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Abstract: Metasurfaces offer great opportunities to control electromagnetic (EM) waves, attracting
intensive attention in science and engineering communities. Recently, many efforts were devoted to
multifunctional metasurfaces integrating different functionalities into single flat devices. In this article,
we present a concise review on the development of multifunctional metasurfaces, focusing on the
design strategies proposed and functional devices realized. We first briefly review the early efforts on
designing such systems, which simply combine multiple meta-structures with distinct functionalities
to form multifunctional devices. To overcome the low-efficiency and functionality cross-talking
issues, a new strategy was proposed, in which the meta-atoms are carefully designed single structures
exhibiting polarization-controlled transmission/reflection amplitude/phase responses. Based on
this new scheme, various types of multifunctional devices were realized in different frequency
domains, which exhibit diversified functionalities (e.g., focusing, deflection, surface wave conversion,
multi-beam emissions, etc.), for both pure-reflection and pure-transmission geometries or even in the
full EM space. We conclude this review by presenting our perspectives on this fast-developing new
sub-field, hoping to stimulate new research outputs that are useful in future applications.

Keywords: metasurface; multifunctional device; metamaterial; meta-atom

1. Introduction

Facing the increasing demands on data-storage capacity and information processing speed in
modern science and technology, electromagnetic (EM) integration plays a more and more important
role, which has intrigued intensive attention with remarkable applications. An ultimate goal pursued
by scientists and engineers along this development is to make miniaturized devices as small as possible,
yet equipped with powerful functionalities as many as possible. However, available efforts based
on conventional materials suffer from the issues of device thickness, low efficiency, and restricted
functionalities, caused by the fact that natural materials only exhibit electric responses with small
variation range of permittivity ε and, thus, they only have limited capabilities on manipulating
EM waves.
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Metamaterials (MTMs) [1,2], consisting of deep-subwavelength-sized EM microstructures (e.g.,
meta-atoms) arranged in periodic or non-periodic orders, have drawn much attention recently.
Through tailoring the microstructures of meta-atoms, MTMs can, in principle, exhibit arbitrary values
of permittivity ε and permeability µ, which offers MTMs extraordinarily strong capabilities to control
EM waves. Many fascinating wave-manipulation effects have been demonstrated based on MTMs, such
as negative refraction [3,4], super-resolution imaging [5,6], cloaking [7–9], polarization-control [10–13],
perfect light absorption [14], and transparency [15,16], and unusual wave-control effects realized by
zero-index MTMs [17,18]. Attempts have also been made to achieve multifunctional EM devices based
on MTMs. However, the realized devices typically exhibit bulky sizes and low efficiencies, since
MTMs are three-dimensional (3D) materials composed by resonant metallic structures which can easily
absorb EM waves. Moreover, such 3D devices require complex fabrication processes, adding more
disadvantages for EM integration [19,20].

Metasurfaces, ultrathin MTM layers constructed by planar meta-atoms of pre-determined EM
responses arranged in specific two-dimensional (2D) orders, can largely overcome the difficulties
faced by MTMs. Tuning the EM responses of meta-atoms to realize certain transmission/reflection
phase distributions on the metasurfaces, one can use these ultra-thin devices to efficiently reshape
the wave-fronts of incident EM beams based on Huygens’ principle, achieving unusual effects,
including anomalous beam bending based on generalized Snell’s law [21–29], propagating wave
to surface waves conversion [30–32], polarization-control [33–39], focusing [40–42], holograms [43–45],
flat-lens imaging [46–50], tunable devices [51–53], and photonic spin-Hall effect [54–56], etc. Typically,
these devices are flat, much thinner than the wavelength, and exhibit much higher efficiencies than
their bulky MTM counterparts, all being highly favorable for integration-optics applications. These
attractive properties make metasurfaces the best candidates to construct multifunctional EM devices.
Indeed, many efforts have recently been devoted to designing multifunctional optical devices based
on metasurfaces [57–87], typically using polarization or frequency of the incident light as an external
knob to control the functionality exhibited by the devices. The proposed/demonstrated devices are
usually equipped with functionalities combining two or more from those demonstrated before on
single-function metasurfaces, such as beam-bending, focusing, hologram, surface-wave conversion,
and directive beaming, etc.

