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Abstract: A ring resonator is a basic component of traditional photonic integrated circuits (PIC),
which has been, however, found difficult to be applied efficiently in high-compact plasmonic
metal-insulator-metal (MIM) systems. Here, based on a plasmonic band-stop filter with a square ring
resonator (SRR), a novel side-coupling method is introduced both numerically and theoretically to
achieve a drop in the resonant wavelength in the SRR with considerable efficiency. By introducing
the reflector structure, the performance can be appreciably improved. Besides, this structure also
has potential for sensing and switching. Finally, a dual demultiplexer based on SRRs is realized at
telecommunication wavelengths with comparable performance, which makes it possible to apply
ring resonators in on-chip plasmonic wavelength division multiplex (WDM) networks. This work is
valuable for PIC design, and will promote the on-chip plasmonic system progress.
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1. Introduction

Surface plasmon polaritons (SPPs) are an electromagnetic field transferred on a metal-dielectric
interface and have been widely studied due to their ability to trap energy with high density and
break the diffraction limit of light [1]. The metal-insulator-metal (MIM) waveguide, one of the basic
plasmonic slot waveguides, not only has the capability of confining light within a considerate SPPs
propagating length, but also meets the demands of highly integrated all-optical circuits with easy
fabrication [2]. Traditional dielectric-based devices have relatively large dimensions which cannot be
reduced when the diffraction limit is reached, and do not meet the requirements of future ultra-compact
photonic integrated circuits (PICs) [1]. However, the MIM structure can provide a nanoscale optical
path to overcome such a limit, and a device based on the MIM structure can manipulate light on the
subwavelength scale, which will greatly reduce the size of the device [1]. As a trade-off, however,
its intrinsic loss (ohmic loss) is significant [3]. Besides, compared with dielectric-based PICs, such a
plasmonic system is able to work easily at near-infrared and visible wavelengths due to its relatively
smaller footprint [3]. Therefore, MIM-based plasmonic devices will play an important role in future
PICs. Recently, many kinds of plasmonic devices utilizing the MIM structure have been introduced,
such as filter [4–6], demultiplexer [7–9], switch [10–13], and sensor devices [14–19].

In the PIC, the ring resonator is not only an essential component to realize various filters with
compact footprints, but it also offers multifunctionalities such as wavelength selection, buffering,
and switching [20]. However, it has been found to be difficult to apply a ring resonator with high
efficiency in an MIM system due to the high ohmic loss and short coupling length [6]. Recently, an MIM
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square-ring resonator (SRR) was proposed by Hosseini [21]. The SRR can be fabricated more easily
than a ring resonator and possesses a longer coupling length. Various works based on the SRR have
been reported to achieve aperture-coupled structure [22], band-stop filter [23–25], plasmon-induced
transparency (absorption) [26,27], and SPPs flow control [28]. However, few works focus on dropping
the resonant wavelength in the SRR to realize a channel drop filter and demultiplexer, which are
indispensable devices in PICs. Wang proposed a side-coupled crossbeam SRR and the resonant
wavelength can be downloaded [25], but the efficiency is low.

Here, we numerically propose a plasmonic MIM band-stop filter with an SRR, as well as introduce
a unique side-coupling method to drop the resonant wavelength with considerable efficiency and
full width half maximum (FWHM). By introducing the reflector structure, the performance can be
appreciably improved. The corresponding phenomenon can be theoretically analyzed by coupled
mode theory (CMT). Besides, such a structure also has potential for optical sensing and switching.
Finally, we realize a dual demultiplexer based on SRRs at telecommunication wavelengths with great
performance. This work provides a simple scheme to integrate a ring resonator into a plasmonic
system, which will promote the progress of all-optical ultra-compact networks.

2. Materials, Structures, and Methods

As shown in the Figure 1a, an MIM band-stop filter based on a single side-coupled SRR is
introduced. The detailed structural parameters are given in the caption. The bus waveguide and
SSR can be etched on the silver plate by the focused ion beam (FIB) method. The insulator in the bus
waveguide and the SRR is air as εi = 1, while the complex relative permittivity of silver is described
by the Drude model [29]:

εm = ε∞ −
ω2

p

ω(ω + iγ)
(1)

Here ε∞ gives the medium constant for the infinite frequency, ωp refers to the bulk frequency for
plasma, γ denotes the damping frequency for electron oscillation, and ω represents the incident light
angular frequency. The parameters for silver are ε∞ = 3.7, ωp = 1.38 ×1016 Hz, and γ = 2.73 ×1013 Hz.

