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Abstract: The paper describes the case study of the mobile robot Andabata navigating on natural
terrain at low speeds with fuzzy elevation maps (FEMs). To this end, leveled three-dimensional (3D)
point clouds of the surroundings are obtained by synchronizing ranges obtained from a 360◦ field of
view 3D laser scanner with odometric and inertial measurements of the vehicle. Then, filtered point
clouds are employed to produce FEMs and their corresponding fuzzy reliability masks (FRMs).
Finally, each local FEM and its FRM are processed to choose the best motion direction to reach distant
goal points through traversable areas. All these tasks have been implemented using ROS (Robot
Operating System) nodes distributed among the cores of the onboard processor. Experimental results
of Andabata during non-stop navigation on an urban park are presented.
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1. Introduction

Autonomous navigation of unmanned ground vehicles (UGVs) requires detailed and updated
information on the environment obtained from onboard sensors [1]. Laser rangefinders are sensors
commonly employed to obtain three-dimensional (3D) point clouds of the area where the mobile
robot moves. Thus, these kinds of sensors are used by UGVs for off-road navigation [2], for planetary
exploration [3], urban search and rescue [4] or for agricultural applications [5].

The processing of outdoor scenes acquired with a 3D laser scanner is very different from object
scanning [6], since in any direction and at any distance relevant data can be found. In addition, there
may be more occlusions, erroneous ranges or numerous points from unconnected areas. In urban areas
and indoors, processing of laser information can benefit from the recognition of common geometric
features, such as planes [7]. Natural terrain classification can be performed by computing saliency
features that capture the local spatial distribution of 3D points [8,9].

In past years, 3D data acquisition from UGVs was usually performed in a stop-and-go
manner [10,11], but, nowadays, it can be performed in motion by using some kind of simultaneous
localization and mapping (SLAM) by combining data from odometry [12] or from an inertial unit [13].

A leveled 3D point cloud is a representation of the surroundings that can be used for local
navigation [14]. Elevation maps offer a compact way of representing 3D point clouds with a
2.5-dimensional data structure [15]. Moreover, fuzzy elevation maps (FEMs) can operate with
measurement uncertainty of the sensors [16,17]. However, fuzzy interpolation can produce unreliable
solutions in areas with sparse measurements, and it is necessary to use a fuzzy reliability mask (FRM)
for each FEM [18,19].

Navigation on natural terrains can be performed by following distant goal points given by their
geographic coordinates [20,21]. These waypoints can be planned based on 2D terrestrial maps or
aerial images [22], and represents the trajectory that, broadly, the vehicle should follow. However,
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to navigate between distant goal points, the robot must avoid local obstacles [23]. For this purpose,
reactive navigation based on the evaluation of elementary movements in terms of the risks of traversing
the terrain have been proposed [24–26].

This paper describes a case study of outdoor navigation using FEMs with the mobile robot
Andabata (see Figure 1). All in all, the paper offers three main contributions:

• A complete field navigation system developed on the onboard computer under the Robot
Operating System (ROS) [27] is presented.

• 3D scan acquisition with a continuous rotating 2D laser scanner [28] is performed with a local
SLAM scheme during vehicle motion.

• The computation of FEMs and FRMs is sped up using least squares fuzzy modeling [29] and
multithreaded execution of nodes among the cores of the processor.

The paper is organized as follows. The next section presents the mobile robot Andabata including
its 3D laser sensor. Section 3 explains how leveled 3D point clouds are obtained while the robot is
moving. Then, Section 4 details the filter applied to the leveled 3D point cloud. The construction of the
FEM and FRM with the filtered 3D point cloud is described in Section 5. The multithreaded computing
of FEMs and FRMs under ROS is discussed in Section 6. Section 7 presents the field navigation strategy
of Andabata and some experimental results. The paper ends with conclusions, acknowledgements
and references.

3D laser 
scanner

WIFI router

Smartphone

Figure 1. The Andabata mobile robot with the 3D laser scanner on top.

2. The Mobile Robot Andabata

Andabata is an outdoor mobile robot that weighs 41 kg and is powered by batteries. The maximum
dimensions of the robot are 0.67 m long, 0.54 m wide and 0.81 m high (see Figure 1).