In this paper, we present a concise review on this fast developing sub-field, focusing on the
working principles and practical realizations of multi-functional metasurface-based meta-devices.
We particularly emphasize the importance of designing appropriate meta-atoms in this field, since the
remaining tasks are merely engineering optimizations after high-performances meta-atoms are found.
This review is organized as follows. We first briefly summarize in Section 2 a class of multifunctional
meta-devices based on the “merging” concept. Having understood the merits and disadvantages of
the “merging” scheme, we then introduce another class of multifunctional metasurfaces based on
single-structure meta-atoms exhibiting polarization-controlled transmission/reflection phase responses.
The realized meta-devices include those exhibiting similar wave-control functionalities for two
polarizations (Section 3.1), those integrating different functionalities with very high efficiencies in
reflection geometry (Section 3.2) and in transmission geometry (Section 3.3), and those utilizing the
full EM space to control EM waves with different capabilities (Section 3.4). We finally conclude this
review and present our perspectives in the last section.

2. Multifunctional Meta-Devices Based on the “Merging” Concept

A simple scheme developed in early years utilized the so-called “merged” meta-structures to
design multifunctional metasurfaces. In such a scheme, people first design individual metasurfaces
exhibiting their own functions and then construct a multifunctional device simply through merging
the two structures together. Below we present several examples to illustrate how the scheme works.

Figure 1a presents an optical bifunctional metasurface that can realize a hologram image or a
vortex beam, depending on the helicity of excitation light [74]. To achieve their end, the authors
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first design two individual metasurfaces (both utilizing the metal-bar structure as basic meta-atoms)
which can realize one of the needed functionalities when they are shined by incident light taking
circular polarizations (CP) with different helicities (see Figure 1a). The desired phase profiles on two
metasurfaces are created by the Pancharatnam-Berry (PB) principle [54,88,89] through rotating the
metallic bars at different positions by appropriate angles. Since the two metasurfaces exhibit identical
periodic structures and there are enough open spaces between metallic bars, the authors then merge
two metasurfaces together to obtain the final design in which all metallic bars do not touch with
each other. Such a device was finally fabricated out and experimentally characterized, showing nice
bifunctional performances (Figure 1a). However, the working efficiency of the device is quite low,
which is found to be around 9% [74].
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Figure 1. Multifunctional devices designed with merged structures. (a) Design strategy, sample picture,
and experimental characterizations of a multifunctional metasurface than can generate holographic
images or a vortex beam depending on the helicity of incident circularly polarized light. Reproduced
from Ref. [74] with permission. (b) A metasurface that can reconstruct different images to different
polarization channels. Reproduced from [64] with permission. (c) A metasurface that can generate
multiple hologram images as shined by circularly polarized light with different helicity. Reproduced
from [63] with permission. (d) A metasurface that can generate optical vortices with distinct topological
charges at different longitudinal focal planes. Reproduced from [58] with permission. LCP, left CP;
RCP, right CP; OAM, orbital angular momentum; LHCP, left-handed circularly polarized ; RHCP,
right-handed circularly polarized.

Such a “merging” concept has been straightforwardly applied to realize many other
multifunctional meta-devices [58,61–65]. Figure 1c presents a reflective bifunctional meta-device
which can form a holographic image of a ‘flower’ or a ‘bee’ as the helicity of incident light changes
from left CP (LCP) to right CP (RCP) [63]. In Figure 1b, a new type of meta-hologram device is
introduced, which can exhibit various hologram patterns depending on the helicity the incident
light [64]. Figure 1d shows a meta-device which can control the polarization state (i.e., spin angular
momentum) and the position of the focal planes by manipulating the helicity of the incident light. [58].

