydroxyphenyl)imino)methyl)benzaldehyde (L6): Light Green solid. Yield: 65%. M.P. 282–284 ◦C
Selected IR data (ν, cm−1): 3431, 3147, 3046, 1703, 1652, 1028. 1H-NMR (500 MHz, DMSO-d6, δ, ppm):
10.18 (s, 1H, CHO), 9.73 (s, 1H, CH=N), 8.41–7.45 (m, 8H, Ar-H), 1.21 (s, 1H, OH). UV-Vis (DMSO):
λmax (nm) = 320.

2.3. Preparation of Co (II) Complexes

All the complexes were prepared in a similar procedure. Solution of ligand in methanol (1 mmol)
were mixed with CoCl2·6H2O and refluxed for 3–5 h 45 ◦C. The precipitate was filtered, washed with
methanol and ether and then dried in a vacuum desiccator.

Complex [Co2(1,4-phenylenebis(methanylylidene))bis(2-nitroaniline)Cl4] (CoL1): Pale Green solid. Yield:
84%. M.P. 248–250 ◦C. Molar conductivity (Ω−1 mol−1 cm2): 22. Selected IR data (ν, cm−1): 3109, 2971,
1651, 1521, 1384, 598, 492. UV-Vis (DMSO): λmax (nm) = 300, 410, 600,690. Mass (see Supplementary
Materials): [m/z]+ = 633.

Complex [Co2(1,4-phenylenebis(methanylylidene))bis(2-methoxyaniline)Cl4] (CoL2): Dark Green solid. Yield:
68%. M.P. 313–315 ◦C. Molar conductivity (Ω−1 mol−1 cm2): 12. Selected IR data (ν, cm−1): 3062, 3018,
1620, 1583, 1368, 511, 474. UV-Vis (DMSO): λmax (nm) = 290, 260, 610, 690, 750. Mass: [m/z]+ = 603.

Complex [Co2(1,4-phenylenebis(methanylylidene))bis(azanylylidene))diphenol)Cl4] (CoL3): Dark Brown solid.
Yield: 75%. M.P. 230–232 ◦C. Molar conductivity (Ω−1 mol−1 cm2): 14. Selected IR data (ν, cm−1):
3100, 2841, 1650, 537, 485. UV-Vis (DMSO): λmax (nm) = 280, 370, 600, 680. Mass: [m/z]+ = 575.

Complex [Co(4-(((2-nitrophenyl)imino)methyl)benzaldehyde)Cl2] (CoL4): Green solid. Yield: 80%. M.P.
280–282 ◦C. Molar conductivity (Ω−1 mol−1 cm2): 8. Selected IR data (ν, cm−1): 3181, 1599, 614.
UV-Vis (DMSO): λmax (nm) = 320, 600,690. Mass: [m/z]+ = 503.

Complex [Co(4-(((2-methoxyphenyl)imino)methyl)benzaldehyde)Cl2] (CoL5): Orange-Red solid. Yield: 82%.
M.P. 305–307 ◦C. Molar conductivity (Ω−1 mol−1 cm2): 16. Selected IR data (ν, cm−1): 3100, 2900, 1619,
568, 509. UV-Vis (DMSO): λmax (nm) = 290, 370, 600, 670. Mass: [m/z]+ = 473.

Complex [Co(4-(((2-hydroxyphenyl)imino)methyl)benzaldehyde)Cl2] (CoL6): Dark Pink solid. Yield: 87%.
M.P. 236–238 ◦C. Molar conductivity (Ω−1 mol−1 cm2): 10. Selected IR data (ν, cm−1): 2959, 1634, 649.
UV-Vis (DMSO): λmax (nm) = 270, 350, 610, 670. Mass: [m/z]+ = 445.

