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Abstract: The normal vector estimation of the large-scale scattered point cloud (LSSPC) plays an
important role in point-based shape editing. However, the normal vector estimation for LSSPC
cannot meet the great challenge of the sharp increase of the point cloud that is mainly attributed to its
low computational efficiency. In this paper, a novel, fast method-based on bi-linear interpolation is
reported on the normal vector estimation for LSSPC. We divide the point sets into many small cubes
to speed up the local point search and construct interpolation nodes on the isosurface expressed
by the point cloud. On the premise of calculating the normal vectors of these interpolated nodes,
a normal vector bi-linear interpolation of the points in the cube is realized. The proposed approach
has the merits of accurate, simple, and high efficiency, because the algorithm only needs to search
neighbor and calculates normal vectors for interpolation nodes that are usually far less than the point
cloud. The experimental results of several real and simulated point sets show that our method is over
three times faster than the Elliptic Gabriel Graph-based method, and the average deviation is less
than 0.01 mm.
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1. Introduction

With the popularity of 3D scanning measurement technology, the acquisition of large-scale
scattered point cloud (LSSPC) is easier due to the high resolution of the scanning devices. However,
the point based model must be processed for rendering, feature recognition, smoothing, sampling,
and surface reconstruction to meet the requirements of the application. The normal vector estimation
is actually the basis of point cloud editing, while the efficiency barely meets the great demand of
the application.

Many algorithms aim to estimate the normal vectors of the scattered point cloud. The Euclidean
nearest neighbor (ENN)-based methods are the most popular algorithms due to their simplicity [1,2].
Cao [3] presented a fast and quality estimator based on a neighborhood shift to estimate the
normal vector accurately. Hotta and Iwakiri [4] realized 3D point cloud cluster analysis using the
Principal Component Analysis (PCA) of normal vector distribution that depends on a neighbor.
Ouyang and Feng [5] developed a method based on fitted directional tangent vectors using a local
voronoi mesh, which needs to identify the neighboring points first. Park [6] focused on finding balanced
neighbors using an Elliptic Gabriel graph (EGG) algorithm, followed by local quadratic surface fitting
methods for the normal vector estimation of each point. Zhang [7] reported a low-rank subspace
clustering algorithm to estimate the normal vector robustly, while the method had to distinguish
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whether the points belonged to smooth regions and calculate the normal vector for them before
clustering. The calculation of normal vectors based on ENN usually performs the following steps: First,
sort the scattered point cloud into a classic data structure, such as a k-d tree [8] or hash table; then,
search the nearest neighbor within a fixed quantity or a fixed distance of each point; at last, compute
the normal vector using neighbor points for each point.

Although these ENN-based methods are widely used, there are some difficulties to
overcome [9,10]. On one hand, the ENN is generally determined by a predefined constant or a
spherical space with a specific radius. The reasonable neighborhood range is crucial for accurate
and reliable normal vector estimation, especially when dealing with LSSPC [11]. On the other hand,
these ENN-based algorithms are perhaps reasonable in the distance but are not reasonable in spatial
distribution [12]. When the point distribution is uneven, the distance-based method gives obviously
unbalanced neighbors, which result in unreliable normal vector estimation results. Park [6] and
Lee [13] discussed the EGG algorithm that was used to overcome this shortcoming, but this EGG
algorithm does not consider the situation that the point is located at the edge of the surface.

Some researchers use the triangle mesh to calculate the normal vector for the point cloud. Ma [14]
introduced a new normal vector estimation method based on the matching results of the local Delaunay
triangle mesh formed at each point. The normal vectors of the triangular meshes that contain the given
point were recorded by local searching at first; then, the average of these normal vectors was calculated
as the normal vector of the point. Chen and Wu [15] used the centered weights to approximate normal
vectors. However, different triangulation results may lead to different normal vector calculation results
due to the ambiguity when converting the point cloud to triangulation.

Either the ENN-based methods or the triangle-based algorithms—whichever is the nearest
neighbor for each point—needs to be found. This means huge times of power operation, open square
operation, and comparison operation are involved in neighbor searching. It is a very time-consuming
process [16,17], especially when dealing with large-scale scattered point cloud. The hash table is widely
used in the nearest neighbor searching [18], since hash tables turn out to be more efficient than search
trees or any other look-up table structure in many situations [19,20]. However, it will dramatically
reduce the efficiency when the density of point cloud is non-uniform. Some algorithms try to improve
the nearest neighbor searching algorithm by sorting the distance from the point to an adjacent region;
however, the effect of this is limited. Another algorithm that seriously affects efficiency is the singular
value decomposition (SVD) of the covariance matrix, which was widely used in the normal vector
calculation. Given an n order matrix, the SVD of the matrix takes O(n3) floating-point operations
(flops) [21]. This will have a disastrous impact on the normal vector calculation, especially when the
number of the point cloud is huge.

