
applied  
sciences

Article

A Novel Connectivity Factor for Morphological
Characterization of Membranes and Porous Media:
A Simulation Study on Structures of Mono-Sized
Spherical Particles

Stefano Bellini 1, Giulia Azzato 1, Monia Grandinetti 1, Virgilio Stellato 1, Giuseppe De Marco 2,
Yu Sun 3 and Alessio Caravella 1,* ID

1 Department of Environmental and Chemical Engineering (DIATIC), University of Calabria, Via P. Bucci,
Cubo 44A, 87036 Rende (CS), Italy; stefanobellini89@gmail.com (S.B.); giuliaazzato@virgilio.it (G.A.);
monia.grandinetti@hotmail.it (M.G.); virgilio.stellato@unical.it (V.S.)

2 Information Technology Center (ICT), University of Calabria, Via P. Bucci, Cubo 22B, 87036 Rende (CS), Italy;
giuseppe.demarco@unical.it

3 International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University,
Motooka 744, Nishi Ku, Fukuoka 819-0395, Japan; sunyusunyu1983@gmail.com

* Correspondence: alessio.caravella@unical.it; Tel.: +39-0984-494481; Fax: +39-0984-496655

Received: 23 February 2018; Accepted: 3 April 2018; Published: 6 April 2018
����������
�������

Abstract: In this study, we propose to define a connectivity factor as the inverse of the diffusional
tortuosity to measure quantitatively the connectivity of whatever type of structure. The concept of
connectivity used here is related to the diffusional accessibility of the structure voids. This definition of
connectivity factor arises from the consideration that, if we ideally imagine to decrease progressively
the porosity of a regular structure, the porosity itself reaches a limit value below which the inner pores
are not interconnected anymore. This leads to an evident situation of zero connectivity and infinite
tortuosity, where there is no continuous diffusion path able to connect the structure voids. According to
the proposed definition, the connectivity factor is comprised within [0, 1], with zero corresponding to
a completely disconnected structure and unity to a completely connected one. To show the efficacy of
the presented approach, a case study on the regular structure of mono-sized (mono-disperse) spherical
particles (Simple Cubic (SC), Face-Centred Cubic (FCC), Body-Centred Cubic (BCC) and Tetragonal
structures) is provided. In particular, the tortuosity of such structures is evaluated by Computational
Fluid Dynamics simulations, calculating the connectivity factor consequently. The morphological
modification with porosity is induced by changing the surface–surface interparticle distance, allowing
us to take both positive (detached particles) and negative values (overlapping particles). For each
structure, a comparison between the calculated trends and some correlations of literature is made,
and a novel “hidden” morphological parameter has been identified, that is, the here-called Limit
Porosity Value, below which the connectivity is zero. The presented approach represents a systematic
methodology to quantify the connectivity of any structure and to compare the morphology of
membranes, catalysts, and porous media in general.

Keywords: connectivity; tortuosity; topology; morphology; particles; structures

1. Introduction

It may be redundant to say that a correct characterization of mass transport phenomena occurring
in particle assemblies, membranes, and porous media is crucial in a number of applications in
engineering, chemistry, and physics. The fluid path through a catalyst and/or adsorbent particle
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beds can severely affect the performance of a mass transfer-based process, and a number of works of
literature are aimed at optimising the catalyst distribution [1–5].

However, for this purpose, it is required to understand not only the dependence of the transport
properties on the operating conditions (temperature, pressure, etc.) but also the morphology of the
structure, which are characteristics involving several important geometrical parameters, like specific
area, porosity, tortuosity, etc.

Among such parameters, relatively minor attention is paid to the so-called connectivity of a
structure, representing a property measuring a sort of degree of connection of the inner voids. However,
if the meaning of connectivity is relatively intuitive, its formal definition and quantification are not
obvious at all. For example, Leichtner et al. (2015) provide a sort of quantification of connectivity
by reconstructing the considered structures through image analysis techniques, classifying all the
inner void channels into connected, disconnected, and unknown voids, and simply evaluating the
percentage of the connected void volume to the total volume [6]. Slightly differently, Promentilla et al.
(2009) defined a connectivity factor in terms of percentage of voxels connected in all directions [7].
However, the drawback of these approaches is that they cannot be applied to all the cases in which
there are experimental evaluations of tortuosity [8–13], where there are no voxels that it is possible to
analyse directly.