Andabata consists of a skid-steered vehicle with four 20 cm diameter wheels. Each wheel has a
passive suspension system (with two springs and a linear guide with a stroke of 6.5 cm) and is actuated
by its own direct-current motor with an encoder and a gearbox. The motors are driven by two dual
Sabertooth power stages connected to two dual Kangaroo controllers. These controllers receive speed
commands for the left and right treads and send motor encoder measurements via an USB port to the
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computer (see Figure 2). The maximum speed of the vehicle is vmax = 0.68 m s−1 during straight line
motion, but decreases to zero as the turning radius reduces.

The chassis of the robot has three levels: bottom for the motors and the battery, middle for
electronics and the computer, and top for sensors and a WiFi router (see Figure 1). The computer has
an Intel Core processor i7 4771 (four cores, 3.5 GHz, 8 MB cache) and 16 GB RAM. A tablet is used
for remote supervision and teleoperation of the robot via the onboard WiFi router (see Figure 2).
Andabata has a smartphone to obtain data from its GPS (with a horizontal resolution of 10 m),
inclinometers, gyroscopes, magnetometers and its camera.

Serial-USB

Wifi Router

Se
ri
al

USB

Ethernet

3D Laser 
Scanner

Ethernet

USB

Onboard Computer

Tablet

4 x (DC Motors 
& encoders)

Smartphone2 x (Kangaroo
& Sabertooth)

Figure 2. Communication between hardware components of Andabata.

In addition, the robot has a 3D laser rangefinder (see Figure 1), built from a two-dimensional (2D)
scanner Hokuyo UTM-30LX-EW [28]. Power and data transmission between the base and the head is
carried out by a slip ring that allows unconstrained rotation. The range of measurements varies from
0.1 m to 30 m (reduced to 15 m with direct sunlight). The 3D sensor has the same vertical resolution of
the 2D scanner (i.e., 0.25◦). The horizontal resolution can be selected by modifying the rotation speed
of the head. The blind zone of the 2D sensor is 90◦, which is located below to avoid interferences with
the robot. Thus, the blind zone for the 3D laser rangefinder is a cone with the radius of the base equal
to the height h = 0.723 m of its optic centre above the floor.

Andabata can be teleoperated by a person through an Android app in the tablet called Andabata,
which is an adaptation of the Mover-bot app [30] that runs both on the tablet and the onboard
smartphone. The application on the tablet has two sliders for both hands to indicate the speed of
the left and right treads, which are sent through the local WiFi network to the Andabata app on the
smartphone (see Figure 3). Video feedback, GPS position, and robot inclination is provided by the
smartphone to the tablet via WiFi. Another app on the smartphone, called Android_sensors_driver,
publishes a ROS topic directly on the computer with all the sensory data of the smartphone via
WiFi [31].
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Figure 3. User interface of the Android app Andabata on the tablet.

Figure 4 shows a general scheme of the ROS nodes employed by Andabata. The Navigation_mode
node selects tread commands from teleoperation or from autonomous navigation, which are sent to
the motor drivers through the Motor_control node. During teleoperation, the Andabata app on the
smartphone retransmits the speed commands from the tablet to the Teleoperation node via USB.
The rest of ROS nodes are explained in the following sections.

Tablet

Smartphone

ANDROID APPS

Andabata

Android_sensors_driver

Andabata

Onboard Computer

ROS NODES HARDWARE

Motor Drivers

3D Laser Scanner

Dir_selection

Teleoperation

Local_positioning

Navigation_mode

Kinematic_model

Map

Filter

Cloud_selector

Cloud_maker Spinning_head

2D_laser_scanner

Motor_control

Global_positioning

Figure 4. Software scheme of Andabata.

3. Obtaining Leveled 3D Point Clouds

This section describes the acquisition of leveled 3D point clouds on Andabata while moving on
irregular terrain. For this purpose, it is necessary to synchronize the motion of the vehicle with 2D
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scan acquisition. All in all, it represents a local SLAM scheme implemented at low speeds without
loop closures.

Let XYZ be the reference system associated with the robot, which is located at the geometric center
of the rectangle defined by the contact points of the wheels with the ground. The X-axis coincides
with the longitudinal axis of the vehicle pointing forwards, the Z-axis is normal to the support plane
and points upwards and the Y-axis completes this orthogonal coordinate system pointing to the left
(see Figure 5). The Cartesian coordinates for a leveled 3D point cloud are expressed in an XpYpZp

reference system whose origin coincides with that of the vehicle at the beginning of each scan. The Xp

axis coincides with the projection of X on the horizontal plane, Yp = Y and Zp is defined with the
same direction as gravity and opposite direction (see Figure 5).