In reviewing these meta-devices based on the “merging” concept, we find that the proposed
design strategy is physically transparent and easy to implement. However, to make the “merging”
process work, the adopted meta-atoms must be very simple structures (say, metal bar) to avoid metallic
overlapping. Unfortunately, these meta-atoms typically do not satisfy the 100%-efficiency criterion
established for PB metasurfaces [54] and, thus, one type of meta-atoms can generate background noise
in addition to the desired functionalities. As a result, such meta-devices typically suffer from issues of
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low operating efficiencies and functionality cross-talking, except [63] where the issue was partially
solved by seeking a high-efficiency PB meta-atom in the reflection geometry.

3. Multifunctional Metasurfaces Based on Anisotropic Single-Structure Meta-Atoms for Two
Polarizations

Having understood the key issues in the “merging” concept, people propose a new strategy to
design multifunctional metasurfaces, i.e., using single structures as the basic meta-atoms to design the
final device instead of merging two separately determined ones. In what follows, we first discuss the
basic concept, and then introduce several meta-devices realized with such a strategy, classified into
four sub-categories as detailed below.

Suppose that the adopted meta-atoms possess mirror symmetries, we can then describe the EM
response for a meta-atom located at a position (x, y) on a metasurface by two diagonal Jones’s matrices:

R =

(
rxx(x, y) 0

0 ryy(x, y)

)
(1)

and:

T =

(
txx(x, y) 0

0 tyy(x, y)

)
(2)

where rxx, ryy, txx, tyy denote the reflection/transmission coefficients of the meat-atom (periodically
repeated to form a periodic metasurface), respectively. In order to make the devices exhibit working
efficiencies as high as possible, ideally one requires the designed meta-atoms to be either perfectly
reflective:

T = 0; |rii|= 1 (3)

or perfectly transparent:
R = 0; |tii|= 1. (4)

Once such conditions are satisfied meaning that all meta-atoms are of highest working efficiencies,
people then adjust the geometrical parameters of each meta-atom to make the whole metasurface
exhibit desired polarization-dependent phase profiles (i.e., ϕxx(x, y) and ϕyy(x, y)) to achieve certain
wave-manipulation functionalities. A typical example is schematically shown in Figure 2, for which the
wanted bi-functionalities are focusing and beam bending, respectively. To achieve this end, the final
phase distributions on the metasurface should be:

ϕyy(x, y) = k0(
√

F2 + x2 + y2 − F) (5)

with F being the focal length and k0 being the free-space wave-vector, and:

ϕxx(x, y) = C1 + ξ·x (6)

with ξ being the phase gradient responsible for the anomalous reflection angle and C1 being an a
constant. We note that a conversion from propagating wave (PW) to surface wave (SW) can happen if
ξ > k0.

We emphasize that the high-efficiency conditions Equations (1) and (2) can only be approximately
satisfied since losses inevitably exist, especially at high frequencies. Moreover, the achieved
functionalities are not limited to the two described above. If different wave-manipulation
functionalities are desired, one may easily replace Equations (5) and (6) by the phase distributions
related to those functionalities.
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Figure 2. Schematics of a bi-functional metasurface (blue) with metal ground plane (yellow) which
can achieve (a) focusing functionality for y-polarized incident light and (b) anomalous-reflection
functionality for x-polarized incident light. The phase distributions of the metasurface are depicted
in (c) for y-polarization excitation and in (d) for x-polarization excitation. Reproduced from [90]
with permission.

3.1. Multifunctional Metasurfaces Exhibiting Similar Functionalities

Historically, multifunctional metasurfaces designed by single-structure meta-atoms were first
realized in reflection geometry, because high-efficiency reflective meta-atoms are much easier to
find than their transmissive counterparts. A commonly-used reflective meta-atom is the so-called
metal-insulator-metal (MIM) structure, which consists of a metallic planar resonator and a continuous
metal sheet separated by a dielectric spacer (see Figure 3a). Such an MIM structure was widely
used to design high-efficiency reflective metasurfaces at frequencies ranging from microwave to
visible [22,23,44,72,79,91], simply because its metallic ground plane can help reflect all incoming waves
back (thus, Equation (1) can be easily satisfied) while the phase of reflected wave can undergo a
continuous −180◦ to 180◦ variation as frequency passes through a resonance inside the “meta-atom”.
Such a resonance is usually called “magnetic resonance” [14] or “gap-plasmon resonance” [22,72],
and its properties are carefully analyzed in [91,92]. Therefore, tuning the geometrical parameters of
such a meta-atom can efficiently modify its two reflection phases (ϕxx and ϕyy) (see Figure 3b), which
then offers enough freedoms to design multifunctional meta-devices.