In informatics, connectivity of a communication network is generally related to the ease for nodes
of exchanging information pieces, which are transported along available branches (i.e., connection
paths). By analogy, the connectivity of a physical structure can be defined as the ease for a particular
phenomenon of propagating within a particular mean.

From this point of view, the key-concept to understand in defining a proper connectivity factor for
a material is that, in principle, connectivity depends on the particular transport phenomenon involved
in the transfer. This can be understood if considering that, for example, two generic internal points
inside a porous structure belonging to solid and void volume, respectively, are disconnected with
respect to diffusion but connected with respect to heat transfer.

In this work, we are interested in quantifying the connectivity that measures the degree of
physically connected voids, where at least one path exists along which a hypothetical molecule
can reach any two points of the void space by diffusion without interpenetrating into the solid
space (allowed path, Figure 1a). We can refer to this type of connectivity as diffusional connectivity,
whose mathematical definition must depend on geometry only to be effective for a morphological
characterization. For this purpose, we choose and propose here to define a Connectivity Factor (ϕ) as
the inverse of the diffusional tortuosity τ (Equation (1)):

Connectivity Factor ϕ ≡ 1
Tortuosity τ

τ → ∞⇔ ϕ→ 0
τ = 1 ⇔ ϕ = 1

(1)

It is highlighted that, according to Equation (1), the connectivity factor ϕ is comprised within
[0, 1], this giving an immediate idea of the connectivity degree of the considered structure. Moreover,
it is pointed out that the diffusional tortuosity considered in the present paper coincides with the
tortuosity used to evaluate the effective diffusivity (Equation (2)) [14–18]:

Di,E f f = Di
ε

τ
(2)

where ε, Di and Di,Eff are porosity, free diffusivity, and effective diffusivity of the ith species, respectively.
Some scholars prefer writing Equation (2) by distinguishing a more proper tortuosity factor τ as follows
(Equation (3)):

Di,E f f = Di
ε

τ2 (3)
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However, such a distinction is not important for our purpose, as both parameters depend on
geometry only. Therefore, we will use Equation (2) as the reference effective diffusivity definition,
following the same approach as that of the pioneers of the volume average method [19–22].

The choice to define a connectivity factor as the inverse of tortuosity has been driven by several
reasons. First, tortuosity can be viewed as a measure of the difficulty for a molecule to go from one
point of a structure to another one within the available void space. Hence, the more the structure
is tortuous, the less the connection between two voids is, whilst, on the contrary, a lower tortuosity
implies a “more favourable” connection. In fact, as we will show in the following sections, tortuosity
tends to infinity when a structure reaches a specific limit value of porosity (non-necessarily zero),
below which all the internal voids are completely isolated from each other, as briefly sketched in
Figure 1b. This situation can occur, for example, in real catalytic devices subjected to a high degree of
sintering, resulting in a loss of specific area [23].

Figure 1. Sketch of two different structure morphologies: (a) Interconnected voids (with a certain value
of tortuosity) and (b) Completely disconnected voids (zero connectivity and infinite tortuosity).

Second, as Kim et al. (1987) clearly state, the diffusional tortuosity is a parameter depending on
geometry only [19], and, consequently, the same holds also for the here-defined connectivity factor
(Equation (1)), whose value is comprised within the range [0, 1] because of the tortuosity ranges within
[1, ∞].