Figure 5. Reference systems for the robot (XYZ) and for a leveled 3D scan (XpYpZp).

The Kinematic_model node is in charge of calculating the actual longitudinal and angular
velocities of the vehicle (see Figure 4). For this purpose, it employs the encoder readings of the motors
(obtained by the Motor_control node from the motor drivers) on an approximate 2D kinematic model
of skid-steering [32].

The Local_positioning node employs an unscented Kalman filter [33] to localize the vehicle
with respect to XpYpZp during the acquisition of the whole 3D scan. To this end, the node merges the
roll and pitch angles, the yaw speed of the vehicle (provided by the smartphone and published by the
Android_sensors_driver app), and the linear and angular velocities from the Kinematic_model node.

For 3D laser scan acquisition, the Spinning_head node commands a constant rotation speed for
the head and periodically receives (every 25 ms) the relative angle between the head and the base at
the start of each 2D scan via the USB connection. In this way, this node can publish the transformation
between the 2D laser sensor reference system and XYZ. In addition, the 2D_laser_scanner node
allows for configuring the Hokuyo sensor and publishes the 2D scans that the computer receives
through the Ethernet connection.

Finally, the Cloud_maker node publishes the 3D leveled point cloud by combining the successive
2D vertical scans (published by the 2D_laser_scanner node) with the relative transformations between
the reference system of the 2D laser scanner and XYZ (provided by the Spinning_head node),
and between XYZ and XpYpZp (published by the Local_positioning node).

With Andabata stopped, a 180◦ horizontal turn of the head of the 3D scanner is enough to capture
all the surroundings of the robot, but, with the vehicle in motion, it is necessary to perform a full 360◦

turn. In this way, non-sampled areas around the robot are avoided and the blind zone above the robot
is reduced (see Figure 6).
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Figure 6. Details of leveled 3D laser scans obtained with a sensor’s head rotation of 180◦ (left) and
360◦ (right) while Andabata was moving along a slope.

4. Filtering 3D Point Clouds

To build useful FEMs and FRMs, it is necessary to filter the leveled 3D point clouds. Filtering is
composed of three consecutive steps: far points elimination, overhangs removal and maximum height
normalization. These steps are performed by the Filter node, and its output is processed by the Map
node (see Figure 4).

The first step is to eliminate far points, concretely those whose projection on the horizontal plane
is far from dmax= 10 m from the origin of the 3D scan. The reason for this is the low visibility of the
ground from the point of view of the 3D laser scanner, which is limited to h on Andabata (see Section 2)
and because distant zones are sampled with a lower density than closer ones. In addition, the number
of points to be processed is reduced and the resulting 3D point cloud focuses on the area where the
next movements of the vehicle will take place.

Overhangs that do not constitute an obstacle for Andabata, such as the ceiling of a tunnel or tree
canopy, need to be removed. For this purpose, the second step of the filter employs the collapsible
cubes method with coarse binary cubes with an edge of E = 0.5 m [34]. Basically, occupied 3D cubes
above a minimum vertical gap are omitted. Thus, points inside unsupported cubes are eliminated
from the point cloud. Two empty cubes are enough for Andabata to navigate safely below overhangs.

In the third step, the maximum height of obstacles is limited to 3 m above the ground. The objective
for this step is that the height of tall and small obstacles can be comparable. For this purpose,
the z-coordinates of 3D points inside coarse cubes with five or more cubes above its vertical ground
cube are lowered.

Figure 7 shows a leveled 3D scan obtained while Andabata was moving in an urban park
(see Figure 8). It can be observed in Figure 7 that far points (blue) and overhangs from the canopy of
the trees (green) are discarded from the filtered 3D scan (red). It is also noticeable that the maximum
height of the trees has been limited.
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Figure 7. Lateral (top) and aerial views (bottom) of a filtered 3D point cloud (red) obtained from a
leveled 3D point cloud. Blue and green colors represent far points and overhangs, respectively.