2.4. Antibacterial Study

All the synthesized compounds were evaluated to examine their in vitro antibacterial activities
against Escherichia coli (ATCC: 25922), Serratia marcescens (ATCC: 13880) and Pseudomonas aeruginosa (ATCC:
27853) as gram negative bacteria and Bacillus subtilis (ATCC: 6633), and Staphylococcus aureus (ATCC:
6838), as gram positive bacteria, by employing two methods: disk diffusion and broth dilution methods;
which are recommended by the National Committee for Clinical Laboratory Standards (NCCLS) [24].
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Accordingly, stock solution of each compound (2 mg/mL) was prepared by dissolving the compounds in
DMSO. Prior to sensitivity testing, the bacteria strains were cultured onto Muller-Hinton agar plate and
incubated for 18–24 h at 35 ◦C. The density of the bacteria culture required for the tests was adjusted to
0.5 McFarland (1.5× 108 CFU/mL) (CFU = Colony Forming Unit). These tests were repeated three times to
ensure reliability.

2.4.1. Disc Diffusion Method

This method is based on the principles that an antibiotic-impregnated disk placed on an agar
previously inoculated with the test bacterium, the pick-up moisture and the antibiotic diffused radially
outward through the agar medium, yielding an antibiotic concentration gradient. For this purpose,
2 mg of the synthesized compound was dissolved in 1 mL DMSO. A bacteria culture was swabbed
uniformly across lawn Hinton agar plates. Paper discs were impregnated individually with 100 µL of
stock solution of the compounds. Next, the discs were placed on the inoculated agar medium and the
plates incubated for 18–24 h at 35 ◦C. After the incubation time, antibacterial activity of each sample
was determined by measuring the inhibition zone around each disc by comparing it with the standard
drug (Tetracycline).

2.4.2. Broth Dilution Method

Minimal Inhibitory Concentration (MIC) value of an antibacterial agent gives a quantitative
estimate of the susceptibility for each bacteria strain. MIC is defined as the lowest concentration of
the antimicrobial agent which is required to inhibit the growth of the microorganism. According to
this method, 1 mL of sterile Muller Hinton Broth medium were poured in tube 1–13 with two-fold
dilutions of the synthesized compound (2 to 0.00195 mg/mL) and inoculated with a standardized
inoculum of the bacteria (1.5 × 108); then it was incubated under standardized conditions by following
NCCLS guidelines. After 18–24 h of incubation at 35 ◦C, the MIC value was recorded as the lowest
concentration of antimicrobial agent with no visible growth.

3. Results and Discussion

3.1. Characterization of Ligands

Six Schiff base Ligands (L1–L6) were synthesized by condensation reaction of terephthaldehyde
and o-aniline derivatives in the presence of N-propyl-benzoguanamine-SO3H MNPs under optimized
condition. The magnetic nanoparticles were prepared according to the previous literature [23].
The method for the synthesis of Schiff base ligands is given in Figure 1. In order to optimize the
reaction condition of starting materials, the reaction of terephthaldehyde (1 mmol) and o-nitroaniline
(2 mmol) was carried out in different conditions using different solvents and catalysts with different
catalyst content.
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According to Table 1 the type of solvent and amount of catalyst was observed to have a
significant effect on the yield of reaction using similar catalyst (N-propyl-benzoguanamine-SO3H
MNPs). The highest yield was obtained up to 84%with a shorter reaction time using ethanol as solvent.
In the next step, the amount of catalyst in the reaction was also examined. It is obvious from Table 1
that applying more than the specified quantity of catalyst did not have a positive effect on the yield of
product and 6 mg of the catalyst represented the best yield of the reaction. It is noted from Table 1,
with increasing the amount of catalyst from 3 mg to 11 mg, reaction yield was reduced 25% with a
longer reaction time. The effect of p-Toluenesulfonic acid (PTSA) as catalyst was further examined
which exhibited lower reaction yield with much longer reaction time.

Table 1. Optimization of reaction condition for synthesis of (L1–L6) ligands. MNPs: magnetic
nanoparticles; PTSA: p-Toluenesulfonic acid.