Figure 3d depicts a bifunctional meta-device working at telecom wavelengths, which can excite
surface plasmon polaritons (SPPs) to flow along two orthogonal directions when the device is shined
by external light with polarizations along x or y direction [72]. The fabricated device consists of 3
× 3 MIM meta-atoms, with geometrical parameters carefully adjusted such that both ϕxx(x, y) and
ϕyy(x, y) satisfy Equation (6) with ξ > k0. Experimental characterizations reveal that the fabricated
device can indeed exhibit the desired bi-functionalities (see Figure 3a). Based the same concept,
other bi-functional meta-devices were realized based on MIM meta-atoms with patches replaced by
other type of planar resonators, to achieve the polarization-dependent anomalous reflection (beam
splitting) (Figure 3c) [79] and polarization-controlled dual-image hologram (Figure 3e) [59]. Two
common features of these meta-devices are worth mentioning: the realized functionalities are identical
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or similar, and the working efficiencies are not very high, partially caused by the metallic losses at
optical frequencies.Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 17 

 
Figure 3. (a) Schematics of an MIM meta-atom consisting of a metallic patch resonator and a metal 
ground plane (yellow) separated by a dielectric spacer (blue). (b) Tuning the reflection phase 휑  of 
a microwave MIM meta-atom by varying a and b. Reproduced from [93] with permission. (c) A 
polarization beam splitter made by bifunctional gradient metasurface constructed with MIM meta-
atoms consisting of metal-cross planar resonators and metal ground plane (yellow) separated by a 
dielectric spacer (blue). Reproduced from [79] with permission. (d) Experimental characterizations on 
a unidirectional polarization-controlled SPP (red) coupler at telecom wavelength. Reproduced from 
[72] with permission. (e) A bi-functional meta-hologram device consisting of metal pattern and metal 
ground plane (yellow) separated by a dielectric spacer (blue) that can generate different hologram 
image depending on the incident linear polarization. Reproduced from [59] with permission. 

3.2. Multifunctional Reflective Metasurfaces Combining Distinct Functionalities 

The proposed design strategy is so general that it can also be used to realize multifunctional 
metasurfaces exhibiting distinct functionalities. For example, the first reflective multifunctional meta-
device possessing two distinct functionalities (focusing and PW-to-SW conversion) was 
demonstrated in [93] in the microwave regime (see Figure 4a,b). Taking meta-atoms the same as 
shown in Figure 3a, the authors successfully designed a reflective bi-functional metasurface which 
exhibits two phase distributions satisfying Equations (5) and (6). Shining a y-polarized microwave at 
frequency 9.3 GHz normally onto the sample, the authors measured the Re[퐸⃗] distributions on two 
orthogonal planes. Results displayed in Figure 4c indicate clearly that the incoming plane wave has 
been focused to a focal point. To demonstrate the PW-to-SW conversion effect for the 퐸⃗|| x̂  
polarization, the authors purposely fabricated a mushroom structure supporting eigen spoof SPP 
[30,32] and then put it at the right side of the metasurface to guide out the driven SW (see inset to 
Figure 4d). Shining the metasurface by an x-polarized microwave (9.3 GHz), the authors used a near-
field scanning technique to map out the Re[퐸⃗] field pattern (see Figure 4d). The measured field 
pattern represents a very well-defined spoof SPP with 푘 = 206.5	m , in good agreement with the 
theoretically-calculated value ( 푘 = 209.4	m ). For both functionalities, the experimentally-
estimated working efficiencies are higher than 90%, which is not surprising since metallic losses are 
negligible at microwave frequencies. Such a concept was successfully extended to realize the same 
type of bifunctional meta-device, but working at optical wavelengths (Figure 4e) [94], which is more 
close to realistic integration-optics applications. 