Based on the previous considerations, we consider it straightforward to write the effective
diffusivity in terms of connectivity factor ϕ (Equation (4)):

Di,E f f = Diε · ϕ (4)

This is in line with the physical concept that the effective diffusivity increases with increasing
connectivity, as one may expect from the dynamics of the mass transfer phenomenon. This allows us
to further state that connectivity, and, dually, tortuosity, is not much related to the value of porosity,
but rather to the porosity distribution within a structure.
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We mention this fact because in a number of studies several scholars try to relate tortuosity and
porosity to each other, as if this were generally possible [24]. However, this can be done only for the
structures with a single geometrical degree of freedom, like regular structures of mono-sized spherical
particles [25], structures with porosity tending to unity (Maxwell, 1881) [26], and infinitely-disperse
random structures of particles (Neale and Nader, 1973) [27]. For other types of structures, the two
parameters are completely independent of each other and, thus, should be evaluated independently.

After defining the connectivity factor, the next step for its quantitative measure consists in using a
systematic way to evaluate tortuosity. In the past, tortuosity was generally considered a factor whose
value was to be estimated by data regression. However, with the exponentially increased availability
of computational resources and 3D image reconstruction tools based, for example, on computer
tomography, a number of research groups have started to precisely evaluate tortuosity values of plenty
of different structures by computational fluid dynamics and lattice-Boltzmann-based techniques (see
e.g., [7,23,25,28–43]).

In the present investigation, this is done similarly to several literature papers considering the
solution of the pure-diffusive problem [7,25,33–42]. The tortuosity values of the considered structures
were calculated by Caravella et al. (2012) for non-overlapping particles [25], whereas Kim and Chen
(2006) calculated the tortuosity of the SC, FCC, and BCC structures considering also the overlapping
cases [37].

The general objective of this work is to provide a deeper insight into the structure morphology,
linking the various geometrical parameters of the structure investigated, for which the concept of Limit
Porosity Value is also introduced. Such a limit value represents the porosity value below which no
diffusion is possible in the considered structure (i.e., a condition of completely disconnected voids).

2. Description of the System

The structures investigated—Simple Cubic (SC), Face-Centred Cubic (FCC), Body-Centred
Cubic (BCC) and CaF2-type (Tetragonal)—are described in Figure 2, where the overlapping case
is shown for convenience of the reader. Such an overlapping/interpenetrating geometry can occur in
some high-temperature thermal treating processes, such as particle sintering, and result in strength
increase because of the reinforced ties given by interpenetration, but also porosity losses, due to the
appropriation of void space made by growing grains.

Specifically, their unit cells are composed of mono-sized (mono-disperse) spherical particles,
whose porosity is allowed to change by changing the interparticle distance δ (i.e., the distance between
the closest particles), which can assume also negative values to allow particles to overlap.

As the considered structures are regular and mono-disperse, they have one degree of freedom,
which means that, keeping the particles size fixed (e.g., the diameter dp), morphology and topology
are completely determined by a single dimensionless geometrical parameter, which in this study is
chosen to be the following ratio:

δ∗ ≡ δ

dp
(5)
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Figure 2. Structures investigated in the present work (overlapping case): (a) SC (Simple Cubic),
(b) BCC (Body-Centred Cubic), (c) FCC (Face-Centred Cubic), (d) Tetragonal (mono-sized CaF2).
For BCC and Tetragonal structures, the overlapping occurs first between internal (blue-coloured) and
external particles.

3. Simulation Settings

3.1. Stacks of Unit Cells

For simulation, the unit cells are stacked to form assemblies of three cells, in order to minimize
numerical errors due to possible perturbations in the diffusive streamlines. As the morphology of the
overlapping cases can be complex to visualise, we show the qualitative evolution of the structures from
a lower overlapping degree (i.e., a lower negative value of δ*) to a higher degree (i.e., a higher negative
value of δ*), as depicted in Figures 3–6, where the solid volume represents the void interparticle volume.
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Figure 3. Morphology evolution of the SC structure with increasing overlapping degree. The particular
values of δ* are chosen just to better visualise the evolution of the structure.

Figure 4. Morphology evolution of the BCC structure with increasing overlapping degree.
The particular values of δ* are chosen just to better visualise the evolution of the structure.

Figure 5. Morphology evolution of the FCC structure with increasing overlapping degree.
The particular values of δ* are chosen just to better visualise the evolution of the structure.
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Figure 6. Morphology evolution of the Tetragonal structure with increasing overlapping degree.