The transverse magnetic (TM) mode can propagate at the interface of waveguide when coupled
into the MIM structure. Compared with incident wavelength, the thickness of the bus waveguide is
much smaller, so only the fundamental TM mode can exist. The dispersion relation of this fundamental
mode is described as follows [2]:
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Here, w refers to the width of the bus waveguide, λ is the incident light wavelength in vacuum, εi
and εm are the relative dielectric and metal permittivity, βspp and ne f f are the propagation constant
and effective refractive index (RI) of SPPs, respectively, and k0 = 2π/λ indicates the wave number.
Here, the width of the bus waveguide is 100 nm, as is usually selected [13], and the width of SRR is
chosen as 15 nm to increase the energy density in the resonator, which is beneficial for improving the
drop efficiency. The Lumerical Finite-Difference Time-Domain (FDTD) solutions with a mesh grid size
of 2.5 nm is utilized for simulating features of such a device with the boundary condition of stabilized
perfectly matched layers (PML) to maintain convergence [4]. A mode source is set at the input port and
a fundamental mode is selected. To collect the incident and transmitted power, two power monitors
are put respectively at Pin and Pout. The transmittance of power can be calculated by T = Pout/Pin.

The transmission spectrum for band-stop filter is shown in Figure 1b, which shows that the
resonant wavelength is approximately 1310 nm. The transmission for the 1310 nm wavelength is
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almost zero, indicating that there is a strong resonance inside the SRR and the energy can be confined
in the cavity very well. Therefore, this filter has a great performance in stopping a specific wavelength.
The inset of Figure 1b gives the field distributions (|H|) in the SRR for the resonant wavelength. In the
ring resonator, the resonant wavelength λ can be calculated from [21]:

λ =
4Le f f Re(ne f f )

N
, N = 1, 2, 3 . . . (3)

where ne f f refers to the effective RI in the ring resonator, which can be solved by Equation (2), and Le f f
indicates the effective side length, which generally refers to the average of the inner and outer side
lengths of the ring. N refers to the mode number, which is an integer. Figure 1c gives the transmission
spectra related to different side lengths L of the SRR with a gap of 15 nm. The resonant peak shows
a red-shift when increasing the side length, which agrees with Equation (3). Besides, the influence
of the gap g on the resonant wavelength is investigated with the side length of 550 nm. As shown
in Figure 1d, the resonant wavelength performs a blue-shift with the increase of the gap. Therefore,
the resonant wavelength could be controlled by varying the side length or the gap.
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Figure 1. (a) Two-dimensional (2D) structure of the band-stop filter with a single square ring resonator
(SRR). L = 550 nm, D = 20 nm, w = 100 nm, g = 15 nm. (b) The transmission spectra of the band-stop filter.
The inset is the corresponding field distribution. (c) The transmission spectra pertinent to different side
lengths L of the SRR. (d) The transmission spectra pertinent to different gaps g.

However, when the SRR comes to the traditional add-drop structure, the drop performance is
terrible, as shown in Figure 2a. Therefore, we introduce a unique side-coupling method as presented
in Figure 2b. The drop waveguide is side-coupled in such a way for two reasons. First, the position of
the drop waveguide is selected according to the local mode distribution in the SRR. Besides, since the
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resonant wave propagates anticlockwise in the SRR, the drop wave will have a shorter optical path by
this method than the traditional add-drop coupling way, consequently suffering less from ohmic loss.