Figure 8. Andabata navigating on an urban park.
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5. Building FEMs and FRMs

This section describes the computation of an FEM and its FRM from a filtered 3D point cloud.
Instead of using the adaptive neuro-fuzzy inference system (ANFIS) for identification [16,18,19],
least squares fuzzy modeling [29] has been employed to improve computation time. Additionally,
cylindrical coordinates (α, r, z) have been employed instead of Cartesian coordinates (x, y, z).

It is assumed that the ground surface around the robot can be represented as a continuous function
z = H(α, r), where the angle α = arctan(y/x) and the distance r =

√
x2 + y2 describe the projection

of a 3D point on the XpYp plane. Similarly, an FRM is defined as a continuous function v = V(α, r),
where values of v close to one and zero, represent the maximum and minimum reliability values for
the FEM, respectively. The FEM and FRM are defined in the universe Uα = [0◦, 360◦] for variable α,
and Ur = [0 m, dmax] for r, which corresponds to a circle centered at the origin of XpYp.

A total of sixteen fuzzy sets for α have been defined evenly-distributed over Uα (see Figure 9).
In this case, triangular membership functions µi for i = 1, 2, . . . , 16 are defined as:

µi(α) =


α−αi−1

αi−αi−1 , if αi−1 ≤ α < αi,
αi+1−α
αi+1−αi , if αi ≤ α < αi+1,
0, otherwise,

(1)

where αi = (i− 1)22.5◦ represent the peak values, i.e., µi(α
i) = 1.

For distance r, ten uneven-distributed fuzzy sets have been defined over Ur to provide higher
detail for regions closest to the robot (see Figure 9). Concretely, peak parameter rj for j = 1, 2, . . . 10 are
computed as:

rj =

(
τ j − 1

τ10 − 1

)(
dmax −

h
2

)
− h

2
, (2)

where τ = 1.0624 is an expansion ratio that fulfills that r1 = h/2. Then, the membership functions µj
for r are defined as:

µj(r) =


1, if r ≤ r1 or r ≥ r10,
r−rj−1

rj−rj−1 , if rj−1 ≤ r < rj,
rj+1−r
rj+1−rj , if rj ≤ r < rj+1,
0, otherwise.

(3)

Figure 9. Membership functions for variables α (top) and r (bottom).
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The combined membership for both variables µi,j is calculated with the product operator for a
given 3D point:

µi,j(α, r) = µi(α) µj(r), (4)

where the following condition is satisfied:

∑
∀i,j

µi,j(α, r) = 1. (5)

Let m be a row vector that contains all the possible memberships:

m(α, r) = (µ1,1(α, r), µ1,2(α, r), . . . , µ16,10(α, r)) , (6)

where most of its 160 elements are null. Non null elements correspond to the regions where the
projection of the 3D point falls on the XpYp plane and its nearby regions (see Figure 10).

Figure 10. Regions defined by the fuzzy membership functions.

Using zero-order Sugeno consequents for the rule that relates the fuzzy set i for α and the fuzzy
set j for r requires just one parameter zi,j for the FEM, and another vi,j for the FRM. Let θz and θv be
the column vectors that contains all the unknown parameters:

θz =


z1,1

z1,2
...

z16,10

 , θv =


v1,1

v1,2
...

v16,10

 . (7)

Given the algebraic equations: z = m(α, r) θz and 1 = m(α, r) θv for the FEM and the FRM,
respectively, the least-squares method finds the parameters θz and θv, respectively, that minimizes the
sum of the squares of the residuals: z−m(α, r) θz and 1−m(α, r) θv, respectively, made in the results
of every 3D point in cylindrical coordinates (α, r, z).

For model training, the recursive least squares technique has been employed in the Map node.
At first, θz and θv are initialized with zeroes, with the exception of the parameters associated with the
first fuzzy set for r, i.e., those numbered j = 1. These zones may not contain any 3D point due to the
blind zone of the 3D laser scanner. Thus, the parameters zi,1 are filled with the heights deduced from
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the pitch and roll angles of the mobile robot at XpYpZp. Additionally, for all i, vi,1 = 1 to indicate that
these zones on the FEM are reliable because Andabata has already been on them.