In this paper, it is the intention that a high efficiency estimation approach is proposed for the
predicted normal vector of LSSPC. This algorithm takes three primary steps to compute the normal
vector for each point, and it is described in detail in Section 2. In Section 3, the experiments are carried
out, and the results are completely discussed.

2. Materials and Methods

2.1. The Interpolation Nodes and Nearest Neighbor

For an arbitrary point of point-based shape, the normal vector represents the tangent plane
direction of the unknown isosurface. In order to calculate the normal vector for all points, we first
construct the interpolation nodes and calculate the normal vector for these points based on Marching
Cube algorithm, which was first developed as a result of the research on visualizing Computed
Tomography data and Magnetic Resonance Imaging data [22].

Therefore, it is necessary to establish a spatial topology to speed up the local point cloud
search. An automatic method was introduced to segment the point cloud into some small cubes,
and then the hash table was established by assigning the indexes to these cubes.
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Given a point set S = {Xt = (xt, yt, zt)|t = 1, . . . , N}, in which N is the number of the point
set. The efficiency and the accuracy were strongly associated with the cube’s size L. Small L means
high accuracy, while larger L means high efficiency. According to the literature [23], a reasonable
computation of L can be easily extended from 2D to 3D:

L =
3

√
(xmax − xmin)× (ymax − ymin)× (zmax − zmin)

N
(1)

in which xmax, xmin, ymax, ymin, zmax, zmin are the maximum and minimum values of point cloud along
the X, Y, and Z axes, respectively.

Once the size of the cube is determined, the total number of the cubes indexi, indexj, and indexk
were calculated separately according to X, Y, and Z axes.

indexi = (xmax − xmin)/L
indexj = (ymax − ymin)/L
indexk = (zmax − zmin)/L

(2)

The cube contains the point Xt = (xt, yt, zt) can be indexed with:
i = (xt − xmin)/L
j = (yt − ymin)/L
k = (zt − zmin)/L

(3)

Then the point Xt can be mapped to hash table by the following hash function:

key = indexi × indexj × k + indexi × j + i (4)

This is a process of projection and quantization that places each point in a cube indexed with
(i, j, k) that can correspond to the integer key through the hash function.

Given a cube with an index of (i, j, k), the Marching Cubes algorithm calculates a signed distance
for all eight vertices of each cube; then, the intersection points of the cube’s edges and the unknown
isosurface is calculated according to these signed distances of the vertex [24]. Since the normal vector
of the point cloud is unknown, the signed distance cannot be calculated, so the coordinates of the
intersection points cannot be obtained. However, we can project the grid point p to the tangent plane
of the unknown isosurface to get the projection points p1 in Figure 1. We call the projection points p1

an interpolation node.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 11 

Therefore, it is necessary to establish a spatial topology to speed up the local point cloud search. 
An automatic method was introduced to segment the point cloud into some small cubes, and then 
the hash table was established by assigning the indexes to these cubes. 

Given a point set S = {Xt = (xt, yt, zt)|t = 1,…, N}, in which N is the number of the point set. The 
efficiency and the accuracy were strongly associated with the cube’s size L. Small L means high 
accuracy, while larger L means high efficiency. According to the literature [23], a reasonable 
computation of L can be easily extended from 2D to 3D: 

max min max min max min3
( ) ( ) ( )x x y y z z

L
N

− × − × −=  (1) 

in which xmax, xmin, ymax, ymin, zmax, zmin are the maximum and minimum values of point cloud along the 

X, Y, and Z axes, respectively. 
Once the size of the cube is determined, the total number of the cubes indexi, indexj, and indexk 

were calculated separately according to X, Y, and Z axes. 

max min

max min

max min

( )
( )

( )

i

j

k

index x x L

index y y L

index z z L

 = −
 = −
 = −

 (2) 

The cube contains the point Xt = (xt, yt, zt) can be indexed with: 

min

min

min

( )
( )
( )

t

t

t

i x x L

j y y L

k z z L

= −
 = −
 = −

 (3) 

Then the point Xt can be mapped to hash table by the following hash function: 

i j ikey index index k index j i= × × + × +  (4) 

This is a process of projection and quantization that places each point in a cube indexed with (i, 
j, k) that can correspond to the integer key through the hash function. 