As can be observed, for higher overlapping degree, the void channels become progressively
narrower and the structure morphology changes severely. In particular, the most peculiar change
can be observed for BCC and Tetragonal structures, for which secondary holes are generated in the
unit cell as the overlapping degree increases. From this point of view, there is almost no apparent
relationship between starting and ending structure.

3.2. Computational Fluid Dynamic Approach

As mentioned above, tortuosity is here evaluated by solving the pure diffusion problem in a
porous structure, using Fick’s law (Equation (6)) as constitutive equation for the molar flux of a
homogeneous binary gas mixture in the structure voids:

JA = −DAB∇CA (6)

where DAB is the free diffusivity in a fluid without obstacles, while ∇CA is the concentration gradient.
Simulations are performed using the CFD software Comsol Multiphysics®, which provide

as results the average diffusive flux between the two faces where the concentration has been set.
From such information, the effective diffusivity is calculated as follows (Equation (7)):

DAB,E f f = −
JA∆z
∆CA

× AVoid
ATotal

(7)

where ∆CA, ∆z, Avoid and ATotal indicate concentration difference, distance between faces,
cross-sectional area available for diffusion (i.e., void area), and the total area (i.e., the nominal cell
square area). Then, tortuosity is calculated as follows:

τ = ε
DAB

DAB,E f f
(8)

Figure 7 is a sketch of the boundary conditions set for simulation, for which the impenetrability
of the particle walls (i.e., zero normal flux) is set along with symmetry (i.e., zero flux) on the flat lateral
boundaries of the cell stacks, and concentration values on the respective bases.
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Figure 7. Boundary conditions used for simulation. Visualisation example for the FCC structure.

3.3. Mesh Setup

Once the appropriate boundary conditions have been set, the computational mesh has to be
constructed in order to carry out simulation. For this purpose, it is necessary to demonstrate the
mesh-independency of the obtained results, this implies applying a systematic way to construct an
effective and efficient mesh not requiring a too-heavy consumption of computational resources.

To do that, a preliminary test is performed by constructing two different meshes—referred to as
coarser and finer—for the same non-overlapping FCC structure for a certain value of porosity sufficiently
close to the condition of tangent particles (ε = 0.38319), which is the most severe condition for a mesh
to be generated.

The results relative to the two meshes are reported in Table 1 in terms of tortuosity. As we can
observe, the two values are equal up to the third decimal, which indicate that even the coarse mesh is
effective for our calculation. However, to be conservative, in all simulations we used the finer-mesh type,
that is, a mesh characterized by a minimum number of four elements between the closest boundaries
(e.g., Figure 8a).

Figure 8. Mesh details: (a) Finer mesh and (b) Coarser mesh.
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Table 1. Example of tortuosity sensitivity to mesh for the FCC.

Mesh τ (-)

Finer 1.35535
Coarser 1.35674

4. Results and Discussion

The primary simulation results are provided by the software in terms of concentration profiles
within the cells stack. An example of results is shown in Figure 9 for an overlapping FCC unit cell stack,
where the concentration profile mainly develops from the bottom (higher concentration) towards the
top (lower concentration). From these data, the total diffusive flux normal to the surface at the top and
the bottom of the stack is calculated in post-processing, thus giving all the information required to
evaluate the effective diffusivity and, from that, the tortuosity (Equation (7)).

Figure 9. Example of concentration gradient obtained as a solution of the simulation performed for the
overlapping FCC structure.

Besides the meaning of the 3D profiles, an important aspect to notice is that the concentration
gradient is steeper in the voids where boundaries are closer. This indicates that the diffusion resistance
is mainly due to such zones of the stack, it implies that tortuosity, as well as connectivity, is determined
by the shape of these narrow regions.