The influence of the gap g between the drop waveguide and the SRR on the drop efficiency is
studied with s = 320 nm. As given in Figure 2d, the increase of g will cause the decrease of the
transmission peak and bandwidth, but the FWHM is lower. Moreover, there is a blue-shift of the
transmitted peak wavelength. The effect of the coupling length s on the transmission is also discussed
with g = 15 nm. It is shown in Figure 2c that there is an optimum coupling length, s = 320 nm,
to achieve the best drop efficiency. According to the inset of Figure 2e, the optimum coupling length is
dependent on the mode distribution of the resonant wavelength at the SRR edge adjacent to the drop
waveguide. After the optimization of structural parameters, the final result from FDTD is shown in
Figure 2e. The drop efficiency at 1310 nm, defined as the ratio of drop to input power, is approximately
52%, and the corresponding FWHM is 45 nm.
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Figure 2. (a) The drop spectrum for the traditional add-drop SRR. (b) The schematic diagram of the
band-pass filter. (c) The drop spectrum pertinent to different coupling lengths. (d) The drop spectrum
pertinent to different gaps. (e) The transmission spectrum for a channel drop filter with L1 = 546 nm,
w = 100 nm, g = 15 nm, s = 320 nm from Finite-Difference Time-Domain (FDTD) and coupled mode
theory (CMT). The inset is the field distribution of the channel drop filter.

The physical mechanism of such a channel drop filter can be theoretically analyzed by CMT [30].
The normalized field amplitude a of the SRR mode can be described as:

da
dt

= jωoa− (
2
τb

+
1
τb

+
1
τ0
)a + ejθ1

√
2
τb

S+1 + ejθ2

√
2
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S+2 + ejθ3

√
2
τd

S+3 (4)

Here, ω0 refers to the resonant frequency, and 1/τb and 1/τd represent the decay rates inside the
bus and drop waveguide, respectively. 1/τ0 is the decay rate due to the ohmic loss of the plasmonic
system. S+i and S−i (i = 1, 2, 3) represent the normalized amplitudes of input and output SPPs,
respectively, as demonstrated in Figure 2b. θk (k = 1, 2, 3) are the phases of the corresponding
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coupling coefficients. If the reference plane is set at the center of the SRR, there will be θ1 = θ2.
According to the power conservation and the time reversal symmetry, we can obtain:

S−1 = S+2 − e−jθ1

√
2
τb

a

S−2 = S+1 − e−jθ1

√
2
τb

a

S−3 = −S+3 + e−jθ3

√
2
τd

a

(5)

In this case, S+2 = S+3 = 0. Therefore, the transmission from the input to the drop channel can
be expressed as:

T(ω) =

∣∣∣∣∣ S̃−3
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∣∣∣∣∣
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j(ω−ω0) +
2
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+ 1
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2

(6)

Here, S̃ represents the Fourier transform of S. The transmission data from CMT is also plotted in
Figure 2e, which is in great agreement with the simulated result.

Furthermore, if a reflector structure is utilized at the end of the bus waveguide, the drop efficiency
can be improved at the cost of a wider FWHM, as presented in Figure 3a. Consequently, there is a
trade-off between the transmission and FWHM. The phase shift of the SPPs when reflected back to the
SRR by the reflector can be given by [7]:

φ =
4πRe(ne f f )l

λ
+ σ (7)

where σ indicates the phase shift that occurs when reflected back by the metal surface, and l refers
to the distance between the reflector surface and the SRR. Obviously, for a particular wavelength we
can obtain a φ to indicate the incident light and reflected light constructive interfered by changing l.
From FDTD, the drop efficiency at 1310 nm can be enhanced to 64% when l = 34 nm, but the FWHM
is also improved to 67 nm, as given in Figure 3b. This outcome is comparable with some previous
works [4–9]. A monitor is set behind the source to detect the reflection, showing that the reflection
is only approximately 3% at the drop wavelength, as depicted in Figure 3b. Therefore, the rest of
the energy is dissipated due to ohmic loss. Such intrinsic loss is normal and acceptable for an MIM
system [3].

According to CMT, there will also be S+3 = 0, but S+2 = e−jφS−2. The transmission will be
as follows:

T(ω) =

∣∣∣∣∣∣∣∣
ej(θ1−θ3)

√
2
τb

√
2
τd
(1 + e−jφ)

j(ω−ω0) +
2
τb
(1 + e−jφ) +

1
τd

+
1
τ0

∣∣∣∣∣∣∣∣
2

(8)

The corresponding CMT transmission data is also shown in Figure 3b, and the theory and FDTD
results are fitted well.
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structure. (b) The drop spectrum with a reflector from FDTD and CMT, and the reflection spectrum
when l = 34 nm.