Given a cube with an index of (i, j, k), the Marching Cubes algorithm calculates a signed 
distance for all eight vertices of each cube; then, the intersection points of the cube’s edges and the 
unknown isosurface is calculated according to these signed distances of the vertex [24]. Since the 
normal vector of the point cloud is unknown, the signed distance cannot be calculated, so the 
coordinates of the intersection points cannot be obtained. However, we can project the grid point p 
to the tangent plane of the unknown isosurface to get the projection points p1 in Figure 1. We call the 
projection points p1 an interpolation node. 

 

Figure 1. Projecting the point p onto the tangent plane π to construct the interpolation node p1. Figure 1. Projecting the point p onto the tangent plane π to construct the interpolation node p1.



Appl. Sci. 2018, 8, 454 4 of 11

The randomness of scattered point cloud leads to the fact that the neighborhood of a point is
generally not symmetric. The normal vector of the same point will change according to the change of
the neighborhood range. We avoid this problem by searching the given cube and the 26 surrounding
cubes and get all the neighborhood points of the geometric center point p.

When the cube is small enough, it is considered that the points in a cube are on the same tangent
plane and have nearly the same normal vector n. Figure 1 shows that the vertex point p is usually
not on the unknown isosurface; it can be projected to the surface along the direction of the normal
vector n that is defined by the neighbor of point p. The interpolation node p1 is on the tangent plane
π. The Euclidean distance from p to p1 is the smallest, and the neighbor of the p can be regarded as the
neighbor of p1; then, the p1 shares the normal vector n with p.

2.2. Normal Vector Estimation and the Coordinates of Interpolation Node

Let Q = {Xt = (xt, yt, zt)|t = 1, . . . , M} represent the neighbor of p1, in which M is the number of
the neighbor point. The normal vector of the unknown isosurface at p1 is associated with a tangent
plane that is through the center of the point set Q. Let n represent the unit normal vector and Xc

represent the center of Q. Then, Xc can be computed from Q:

Xc =
1
M

M

∑
t=1

Xt = (xc, yc, zc), (5)

The unit normal vector n can be computed by preceding a general PCA algorithm [4,25].
The symmetric 3 × 3 positive semi-definite covariance matrix CV is formed using point set Q.

CV =

 X1 − Xc

. . . . . .
XM − Xc


T

⊗

 X1 − Xc

. . . . . .
XM − Xc

, (6)

By a singular value decomposition (SVD) of covariance matrix CV, we get eigenvalues λ1 ≥ λ2 ≥ λ3,
which are associated with eigenvectors v1, v2, v3. According to the PCA algorithm, the eigenvector
v3 or −v3 can be used as the normal vector of the plane. The unit normal vector n = (nx, ny, nz) is
computed by normalization of the eigenvector v3 or −v3.

Once the tangent plane is calculated, the coordinates of the vertex p = (xp, yp, zp) can be calculated
by Equation (7) according to the given index of the cube (i, j, k) and the cube’s size L.

xp = i× L
yp = j× L
zp = k× L

(7)

The projection point p1 in Section 2 is determined by the geometric relationship of tangent plane
and p. By letting p1 = (x, y, z), according to the geometric relation that p1 is on the tangent plane,
we can get the following expression:

nx(x− xc) + ny(y− yc) + nz(z− zc) = 0, (8)

Consider that the projection direction is consistent with the normal direction of the tangent plane,
the unit normal vector n is proportional to the vector from p to p1.

x− xp

nx
=

y− yp

ny
=

z− zp

nz
, (9)
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If Equation (9) is equal to a certain ratio r, then the coordinates of projection point p1 can be
expressed by r: 

x = xp + nxr
y = yp + nyr
z = zp + nzr

, (10)

The ratio r can be calculated by replacing x, y, and z in Equation (8) with Equation (10)

r =
1

n2
x + n2

y + n2
z
(nx(xc − xp) + ny(yc − yp) + nz(zc − zp)), (11)

Because n is a unit normal vector, then

n2
x + n2

y + n2
z = 1, (12)

Additionally, Equation (11) can be rewritten as:

r = nx(xc − xp) + ny(yc − yp) + nz(zc − zp), (13)

The coordinates of the projection point p1 can be obtained by Equation (10)
x = xp + nx(nx(xc − xp) + ny(yc − yp) + nz(zc − zp))

y = yp + ny(nx(xc − xp) + ny(yc − yp) + nz(zc − zp))

z = zp + nz(nx(xc − xp) + ny(yc − yp) + nz(zc − zp))

, (14)

2.3. Normal Vector Interpolation

According to the previous hypothesis, the points in Q are nearly on the same tangent plane that
is associated with projection points and the change of the normal vector is nearly linear in a small
space. Using the projection points and their normal vectors, the normal vector for the point Xt = (xt, yt, zt)
can be calculated using a bi-linear interpolation.