As voids become gradually narrower with decreasing porosity, the diffusion resistance increases;
this causes a higher tortuosity and, thus, a lower connectivity. Therefore, in the limit case in which the
volume of a narrow region becomes null, the diffusional path encounters a dead-end channel. If all
channels become dead ends, the inner voids become completely disconnected islands (Figure 1b) and,
thus, diffusional resistance and tortuosity become infinite (no diffusive flux possible).

Since the considered structures are regular, the condition of infinite diffusional resistance is
reached at a specific porosity value—here referred to as Limit Porosity Value εLim—corresponding
to the limit void volume that is not available for diffusion (VLim, Equation (10)). Such a parameter
can be considered a sort of “hidden” morphological property, as it is not apparent when voids are
interconnected. The numerically calculated εLim for all structures are reported in Table 2, from where
we can observe as a mere coincident the very similar values of SC and FCC.
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Table 2. Limit Porosity Value εLim calculated numerically for each structure.

Structure εLim

SC 0.035498
BCC 0.005956
FCC 0.036110

Tetragonal 0.191913

To clearly show the geometry corresponding to the limit porosity, Figure 10 shows the completely
disconnected island-shaped morphology of the structures.

Figure 10. Example of morphology of structures below the limit porosity value (εLim). The disconnected
islands represent the remaining inner voids not available for diffusion.

The results obtained in terms of tortuosity vs. porosity are shown in Figures 11 and 12. The lower
bound for the structure is represented by the model developed by Neale and Nader (1973) [27] for a
homogeneous non-overlapping swarm of spheres, which is actually an ideal structure composed of an
infinitely dispersed particles (Equation (9)).

τ =
3− ε

2
(9)

It is curious as well as interesting that this expression is the same as that obtained by Maxwell (1881),
which is valid in the limit of porosity approaching unity. In the plot, we prefer indicating the dashed
line as Neale and Nader’s model instead of Maxwell’s one since the former is virtually valid in the
whole porosity range. Another fact to observe is that all the curves, which are reported on log-scale on
the y-axis (here represented by the actual calculated values) show a more or less large convex portion
(i.e., negative second derivative), which means that the tortuosity trend increases with decreasing
porosity with a functionality less than exponential.

A possible reason for such a behaviour is that, just after particles start overlapping because of
decreasing inter-particle distance, the narrow channels present just before overlapping disappear
because of the surface–surface merging, resulting in a certain limitation for tortuosity to increase.
However, as porosity goes on decreasing, such a tendency is over-compensated by the size decrease of
the larger void channels. As such voids become smaller and smaller, the tortuosity value increases,
tending to infinity for channel section tending to zero (higher overlapping degree, Figures 3, 4, 5
and 6d).
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Figure 11. Tortuosity τ as a function of porosity ε for the considered structures. The dashed line in each
plot refers to the model developed by Neale and Nader (1973). Overlapping and Non-overlapping
domains are distinguished in each plot.

Figure 12 shows an overall comparison among the trend of all the considered structures along
with several empirical expressions mostly used in literature to estimate the tortuosity of certain types
of porous structures [44–54]. In particular, we can observe that some correlations among (a), (b), (d),
and (g) describe partially well some of the trends calculated in the present work, with the goodness of
the matching depending on the porosity range. Specifically, the expression of Bruggeman [47] describes
well the SC trend for a porosity down to ca. 0.1. On the other hand, the Millington correlation [49],
which is the same as that of Akanni et al. (1987) [53], Ho and Strieder (1981) [54], van Brakel and
Heertjes (1974) [51] and Weissberg (1963) [52], represents satisfactorily the BCC trend in almost the
whole porosity range and the FCC one within [0.25, 1]. All trends are well described by the Neale and
Nader [27] theoretical expression within [0.55, 1]. Differently, the correlations (c), (e), and (f) do not
represent satisfactorily any of the tortuosity trends calculated in the present work.

In order to check the existence of possible similarities among the different structures, from the
concept of limit porosity, we can define what is called here “Effective Porosity” (εEff) as the difference
between the nominal porosity and the limit porosity (Equation (10)), the tortuosity trend of all the
considered structures will tend to infinity for εEff tending to zero.