3. Applications in Sensing and Switching

We choose the structure corresponding to Figure 3b to discuss the following applications. Since
the ring resonator is sensitive to ambient RI, such a channel drop filter can be applied to on-chip
sensing. The sensing performance can be assessed by two factors [14]:

S =
∆λ

∆n

FOM =
S

FWHM

(9)

where S is the sensitivity defined as the peak wavelength shift per unit ambient RI, and the figure of
merit (FOM) represents the resolution of such a shift. Figure 4a shows the drop wavelength shift with
different ambient RI values. This structure has a high sensitivity up to 1303 nm/RIU, as indicated in
Figure 4b, which can meet the requirement of chemical-sensing [31]. Besides, the sensitivity can be
easily enhanced by increasing the side length of the SRR [14]. Since the FWHM is 67 nm, the FOM is
approximately 20/RIU. This value is better than those reported in some recent works based on MIM
structures [15–19].

A dynamically tunable device can also be realized based on such a filter filled with nonlinear
optical materials, as proposed in Figure 4c. Here we apply nonlinear polymer Kerr material, the RI of
which depends on the pump light: n = n0 + n2 I, where I is the pump intensity, n0 is the linear RI, and
n2 is the nonlinear RI. In this case, n0 = 1.3 and n2 = 2.87× 10−8 cm2/W [24]. The pump beam can be
input from the top (Z axis direction) of this device [12]. Figure 4d shows that optical switching can be
achieved at 1.97 µm. With no pump light, the drop efficiency at 1.97 µm is 0.7%, corresponding to the
OFF state. After applying the pump light with 6.62 MW/cm2, the drop efficiency can be enhanced
to 53%, which is the ON state. Such pump intensity is easy to reach in practical experiments [32].
The modulation depth M is defined as [12]:

M = 10lg
T(Ion)

T(Io f f )
(10)

where T(Ion) and T
(

Io f f

)
are the transmissions corresponding to the ON and OFF states at the

modulated wavelength, respectively. In this work, M = 18.8 dB, which is comparable with some
previous similar works [10–13].
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(b) The inset is the linear relationship between the drop wavelength and environmental RI. (c) The
schematic diagram of the optical switching device. (d) The drop spectrum for optical switching with or
without the pump light.

4. Dual Demultiplexer for Telecommunication Wavelengths

As the upstream and downstream traffic in ethernet passive optical network (EPON), 1310 nm
and 1490 nm are two basic telecommunication wavelengths in present fiber-to-the-home (FTTH)
systems [33]. Wavelength division multiplex (WDM) work plays an important role in FTTH
systems [34], and plasmonic WDM with ultra-small footprints meets the requirement of future highly
integrated and more compact all-optical circuits. Here, the plasmonic dual wavelength demultiplexer
is introduced, as shown in Figure 5a. Figure 5b is the drop spectrum for two channels; channel 1 for
1310 nm and channel 2 for 1490 nm. The performance of a waveguide demultiplexer can be assessed
by two factors; insertion loss (IL) and cross talk (CT) [35]:

IL = −10lg(Pω/Pi)

CT = 10lg(Pω/Puω)
(11)

where Pi is the power in the input waveguide, and Pω and Puω represent the drop powers of the
desirable and undesirable wavelengths in one channel, respectively. For channel 1 of this structure, IL
= 2.9 dB and CT = 22.8 dB. For channel 2, IL = 4.6 dB and CT = 20.6 dB.

If the reflector is applied, as shown in Figure 5c, the drop efficiencies will be enhanced, and the
corresponding parameters will be: IL = 2.0 dB and CT = 23.2 dB for channel 1; IL = 3.2 dB and CT =
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18.0 dB for channel 2. Compared with previous works [7–9], this device has comparable performance.
Furthermore, it makes possible the application of ring resonators on plasmonic integrated wavelength
division multiplex (WDM) systems, which is valuable for designing on-chip integrated circuits.
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5. Conclusions

In summary, by introducing a special side-coupling method, this work found a way to propose a
channel drop filter with the SRR based on the plasmonic MIM structure. This filter not only possesses
potential for applications in sensing and switching, but can also be integrated in WDM systems.
The CMT is demonstrated to explain the corresponding physical phenomenon in theory. This work
will promote future designs based on MIM circuits. Utilizing the characteristics of the ring resonator,
this structure can be adapted to more applications, such as on-chip thermometers and slow light.
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