To obtain θz, recursive least squares equations are:

L1 =
P1 mT

1 + mT P1 m
, θz = θz + L1 (z−m θz), P1 = P1 − L1 m P1, (8)

where L1 is a gain vector and P1 is the covariance matrix, which is chosen initially as the identity
matrix multiplied by a big positive number to indicate that there is no confidence on the initial zi,j
parameters. Similarly, to calculate θv , the recursive equations are:

L2 =
P2 mT

1 + mT P2 m
, θv = θv + L2 (1−m θv), P2 = P2 − L2 m P2, (9)

where L2 and P2 are the gain vector and the covariance matrix, respectively. Initially, P2 is chosen as
the identity matrix multiplied by a small positive number to indicate that there is confidence on the
initial vi,j parameters (which means no reliability on the initial FEM).

Once identified the fuzzy parameters in θz and θv, it is possible to estimate for every (α, r) the
height on the FEM: ẑ = m(α, r) θz and the reliability value on the FRM: v̂ = m(α, r) θv. Figure 11 shows
the FEM and the FRM obtained from the filtered 3D point cloud represented in Figure 7.

Figure 11. Lateral (top) and aerial views (bottom) of the FEM (left) and FRM (right) associated with
the filtered 3D point cloud of Figure 7.

6. Multithreaded Computation of FEMs and FRMs

The onboard computer of Andabata has a processor with four physical cores, but it employs
simultaneous multithreading to divide each core into two virtual units, resulting in eight independent
virtual cores. This section discusses how to employ the multithreading capability of ROS in the virtual
cores to enhance the output rate and steadiness of FEMs and FRMs.

With an horizontal resolution of 2.4◦ for the 3D laser scanner, a filtered 3D point cloud is obtained
every 3.75 s, with 60, 000 laser points approximately (this number depends heavily on sky visibility,
that reduces the number of valid ranges). However, the calculation of the FEM and its FRM (performed
by the Map node) takes much more time. This time depends on the total number of 3D points and on
the processor load.
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To increase the output rate, the calculation of the FEM and the FRM has been parallelized into
two threads inside the Map node by separating the calculation of Equation (8) to that of Equation (9).
For further improvement, the Map node can be launched two or more times working on different 3D
point clouds.

To decide which 3D point clouds will be processed and which will be discarded,
the Cloud_selector node has been developed (see Figure 4). When a Map node becomes available, it is
necessary to decide to employ the previous received 3D point cloud or to wait for the reception of the
current 3D point cloud. Moreover, in case of using multiple Map nodes, it can also be of interest to wait
for future 3D scans to avoid the processing of consecutive 3D laser scans (introducing one or more
spacing).

Figures 12 and 13 show timetables with the output rates of the 3D point clouds, FEMs and FRMs
using the previous and actual 3D scans, respectively. In these figures, different selection strategies have
been employed by the Cloud_selector node. Processed 3D point clouds are colored and the same
color is employed to indicate when its corresponding FEM and FRM have been obtained. Discarded 3D
point clouds are not colored at all.

Figure 12. Output rate for the 3D point cloud, FEM and FRM using the last received 3D point cloud
with one Map node (a), two Map nodes without forced spacing (b) and two Map nodes with one forced
spacing (c).

Figure 13. Output rate for the 3D point cloud, FEM and FRM using the current 3D point cloud with
one Map node (a), two Map nodes without forced spacing (b) and two Map nodes with one forced
spacing (c).

Table 1 compares the map age (i.e., the time employed to produce an FEM and its FRM from
a filtered 3D point cloud), the interval between consecutive maps and their respective standard
deviations for different selection strategies. When using the current 3D point cloud, the age of the
map is smaller, but the interval between maps is greater than when using the previous 3D point
cloud. The best map age can be obtained by processing the current 3D point cloud with only one
Map node. On the other hand, map interval can be improved by using more Map nodes. The ideal
strategy would be the one that minimizes both map age and map interval. A compromise between
both objectives can be achieved by using two Map nodes and one forced spacing with the previous
point cloud. Consequently, the latter is the selection strategy adopted for autonomous navigation
of Andabata.
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Table 1. Comparison between different multithreaded strategies.