The interpolation involves eight adjacent cubes as shown in Figure 2. For convenience, the cubes
are indexed from 1 to 8. Because of the continuity of the unknown isosurfaces, if the cube contains
point data and projection point, these points can be considered on the same tangent plane, and the
interpolation can be transformed into two dimensions by projection. For convenience, we are projecting
along the maximum component of the normal vector.
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Figure 2. Indexes of 8 cubes involved in the normal vector interpolation.

Let n1 = (nx1, ny1, nz1) is the normal vector of p1, and |nz1|≥|ny1|≥|nx1|, then the projection
direction is the Z axis. Search the cube 1 and 5, 2 and 6, 3 and 7, 4 and 8 in Figure 2 to get the point p1,
p2, p3, p4 with the normal vectors n1, n2, n3, n4, separately. Projecting all points in a cube (i, j, k) and
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p1, p2, p3, p4 along the Z axis, we get projection points in Figure 3. When the one of |nx1| and |ny1|
is maximum, the process is the same with search order 1 and 2, 3 and 4, 5 and 6, 7 and 8, or 1 and 3,
2 and 4, 5 and 7, 6 and 8 to get p1, p2, p3, p4, and the projection direction should be X axis or Y axis.
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Suppose that the projection points p′1 = (x1, y1), p′2 = (x2, y2), p′3 = (x3, y3), p′4 = (x4, y4). The normal
vector of point pa = (xt, ya) and pb = (xt, yb) in Figure 3 can be calculated by linear interpolation between
the projection points of p′1, p′2 and p′3, p′4 separately. The y components of pa and pb can be obtained
by linear interpolation: {

ya =
x2−xt
x2−x1

y1 +
xt−x1
x2−x1

y2

yb = x4−xt
x4−x3

y3 +
xt−x3
x4−x3

y4
, (15)

In order to get the correct interpolation results. The direction of the normal vectors n1, n2, n3, n4

must be the same. If the dot product n1·n2 < 0, then replace n2 with −n2. After the normal vectors n2,
n3, n4 are consistent with n1, the normal vector na can be calculated by interpolation between n1 and
n2, and the normal vector nb can be got by interpolation between n3 and n4:{

na =
xe2−xt
xe2−xe1

n1 +
xt−xe1
xe2−xe1

n2

nb = xe2−xt
xe2−xe1

n3 +
xt−xe1
xe2−xe1

n4
, (16)

Then, nt can be calculated by linear interpolation between na and nb:

nt =
yb − yt

yb − ya
na +

yt − ya

yb − ya
nb, (17)

Without loss of generality, when the tangent plane is not intersected with the cube,
the corresponding projection point can be set to p′w = (0, 0), in which w = 1, 2, 3, 4.

3. Results

In this section, we tested the proposed methods and the existing methods with various synthetic
and real point sets. When using SVD to compute the normal vector, the iteration will be stopped when
the absolute error or the relative error reaches a value that is less than a given tolerance 1 × 10−6.
Since the length of the cube has an important impact on the algorithm, unless otherwise specified,
the length of the cube is 1.0L. In order to test the robustness of the proposed algorithm, we chose a set of
typical point sets including free-form surfaces, planes, and other irregular point cloud models. Since the
normal vector is very sensitive to light, we use the shading model to observe the small changes in the
normal vector. All the experiments were run on a computer with Intel Core i5, 2.67 GHz CPU and 4 GB
memory, running windows 7 (64 bit).
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Figure 4 shows the normal vector result of a free-form surface model. The model contains
0.712 million points. Figure 4a is a shading model obtained using our method. In the calculation
process, 376 × 314 × 93 cubes were constructed, of which only 134,832 cubes contained points data
(about 1.23%). It takes 1014 ms to estimate the normal vector, including 202 ms for the normal vector
interpolation and 812 ms for the nearest neighbor search and the PCA algorithm. Figure 4b is the
normal vector that is attached to the point cloud. Figure 4c is an enlarged image that shows that the
method performs well when dealing with sharp changes of surface. Figure 4d is the shading model
obtained by the ENN based algorithm, and it takes 3762 ms to estimate the normal vector, which is
about 3.7 times more than our method. This is mainly due to the fact that our algorithm avoids more
than 80% of the matrix decomposition.
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estimation results; (c) an enlarged image of local part with sharp changes; (d) shading model of the
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Figure 5 shows the results on several point sets with different numbers and complexity. The point
cloud contains 0.121, 0.178, 0.516, 1.272, and 2.875 million points, respectively. The proposed method
can deal with not only smooth transition surfaces but also the models with complex shapes and
shape changes.
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To be objective, we estimate the normal vector for these points clouds using the EGG-based method
presented by Park [6]; the ‘k’ value is set to 8. Table 1 is the details of point number, projection point
number, the cubes constructed by our method, and the comparison of the normal vector estimation
with the EGG-based algorithm. The number of points and projection points in Table 1 is counted in
the millions, and the unit of the time in Table 1 is millisecond. With the increase of the point cloud
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number, the time of algorithm increases, but the time of the nearest neighbor search and normal vector
estimation is obviously slower than the normal vector interpolation.