Entry Catalyst (mg) Solvent Time (min) Yield (%)

1 MNPs-N-propyl-benzoguanamine-SO3H (3) H2O 300 45
2 MNPs-N-propyl-benzoguanamine-SO3H (3) EtOH:H2O 210 53
3 MNPs-N-propyl-benzoguanamine-SO3H (3) EtOH 180 68
4 MNPs-N-propyl-benzoguanamine-SO3H (6) EtOH 120 84
5 MNPs-N-propyl-benzoguanamine-SO3H (9) EtOH 210 75
6 MNPs-N-propyl-benzoguanamine-SO3H (11) EtOH 300 63
7 PTSA (6) EtOH 480 35

The ligands were characterized by nuclear magnetic resonance (1H-NMR), Fourier-transform
infrared spectroscopy (FT-IR) and ultraviolet-visible (UV-Visible). In the 1H-NMR spectra of the
(L1–L6) ligand, the singlet peaks due to the CNH (azomethine) group were observed in the range
of 10.08–8.64 ppm as singlet. Regarding the 1H-NMR spectra of the compounds, it can be observed
that the CNH signals of the Schiff base ligands shifted to a lower ppm (shielding) when electron
donating (OH) substituent was used and it moved to a higher ppm (deshielding) when a withdrawing
group (NO2) was used. Condensation of amine groups to Terephthaldehyde in all of the ligands is
confirmed by the absence of the N-H protons. The signals of the methyl groups (-CH3) for L2 and L5,
and OH groups for L3 and L6 ligands are observed in the range of 3.80–3.79 ppm and 1.21–1.16 ppm,
respectively. In the 1H-NMR spectra of L4, L5 and L6 ligands the CHO protons are seen at 10.99, 10.07
and 10.18 ppm, respectively. The aromatic protons of the Schiff base ligands are observed in the range
of 8.66–6.82 ppm. The 1H NMR spectral data of the ligands are summarized in Table 2.

Table 2. 1H NMR spectral data of the ligands.

Compounds HCN (ppm) CHO (ppm) Ar-H (ppm) CH3 (ppm) OH (ppm)

L1 10.04 - 8.02–7.50 - -
L2 10.08 - 8.66–6.95 3.80 -
L3 9.72 - 8.34–6.82 - 1.16
L4 10.06 10.99 8.16–7.69 - -
L5 8.64 10.07 8.03–6.95 3.79 -
L6 9.73 10.18 8.41–7.45 - 1.21

The FTIR spectra of the ligands showed peaks in the range of 1652–1620 cm−1 assigned to
ν(C=N). In the L4, L5 and L6 the ν(C=O) (carbonyl) stretching appeared at 1702, 1693 and 1703 cm−1,
respectively. In L1 and L4 Schiff bases the bands observed in the range of 1568–1348 cm−1 are attributed
to the NO2 groups, while the OH groups of L3 and L6 appeared at 3553 and 3438 cm−1, respectively.

The UV-Visible spectra of all the ligands and compounds are recorded in DMSO and the data
are listed in Table 3. In the electronic spectra of L1, L2, L4 and L5 two peaks appeared which are
attributed to п→п* and n→п* transitions, respectively. In L3 and L6 one intense absorption band
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observed in 310 and 340 nm is due to the п→п* transition. However, п→п* and n→п* absorption
peaks exhibited different behaviors due to the nature of substituents. In the UV-Vis spectra of the
ligands with withdrawing group (NO2) the п→п* peak shifted to a lower wavelengths (blue-shift)
as compared to the ligands, whereas with electron donating group (OH) the п→п* peak observed in
higher wavelengths (red-shift).

Table 3. Electronic spectra data for ligands and complexes.