Figure 3. (a) Schematics of an MIM meta-atom consisting of a metallic patch resonator and a
metal ground plane (yellow) separated by a dielectric spacer (blue). (b) Tuning the reflection phase
ϕxx of a microwave MIM meta-atom by varying a and b. Reproduced from [93] with permission.
(c) A polarization beam splitter made by bifunctional gradient metasurface constructed with MIM
meta-atoms consisting of metal-cross planar resonators and metal ground plane (yellow) separated by a
dielectric spacer (blue). Reproduced from [79] with permission. (d) Experimental characterizations on a
unidirectional polarization-controlled SPP (red) coupler at telecom wavelength. Reproduced from [72]
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3.2. Multifunctional Reflective Metasurfaces Combining Distinct Functionalities

The proposed design strategy is so general that it can also be used to realize multifunctional
metasurfaces exhibiting distinct functionalities. For example, the first reflective multifunctional
meta-device possessing two distinct functionalities (focusing and PW-to-SW conversion) was
demonstrated in [93] in the microwave regime (see Figure 4a,b). Taking meta-atoms the same as
shown in Figure 3a, the authors successfully designed a reflective bi-functional metasurface which
exhibits two phase distributions satisfying Equations (5) and (6). Shining a y-polarized microwave at

frequency 9.3 GHz normally onto the sample, the authors measured the Re[
→
E ] distributions on two

orthogonal planes. Results displayed in Figure 4c indicate clearly that the incoming plane wave has

been focused to a focal point. To demonstrate the PW-to-SW conversion effect for the
→
E‖x̂ polarization,

the authors purposely fabricated a mushroom structure supporting eigen spoof SPP [30,32] and then
put it at the right side of the metasurface to guide out the driven SW (see inset to Figure 4d). Shining the
metasurface by an x-polarized microwave (9.3 GHz), the authors used a near-field scanning technique

to map out the Re[
→
Ez] field pattern (see Figure 4d). The measured field pattern represents a very
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well-defined spoof SPP with kspp = 206.5 m−1, in good agreement with the theoretically-calculated
value (kspp = 209.4 m−1). For both functionalities, the experimentally-estimated working efficiencies
are higher than 90%, which is not surprising since metallic losses are negligible at microwave
frequencies. Such a concept was successfully extended to realize the same type of bifunctional
meta-device, but working at optical wavelengths (Figure 4e) [94], which is more close to realistic
integration-optics applications.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 17 
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Figure 4. A reflective bifunctional metasurfaces that behaves as (a) a focusing lens and (b) a PW-to-SW
(propagating wave to surface wave) convertor when excited by incident waves with polarizations

E//y (red light) and E//x (blue light), respectively. (c) Measured Re[
→
E ] distributions on both xoz

and yoz planes as the metasurface is illuminated by a normally incident y-polarized plane wave.

(d) Measured Re[
→
E ] pattern on the xy-plane using a monopole antenna placed vertically and 8 mm