3D Point Map Forced Map Standard Map Standard
Cloud Nodes Spacing Age (s) Deviation (s) Interval (s) Deviation (s)

previous

1 0 14.20 1.31 12.56 0.48

2
0 18.21 1.90 8.27 5.76
1 15.30 1.08 7.45 1.37
2 15.73 1.62 11.37 0.50

3
0 27.34 3.41 6.60 6.09
1 20.21 0.45 7.55 0.77
2 23.95 2.11 11.13 2.30

current

1 0 13.81 0.68 14.91 0.98

2
0 14.83 1.79 8.36 4.50
1 15.21 1.33 8.13 2.20
2 12.06 1.58 11.70 2.40

3
0 28.44 4.16 6.88 2.65
1 20.89 1.24 7.70 0.98
2 23.18 0.72 11.35 0.59

7. Field Navigation

A navigation mission for Andabata is defined by an ordered list of distant goal points, each one
determined by its latitude and longitude coordinates. The navigation strategy consists of approaching
the goal points while avoiding local obstacles reactively. The mission will end either when the last
goal point is reached (mission completion) or when the roll or pitch angles of the vehicle surpass 20◦

(mission failure due to excessive inclination).
The ROS package actionlib [35] has been used to implement this navigation strategy, since the

mission takes a long time to be completed and it should be able to be canceled or interrupted at
any time.

7.1. Global Localization

The relative position and orientation of the mobile robot with respect to the current goal point are
obtained by the Global_positioning node. This node process the data of the GPS and magnetometers
of the smartphone published by the Android_sensors_driver app (see Figure 4).

Before starting navigation, it is necessary to calibrate the magnetometers of the smartphone,
since their measurements can be affected by the environment and by the mobile robot itself.
Calibration consists of turning the robot on spot during one full turn on horizontal plane with lateral
motor speed of the same magnitude but different sign. Then, the magnetic measurements on the X
and Y axes, Bx and By, respectively, are adjusted to resemble a circumference (see Figure 14).

Afterwards, the orientation of the vehicle with respect to the north, i.e., the yaw, can be obtained
during navigation as:

yaw = arctan
(

Bx

By

)
, (10)

and the relative orientation of the vehicle with respect to the current goal point can be deduced.
When the distance between the current position of Andabata (given by its GPS coordinates) and

the goal point is smaller than 10 m (that corresponds to the GPS horizontal resolution), the goal point is
considered already visited and the next goal point from the mission list becomes the current goal point.
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Figure 14. Magnetic field measurements before (left) and after calibration (right).

7.2. Direction Selection

Every time an FEM and its FRM are delivered by a Map node, the Dir_selection node computes
a new motion direction (see Figure 4). A total of 32 possible directions di from the projection of the
current XYZ frame onto the XpYp plane are checked (see Figure 15). The chosen direction dj will be
the one that minimizes the following cost function:

J(di) =
|∆i|+ g |δi|

Di
, (11)

where ∆i is the difference between di and the goal point direction, δi is the angular difference between
di and the projection of the X-axis, g = 0.02 is a factor that penalizes changes of direction, and Di is the
maximum distance that the robot could travel over the FEM following di (see Figure 15).

To compute Di, several points (x, y) are evaluated in the FEM and FRM along di with steps of
0.1 m starting from the current position of the robot. Whenever the checked point has a reliability
value on the FRM less than 0.75, or has a gradient magnitude on the FEM greater than 0.35, or reach
the borders of the FEM, the distance Di, which is initially zero, is not increased more.

Figure 15. Illustration of direction selection over the FEM.



Appl. Sci. 2018, 8, 397 14 of 18

The gradient of the FEM ∇H is employed to detect non traversable areas [18]. The magnitude of
the gradient at a point with cylindrical coordinates (α, r) on the FEM can be calculated as:

|∇H(α, r)| =

√(
∂H(α, r)

∂x

)2

+

(
∂H(α, r)

∂y

)2

, (12)

where:

∂H(α, r)
∂x

= ∑
∀i,j

[
zi,j

(
µi(α)

∂µj(r)
∂x

+ µj(r)
∂µi(α)

∂x

)]
, (13)

∂H(α, r)
∂y

= ∑
∀i,j

[
zi,j

(
µi(α)

∂µj(r)
∂y

+ µj(r)
∂µi(α)

∂y

)]
, (14)

and:

∂µi(α)