Compounds Band Position (nm) Assignment

L1
260 π→π*
350 n→p*

L2
300 π→π*
390 n→p*

L3 310 π→π*

L4
290 π→π*
320 n→p*

L5
290 π→π*
370 n→p*

L6 340 π→π*

CoL1

310 π→π*
350 n→p*
600 4A1→4B1
690 4A1→4B2

CoL2

280 π→π*
410 n→p*
610 4A1→4B1
680 4A1→4B2

CoL3

280 π→π*
370 n→p*
600 4A1→4B1
680 4A1→4B2

CoL4

290 π→π*
350 n→p*
610 4A1→4B1
690 4A1→4B2

CoL5

260 π→π*
310 n→p*
590 4A1→4B1
660 4A1→4B2

CoL6

270 π→π*
390 n→p*
605 4A1→4B1
680 4A1→4B2

3.2. Characterization of Metal Complexes

Physical properties of all the synthesized compounds are presented in Table 4. The synthesized
metal complexes were prepared in good yield (65–87%), insoluble in ethanol, methanol, chloroform
and other common organic solvents but easily soluble in DMSO and DMF. Metal complexes were
characterized with mass, Fourier-transform infrared (FT-IR) and Ultraviolet-visible (UV-Visible)
spectroscopies. Since the cobalt is paramagnetic in nature the 1H-NMR technique was not performed.
The molar conductance values of the complexes in DMSO (10−3 M solutions) were calculated at room
temperature using Λm = κ

C equation; where C is the concentration of the solutions (mol/L) and κ is
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the measured conductivity. Measurements were performed to establish the charge of the complexes.
The molar conductivity of the metal complexes lies in the range of 10–22 (Ω−1 mol−1 cm2), indicating
that all the complexes were non-electrolytes.

Table 4. Physical properties of synthesized compounds. M. W.: molecular weight; M. P.: melting point.

Compounds M. W. (g/mol) Yield (%) Color Molar Conductivity (Ω−1 mol−1 cm2) M. P. (◦C)

L1 374 84 Dark yellow - 208–210
L2 344 86 Orange - 190–192
L3 316 64 Brown - 295–297
L4 254 68 Yellow - 203–205
L5 239 73 Pale Yellow - 181–183
L6 225 65 Light green - 282–284

CoL1 633 65 Pale green 22 284–250
CoL2 603 68 Dark green 12 313–315
CoL3 575 75 Dark brown 14 230–232
CoL4 503 80 Green 18 280–28
CoL5 473 82 Orange-red 16 305–307
CoL6 445 87 Dark-pink 10 236–238

In metal complexes with NO2 groups (CoL1 and CoL4), the NO2 group can coordinate to the
metal center in various ways e.g., via the nitrogen (nitro), oxygen (nitrito), both oxygens (nitrito-O,O′)
and via nitrogen and oxygen (bridging nitro) [25–27]. The coordination mode of this ambidentate
ligand depends on the stereochemical environment around the metal ions. In the FT-IR spectra of
CoL1 and CoL4 complexes the characteristic band in 492 and 614 cm−1 is observed which is due to
the cobalt-oxygen stretching band; indicating the formation of nitrito isomer. The proposed structure
for CoL1 and CoL4 complexes is given in Figure 2. The band due to ν(C=N) in ligands were shifted
to a lower wavenumbers in complexes which indicated the involvement of azomethine group in the
coordination to the cobalt center. Also the bands in the range of 1583–1592 cm−1 and 1328–1368 cm−1

are assigned to the NO2 groups. In the electronic spectra of CoL1 and CoL4 complexes the peaks in the
range of 600–690 nm are associated with d-d transition; and the low intensity of these peaks indicated
the symmetrical structure of these complexes. The mass spectra of these complexes were recorded
at room temperature to confirm the stoichiometry of metal chelates as studied above. The molecular
ion peak for the CoL1 and CoL4 complexes were observed at m/z = 633 and 573, respectively that are
equal to the molecular weight of the complexes.
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Figure 3 shows the proposed structure for CoL2 and CoL5 complexes. In FTIR spectra of CoL2 and
CoL5 complexes containing the OMe substituent the (C-H) aliphatic functional groups appeared in the
range of 2840–2900 cm−1 while the C=NH bands are observed in the range of 1619–1626 cm−1. The peaks
in the range of 474–511 cm−1 are assigned to the M-O band. The electronic absorption spectrum of CoL2