Table 1. The details of the experiment.

Object Model Points
(million)

Projection
(million) Cubes Time

(ms) Time (3.0L) (ms) Time of
EGG (ms)

Famer Statue 0.121 0.038 156 × 102 × 121 234 101 924
Blade 0.178 0.078 101 × 143 × 383 266 139 1253

Mother Statue 0.516 0.114 297 × 200 × 134 828 353 2742
Engine Cover 1.272 0.248 444 × 267 × 162 2259 846 6759

Engine 2.875 0.450 621 × 314 × 191 5023 1802 16,130

We carried out experiments on the simulation of spherical point cloud data; the results are shown
in Figure 6. From (a) to (e), the number of points in the simulated spherical point cloud is 0.1875, 0.375,
0.75, 1.5, and 3.0 million points, respectively.
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Figure 6. The shading model of simulation spheres according to our method with different numbers of
points N. (a) N = 0.1875, (b) N = 0.375, (c) N = 0.75, (d) N = 1.5, and (e) N = 3.0 million.

We tested the proposed algorithm and the EGG-based algorithm on the actual data and the
simulated data, and plot the results in Figure 7a,b. The efficiency of the two algorithms is consistent
with the data in Table 1. The average number of neighborhood points in our algorithm can reach 15,
and Figure 7 shows the result that our algorithm is 3–4 times faster than the latter, and this is due to the
fact that our algorithm requires less nearest neighbor searching and SVD operations. Once the length of
cube’s edge L is determined, the projection points are determined, and the projection points are usually
far less than 1/3 of the number of the points. Our algorithm consists of the following steps: create hash
table, search hash table, Create 3D points, compute normal vector, and interpolation. The computation
complexity are O(N), O(1), O(N), O(N), and O(N), respectively. The time complexity of our algorithm
is O(N). We can get the same conclusion from Figure 7.
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The number of projection points is the key factor in determining the efficiency of the algorithm,
which is closely related to the length of the cube. We have tested the length of the cube, which varyies
from 1.0L to 3.0L on the model in Figure 5, and gotten time-length curve. The curves about time and L
are nonlinear, and the ordinate decreases sharply with the increase of L. Figure 8a shows the result
of the normal vector estimation of different lengths of the cube. When the cube’s length is over 2.0L,
the time remains almost the same. The reasonable length of cube is about 1.5L, which ensures the
efficiency and accuracy of the algorithm. Figure 8b is the result of the normal vector estimation of
simulation spheres, and the error greatly increased, while the length of the cube is over 3.0L.
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We have explored the proposed algorithm on simulation sphere data in terms of accuracy, and the
statistical results show that the average deviation of the normal vector is less than 0.0065 mm. In our
algorithm, over 75% interpolation calculation uses four normal vectors with an average error of
0.005 mm,;14% interpolation calculation uses three normal vectors with the average error of 0.008 mm;
and 11% interpolation calculation uses two normal vectors with the average error of 0.0102 mm.

The experimental results show that the proposed algorithm is more effective and efficient
compared with the existing methods of the normal vector estimation.

4. Conclusions

A new bi-linear interpolation based method for estimating the normal vector for LSSPC has
been presented in this paper. The point cloud is segmented by many small cubes according to the
Marching Cube algorithm, followed by a neighborhood search for the projection points of the isosurface
and the cubes. The normal vector estimation for the projection points was realized by the principal
component analysis algorithm using these neighbor points. In order to calculate the normal vector of
the point cloud, the bi-linear interpolation was carried out through 4 adjacent normal vectors of the
projection points. Experimental results on several practical and simulated point clouds demonstrated
the efficiency and the accuracy of the proposed method.

The most critical step of the algorithm is to calculate the normal vector by the bilinear
interpolation. The condition of realizing this calculation is to project the point along the direction of
the normal vector approximately, so that the three dimensional problem is transformed into a two
dimensional problem. The new normal vector estimation algorithm has helped our research on data
rendering, feature recognition, and data analysis for 3D point cloud with the efficiency of calculation
greatly improved.
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