above the metasurface and the mushroom structure, when the metasurface is illuminated by a normally
incident x-polarized plane wave. Reproduced from [93] with permission. (e) The working principle
of similar type of bi-functional metasurface operating for visible light realized in [94]. The top panel
shows the schematic of the unit cell consisting of an Ag nanobrick (grey) on top of a spacer (green) and
Ag substrate. Reproduced from [94] with permission. SPPs, surface plasmon polaritons.
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In designing these devises, people noticed that an arbitrary anisotropic meta-atom might exhibit
undesired polarization cross-talking (i.e., varying one parameter of the meta-atom can influence its
EM responses for both polarizations). Such an effect hinders the fast designs of meta-devices with
complex functionalities, which typically require 2D parameter searching to realize the desired phase
profiles. To overcome such cross-talking and to enlarge the working bandwidth, Xu et al. proposed a
new type of anisotropic meta-atom [95] which consists of multilayers of planar resonators coupled
with a metallic ground plane (Figure 5a). A crucial improvement is to add a wire loop to surround
each planar resonator (see Figure 5a), which can significantly degrade the polarization cross-talking
due to the screening effect [95].
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Figure 5. (a) Topology of the dual-layer anisotropic meta-atoms using composite cross bar and cross
loop. The meta-atom contains two identical composite metallic resonators and a continuous metal
plate (yellow) separated by two dielectric spacers (blue). (b) Phase distribution required on the
metasurface to achieve quad-beam emissions. Schematics of a bifunctional metasurface which behaves
as (c) a lens or (d) a beam splitter to generate quad large-angle pencil beams when excited by incident
waves with polarizations E//x (yellow light) and E//y (blue light), respectively. (e,f) Simulated
(red lines) and measured (blue dashed lines) radiation patterns on x-z plane for x polarization and
y polarization, demonstrating the bi-functionality possessed by the fabricated device. Reproduced
from [95] with permission.
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Based on such meta-atoms, the authors successfully realized two bifunctional metasurfaces
combining complex wave-control functionalities [95]. One device is shown in Figure 5 which can
achieve the functionalities of focusing (Figure 5c) and large-angle multi-beam emissions (Figure 5d)
under external excitations with two polarizations. While the phase distribution responsible for the
focusing functionality is easy to obtain (Equation (5)), that for another one needs to be carefully
determined (see Figure 5b). The structural parameters of all meta-atoms can be quickly determined
from two phase profiles, thanks to the low polarization cross talking property of the meta-atoms.
Measured radiation patterns (Figure 5e,f) demonstrated clearly the bi-functionalities possessed by
the fabricated device. Another device realized in [95] can deflect beam anomalously and achieve
small-angle multi-beam emissions for two polarizations. With such a unique meta-atom structure
at hand, people can realize other multifunctional meta-devices exhibiting powerful and complex
wave-manipulation functionalities.

3.3. Multifunctional Transmissive Metasurfaces Combining Distinct Functionalities

Compared to reflective devices, high-efficiency multifunctional meta-devices in transmission
geometry are much more difficult to realize, simply because more channels (transmission and reflection
ones) exist in this geometry and thus Equation (2) is difficult to meet. People utilized the concept
of Huygens’ surface to construct transmission-mode metasurfaces with high efficiencies, but such
devices usually require complex 3D non-flat meta-atoms with both electric and magnetic resonators
incorporated [24,26]. Due to the complexities in meta-atom design, multifunctional meta-devices
realized based on such a scheme are rarely seen, except a transmissive functionality-tunable device
recently realized with controllable active elements incorporated [96].

Meanwhile, meta-atoms in multilayer geometry (with deep-subwavelength total thicknesses)
are found as alternative candidates to construct high-efficiency transmission-mode metasurfaces.
Many functional meta-devices are fabricated using such kind of meta-atoms [27,49], generating
interesting effects such as high-efficiency SPP excitations [31] and photonic spin-Hall effect [54].
Straightforwardly, there appear recent efforts on using such meta-atoms to construct transmissive
multifunctional meta-devices with very high efficiencies.

Cai et al. proposed to use a four-layer structure, with each layer containing a metallic mesh
coupled with a metal patch [93], as the basic meta-atom to construct transmissive bifunctional
meta-devices (Figure 6a). Each single layer exhibits perfect EM transmission at a particular frequency
due to the interaction between the patch resonator and the opaque mesh. Mutual interactions
between different layers can significantly enlarge the transparency window and the transmission-phase
variation range (see Figure 6b). With such a high-performance structure, the authors designed and
fabricated a transmissive metasurface (see Figure 6a for sample picture) with meta-atoms carefully
adjusted to yield transmission phases (ϕxx and ϕyy) satisfying Equations (5) and (6). Experimental
results shown in Figure 6e,f indicate that the device can focus y-polarized PW to a point and can refract
x-polarized PW anomalously, illustrating the desired bi-functionality. The achieved working efficiency
is 72%, much higher than those of other transmissive metasurfaces [25–27,49].
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Figure 6. (a) Photograph of a microwave transmissive bifunctional metasurface. Inset illustrates a
typical meta-atom composed by four metallic layers (yellow) separated by three F4B spacers (blue).
(b) Transmission amplitude (blue lines) and phase (red lines) for a periodic metasurface constructed
by the 4-layer meta-atom, under the excitations of y-polarized (solid lines) and x-polarized (dotted
lines) incident waves, respectively. Schematics and working principles of a transmissive bifunctional
metasurfaces, which behaves as (c) a focusing lens and (d) a beam deflector when excited by incident