and CoL5 complexes showed four peaks. The first and second peaks are due to the п→п* and n→п*
transition of ligand group which shifted to higher wavelength compared to free ligand. The d-d transition
bands are observed in the range 590–610 and 660–680 nm owing to 4A1→4B1 and 4A1→4B2 transitions.
The mass spectra of CoL2 and CoL5 are in good agreement with the proposed structures. The mass
spectra of CoL2 and CoL5 complexes showed molecular ion peak at m/z = 603 and 473, respectively,
confirming their formula weight.



Appl. Sci. 2018, 8, 85 8 of 12

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 12 

 
Figure 3. Proposed structure for CoL2 and CoL5 complexes. 

In the FTIR spectra of CoL3 and CoL6 complexes the stretching frequency of C=N are observed 
at 1650 and 1634 cm−1, respectively. The disappearance of OH groups in CoL3 and CoL6 complexes 
indicate the OH group of ligands has been deprotonated and coordinate to metal ions. The 
coordination of Schiff base ligands to metals were also proved by the υ (M-O) appearing in the range 
485–649 cm−1. The electronic absorption spectra of CoL3 and CoL6 complexes are very similar to each 
other. In the UV-Visible spectra of these complexes the п→п* and n→п* transition of ligand group 
shifted to the higher wavelength upon the coordination and d-d transitions are appeared in the range 
600–680 nm. In the mass spectra of CoL3 and CoL6 complexes the molecular ion peak observed at m/z 
= 575 and 445. The proposed structure for CoL3 and CoL6 complexes are presented in Figure 4. 

 
Figure 4. Proposed structure for CoL3 and CoL6 complexes. 

3.3. Antibacterial Activity 

Antibacterial activities of the ligands, their metal complexes and standard antibiotic drug 
(tetracycline) were performed against gram negative bacteria (Escherichia coli, Serratia marcescens and 
Pseudomonas aeruginosa) and against gram positive bacteria (Bacillus Subtilis and Staphylococcus aureus) 
using Muller Hinton agar medium by disk diffusion and broth dilution methods are shown in Figures 
5 and 6, respectively. 

 
Figure 5. Graphical presentation of antibacterial activity of ligands against bacterial strains, 
measuring the inhibition zone (mm). DMSO: dimethyl sulfoxide. 
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In the FTIR spectra of CoL3 and CoL6 complexes the stretching frequency of C=N are observed
at 1650 and 1634 cm−1, respectively. The disappearance of OH groups in CoL3 and CoL6 complexes
indicate the OH group of ligands has been deprotonated and coordinate to metal ions. The coordination
of Schiff base ligands to metals were also proved by the υ (M-O) appearing in the range 485–649 cm−1.
The electronic absorption spectra of CoL3 and CoL6 complexes are very similar to each other. In the
UV-Visible spectra of these complexes the п→п* and n→п* transition of ligand group shifted to the
higher wavelength upon the coordination and d-d transitions are appeared in the range 600–680 nm.
In the mass spectra of CoL3 and CoL6 complexes the molecular ion peak observed at m/z = 575 and
445. The proposed structure for CoL3 and CoL6 complexes are presented in Figure 4.
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3.3. Antibacterial Activity

Antibacterial activities of the ligands, their metal complexes and standard antibiotic drug
(tetracycline) were performed against gram negative bacteria (Escherichia coli, Serratia marcescens and
Pseudomonas aeruginosa) and against gram positive bacteria (Bacillus Subtilis and Staphylococcus aureus)
using Muller Hinton agar medium by disk diffusion and broth dilution methods are shown in Figures 5
and 6, respectively.
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measuring the inhibition zone (mm).