∂x
=


y
r2

1
αi−1−αi , if αi−1 ≤ α < αi,

y
r2

1
αi+1−αi , if αi ≤ α < αi+1,

0, otherwise,

∂µj(r)
∂x

=


x
r

1
rj−rj−1 , if rj−1 ≤ r < rj,

x
r

1
rj−rj+1 , if rj ≤ r < rj+1,

0, otherwise,
(15)

∂µi(α)

∂y
=


x
r2

1
αi−αi−1 , if αi−1 ≤ α < αi,

x
r2

1
αi−αi+1 , if αi ≤ α < αi+1,

0, otherwise,

∂µj(r)
∂y

=


y
r

1
rj−rj−1 , if rj−1 ≤ r < rj,

y
r

1
rj−rj+1 , if rj ≤ r < rj+1,

0, otherwise.
(16)

7.3. Computing Tread Speeds

Once the motion direction dj is determined, the commanded angular velocity ω for Andabata
is computed as: ω = G δj, where G = 1 is a proportional gain that regulates heading changes of the
vehicle [21]. The longitudinal velocity during navigation v is a constant value that depends on the
difficulty of the terrain.

The Dir_selection node sends the desired longitudinal v and angular ω velocities to the
Kinematic_model node, which are converted into left and right tread speeds by using a symmetric
inverse kinematic model:

vl = v− yICR ω, vr = v + yICR ω, (17)

where yICR = 0.45 m is the mean value of tread instantaneous centers of rotation (ICRs) of Andabata
on horizontal plane [32]. When any of the tread speeds exceeds their maximum speed vmax,
the commanded speeds (Equation (17)) are divided by:

e =
|v|+ yICR |ω|

vmax
. (18)

In this way, the commanded curvature γ of the vehicle (and its turning radius) is kept unaltered:

γ =
ω/e
v/e

=
w
v

. (19)

7.4. Experimental Results

The performance of the navigation system of Andabata has been tested in an urban park with
several lampposts, stone benchs and trees (see Figure 8). The park contains soft slopes and different
terrains such as grass and sand.

The experiment shown in Figure 16 consists of an outdoor trip from a start point (white cross) to
reach two GPS goals (blue dots), which are fulfilled when the robot is closer than 10 m (red circles).
The path followed by Andabata is shown with black dots representing the GPS positions obtained
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from the onboard smartphone. The longitudinal speed of the robot was set to v = 0.34 m s−1 and the
trip took 540 s, approximately. Figure 16 has been generated with the help of Google Earth [36].

Figure 16. GPS positions of Andabata during navigation (top view).

Changes in the yaw angle during this experiment (obtained with the magnetic compass) can be
observed in Figure 17. Remarkable changes occur when the robot tries to aim to the first and second
goal points at the beginning and the middle of the trajectory, respectively. Once the goal direction is
obtained, some corrections are made in order to cross through traversable areas.

Figure 17. Yaw variations during the experiment.

Figure 18 shows a local FEM and its FRM generated during autonomous navigation. Small black
arrows have been superimposed to represent the successive positions of the mobile robot in local
coordinates (provided by the Local_positioning node). It can observed how obstacle avoidance is
performed while moving towards the goal point.
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Figure 18. A top view of the local path followed by Andabata (black arrows) over an FEM (left) and its
FRM (right).

8. Conclusions

This paper has described the field navigation system of the mobile robot Andabata at low speeds
with fuzzy elevation maps (FEMs). For this purpose, the robot obtains leveled three-dimensional (3D)
laser scans in motion by integrating ranges from a 360◦ field of view 3D laser scanner with odometry,
inclinometers and gyroscopes. Each leveled 3D scan is employed to produce an FEM and a fuzzy
reliability mask (FRM) of the surroundings, which are processed to choose the best motion direction to
reach a distant goal point while crossing through traversable areas. This has been implemented with
different ROS (Robot Operating System) nodes distributed among the cores of the onboard processor.

It is the first time that a mobile robot navigates with FEMs obtained from 3D laser scans in
outdoors. To do so, a complex navigation scheme has been developed by integrating numerous
tasks, where it has been necessary to employ 3D point cloud filtering and multithreaded execution
to increase the building frequency of FEMs and FRMs. Experimental results of Andabata navigating
autonomously in an urban park have been presented.

Work in progress includes navigation in more complicated natural environments and quantitative
comparison with state-of-the-art outdoor navigation methods.
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