waves with polarizations E//y and E//x, respectively. (e) Measured Re[
→
E ] distributions on both xoz

and yoz planes as the metasurface is illuminated by a normally-incident y-polarized plane wave. (f)
Measured scattered wave intensity as function of frequency and detection angle when the metasurface
is illuminated by x-polarized normally incident plane waves. Reproduced from [93] with permission.
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3.4. Multifunctional Metasurfaces for Full-Space Manipulation of EM Waves

The multifunctional metasurfaces introduced in the previous sections, whether working in
reflection or transmission geometries, leave half of the EM space completely unexplored. It is highly
desired to expand the wave-manipulation capabilities of metasurfaces to the full EM space, offering
the metasurfaces independently controlled functionalities at their two different sides. In this section,
we introduce recent efforts to design metasurfaces that can manipulate the wave fronts of EM waves
in the full EM space with very high efficiencies [97].

The key step in this new strategy is to design a collection of meta-atoms which are perfectly
transparent or reflective for incident waves polarized along two orthogonal directions. As shown in the
inset to Figure 7a, the meta-atom consists of four metallic layers separated by three dielectric spacers.
A crucial difference of present meta-atom with a usual transmissive one (Figure 6a) is that here the
x-orientated metallic stripes of the bottom two layers are continuous ones, which can ensure a high
reflection for x-polarized waves. Meanwhile, the reflection-phase ϕr

xx(x) for this polarization can vary
from −180◦ to 180◦ (Figure 7b) as frequency changes. For the y-polarization, however, the coupling
between different layers creates a wideband transparent window with a controllable transmission
phase, which can again cover the whole 360◦ range (Figure 7c).

Based on such unique meta-atoms, the authors successfully design several bi-functional
meta-devices combining similar or distinct functionalities to manipulate EM waves at different
sides of the metasurfaces. For instance, the authors fabricated a bifunctional metasurface, which
can anomalously reflect x-polarized incident wave to the reflection side (Figure 7d) and focusing
the y-polarized incident wave to a focal point at the transmission side (Figure 7e). As shown in
Figure 7f,g, microwave experiments perfectly demonstrated the desired bi-functionalities of the
fabricated meta-device. Both functionalities exhibit very high efficiencies (in the range of 85–91%) and
the total thickness of the device is only ~λ/8 [97].