From Figure 5 it can be observed that the L3 and L6 with OH group had relatively higher
antibacterial activity compared to the other ligands tested against the bacteria strains. These ligands
had better inhibitory effect against Pseudomonas aeruginosa with diameter inhibition zone of 15 and
14 mm, respectively. In contrast, the L4 with one NO2 group showed no antibacterial activity against
tested bacteria strains.

As can be seen from the antibacterial activity of metal complexes in Figure 6, among all these
complexes the CoL3 compound showed the higher antibacterial activity with inhibition zone of 14,
12, 12, 14 and 17 mm against B. Subtilis, S. aureus, E. coli, S. marcescen and P. aeruginosa, respectively.
The Minimal Inhibitory Concentration (MIC) values of all the synthesized compounds were also
recorded and results are presented in Table 5. From the data listed in Table 5, the MIC values of metal
complexes were lower than that of the parent ligands. The antibacterial activities of metal complexes
(CoL1 to CoL6) against P. aeruginosa were more effective than the other tested bacteria strains with
MIC value in the range of 0.62 to 2.5 mg/mL. In comparison these metal complexes were less effective
against E. coli.

Table 5. Minimal inhibitory concentration (mg/mL) ligands and metal complexes based on broth
dilution. method.

Compounds B. subtils S. aureus E. coli S. marcescen P. aeruginosa

L1 2.5 10 5 5 2.5
L2 2.5 10 2.5 5 2.5
L3 1.25 5 5 2.5 0.31
L4 - - - - -
L5 2.5 1.25 2.5 5 2.5
L6 2.5 2.5 2.5 2.5 1.25

CoL1 1.25 2.5 2.5 2.5 2.5
CoL2 1.25 5 10 2.5 1.25
CoL3 0.15 2.5 1.25 0.31 0.15
CoL4 2.5 1.25 1.25 1.25 0.62
CoL5 1.25 1.25 1.25 0.62 0.62
CoL6 1.25 1.25 2.5 1.25 0.62

Tetracycline 5 2.5 5 5 5

It is observed from this study that metal chelates have a higher activity when compared to
the parent ligands. Such increased activity of the metal chelates can be explained on the basis of
Overtone’s concept and chelation theory [28–31]. According to Overtone’s concept of cell permeability
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the lipid membrane that surrounds the cell favors the passage of only lipid soluble materials due to
which liposolubility is an important factor that controls antimicrobial activity. On chelation, the polarity
of the metal ion is reduced to a greater extent due to the overlap of the ligand orbital and partial sharing
of the positive charge of the metal ion with donor groups. Further, it increases the delocalization of
p-electrons over the whole chelate ring and enhances the lipophilicity of the complex. This increased
lipophilicity enhances the penetration of the complexes into lipid membranes and blocking of metal
binding sites on the enzymes of the microorganism.

4. Conclusions

In this research, we successfully reported the synthesis of the Schiff base ligands (L1–L6)
and their Co (II) complexes from condensation of Terephthalaldehyde with ortho-anilines with
high yields. The synthesis of corresponding ligands was performed under optimized condition.
N-propyl-benzoguanamine-SO3H MNPs was used as a suitable catalyst in ethanol as a solvent for
the synthesis of the ligands. The structures of the synthesized compounds were proposed by FTIR,
1H-NMR, UV-Vis and mass spectroscopy studies. The molar conductivity measurements showed that
all the complexes were non-electrolyte. Antibacterial activities of the ligands and their metal complexes
were examined against gram-positive and gram-negative bacteria strains. In general, metal complexes
showed much higher antibacterial activities and better inhibitory effects than that of the ligands.

Supplementary Materials: The 1H-NMR, FTIR, UV-Vis and mass spectroscopy of synthesized compounds are
available online at http://www.mdpi.com/2076-3417/8/3/385/s1.
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