Such a strategy has also been extended to design bi-functional PB metasurfaces that can
manipulate the wave-fronts of circularly-polarized waves in the full space [89]. The key step is again to
find a high-performance PB meta-atom exhibiting unique helicity-dependent transmission/reflection
responses. Assisted by an elegant Jones’ matrix analysis, Cai et al. were able to find a particular PB
meta-atom (see Figure 8a) that can (nearly) perfectly reflect RCP light to RCP light at the reflection
side (Figure 8b), and (nearly) transmit LCP light to RCP light at the transmission side (Figure 8c).
Such unique polarization-conversion properties make the designed meta-atom ideal candidate to
construct bifunctional PB meta-devices for controlling CP lights in the full space [54]. One can simply
rotate the meta-atoms with appropriate angles to realize the desired phase distributions to achieve
certain functionalities. The authors used such a meta-atom to fabricate a bifunctional meta-lens, and
experimentally demonstrated that it behaves as a transmission-mode focusing lens for LCP wave
(Figure 8d,f), but changes to a reflection-mode diverging lens for RCP wave (Figure 8e,g). Other
bi-functional meta-devices can also be realized. However, one should note that the bi-functional
meta-devices realized by such a scheme can only exhibit the same type of wave-manipulation
functionalities for two polarizations, since the two phase distributions are intrinsically linked with
each other.
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Figure 7. (a) Schematics of a 4-layer meta-atom composed by four metallic layers separated by three
spacers. Measured and Finite-Difference Time-Domain (FDTD) simulated amplitude-phase spectra of
reflection (b) and transmission (c) for a periodic metasurface made by the meta-atom given in (a), under
excitations with different polarizations. Schematics of a bi-functional metasurface which behaves as (d)
a reflective beam deflector and (e) a transmissive lens under excitations of x- and y-polarized waves,
respectively. Measured scattered field intensity versus frequency and detecting angle at reflection sides
(f) of the metasurface shined by x-polarized microwaves and electric field distributions on both xoz and
yoz planes at transmission sides (g) of the metasurface shined by y-polarized microwaves. Reproduced
from [97] with permission.
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Figure 8. (a) Topology of a meta-atom consisting of three metallic layers (yellow) separated by two
diecltric spacers (gray). (b,c) Amplitude/phase (Blue circle/red star) responses of the meta-atom rotated
with certain angles when illuminated by normally incident (b) RCP and (c) LCP waves. Schematics of
a bifunctional metasurface which behaves as a transmissive focusing lens (d) and a reflective diverging
lens (e) under excitations of LCP and RCP waves, respectively. (f) Measured |Ex|2 distributions on both
xoz and yoz planes at the transmission side when the meta-device is illuminated by a normally incident
LCP wave. (g) Measured Re(Ex) distributions on the xoz plane at the reflection side of the metasurface
under excitation of a normally-incident RCP wave. Reproduced from [89] with permission.

4. Conclusions and Discussion

In summary, we presented a concise review on the development of multifunctional metasurfaces,
focusing on the physical mechanisms and practical meta-devices realizations. The design strategies
include a simple “merging” concept and more sophisticated ones relying on single anisotropic
meta-atoms, and the realized meta-devices can achieve two or more wave-manipulation functionalities
at frequencies ranging from microwave to the visible. In reviewing the development of this field,
we find that the meta-atom design is of particular importance, since any new type of high-performance
multifunctional meta-atom can surely stimulate a series of meta-devices with diversified functionalities.
We already see many interesting new designs in the field (for example, the polarization-dependent
full-space meta-atom) which help people realize useful functional devices with more flexibilities in
controlling EM waves. However, we also noticed that this field is far from mature, since many new
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ideas are only realized in the microwave regime, leaving plenty of rooms for researchers working at
more challenging frequency domains. We hope that this review can serve as a useful guide to help
researchers quickly jump into this field, eventually pushing these conceptual laboratory-level protocol
devices to integration-optics platforms.

Before concluding this review, we would like to discuss more on the differences in the design
of meta-atoms for microwave, Infrared Radiation (IR), or optical frequencies. Given the different
behavior of materials in these frequency ranges, the geometry of the meta-atoms needed to achieve a
chosen functionality are necessarily different. For example, whereas in the microwave regime metals
behave as perfect electric conductors, the metallic losses can be very significant at IR and optical
frequencies. As a result, while meta-atoms with multilayer metallic structures are widely used in
designing high-efficiency transmissive multifunctional metasurfaces in low-frequency domains, these
meta-atom structures are difficult to be used directly at high frequencies because of the fabrication
challenges and the material losses. Instead, simple metallic structures (say, metal bars) are currently
used in designing transmission-mode multifunctional meta-devices at high frequencies, although
the realized meta-devices suffer from low-efficiency issues. Very recently, all-dielectric metasurfaces
began to appear, which seems to be a very promising route to overcome such issue for transmissive
multifunctional meta-devices at high frequencies. Along with the fast development in nanofabrication
technologies, we expect that more excellent works can appear in this field, generating meta-devices
which can eventually be used in practice.
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