εE f f =
VV −VLim

VT
= ε− εLim (10)
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Figure 12. Overall comparison among the considered structures and several empirical expressions
from the literature (see Table 3) [44–54]. The trends are shown in two plots for a better readability.

Table 3. Empirical expressions of tortuosity vs. porosity.

Expression Range of Application References

τ = 2− ε
Porous structures with a hyperbola of
revolution as a pore model

Rayleigh (1892) [46]
Petersen (1958) [48]

τ = 1√
ε Composite heterogeneous porous media Bruggeman (1935) [47]

τ = 1
3√ε

Partially saturated homogeneous isotropic
monodisperse sphere packing

Millington (1959) [49]
van Brakel and Heertjes (1974) [51]

τ = 1− ln(ε)
2

Overlapping spheres

Akanni et al. (1987) [53]
Ho and Strieder (1981) [54]
van Brakel and Heertjes (1974) [51]
Weissberg (1963) [52]

τ = 1− ln(ε) Random arrays of freely overlapping cylinders Tomadakis and Sotirchos (1983) [50]

τ = 1
ε Catalytic fractal porous media Kohav et al. (1991) [45]

τ =
(

2−ε
ε

)2
Cation-exchange resin membrane Mackie and Meares (1955) [44]
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However, the so-defined Effective Porosity has the drawback that it is not comprised between zero
and unity. Therefore, analogously to what done by Pisani (2011) [24] and Caravella et al. (2012) [25] for
non-overlapping particles, we can define here a Normalized Effective Porosity ε∗E f f ranging within [0,1]
by subtracting the limit volume from both total and void volume (Equation (11)):

ε∗E f f ≡
ε− εLim
1− εLim

=
VV −VLim
VT −VLim

(11)

It can be noticed that, for εMin equal to zero, the nominal porosity ε and the normalized effective
porosity ε∗E f f are coincident.

The functionality of tortuosity τ with ε∗E f f is shown in Figure 13 for all the structures considered.
The normalized data representation allows recognition of similarities and differences among structures.
In particular, we notice that all structures show the same trend for a ε∗E f f values higher than around
0.55, whereas the behaviour of the FCC, BCC, and Tetragonal structures is very similar in a wider
range (higher than around 0.2). Therefore, the morphological difference is more relevant in the range
of lower ε∗E f f , in which tortuosity is very sensitive to the particular shape of the void channels.

Figure 13. Tortuosity τ as a function of the Normalized Effective Porosity ε∗E f f for all the
considered structures.

From tortuosity, we can finally plot the trend of connectivity factor ϕ (Figure 14). It is also
noticeable that the equation developed by Neale and Nader represents an upper bound for connectivity
of all structures, this being expected from Figure 11. However, it is interesting to find out the
morphological reasons for that.

Specifically, the virtual structure considered by Neale and Nader is peculiar, as it is ideally
composed of non-overlapping spherical particles with an infinitely-disperse size, which means that
porosity can progressively decrease by adding smaller and smaller particles that progressively fill
the voids. In such an ideal morphology, the structure shows voids being completely interconnected
even closely to the zero-porosity condition and, thus, connectivity should be the maximum possible,
representing an upper bound in a {ϕ vs. ε} plot for all structures.

Concerning the particular trends of the structures, FCC and BCC show almost the same
connectivity factor from a porosity value higher than ca. 0.25, whilst the same occurs for the SC
and Tetragonal structures for porosity higher than ca. 0.55. All curves tend to zero for porosity tending
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to the respective limit values. In particular, the structure with the highest connectivity among the
considered ones, at least in the low-porosity range, is the BCC structure, whereas the tetragonal
structure shows the lowest connectivity degree at the same porosity.

Figure 14. Connectivity Factor ϕ as a function of porosity for all the considered structures.

5. Conclusions

In this work, a novel general definition of connectivity factor was proposed to measure the
connection degree of the inner voids of a porous structure. Specifically, the connectivity factor
was defined as the inverse of tortuosity, which was evaluated as a function of porosity for several
regular isotropic structures of spherical particles in both non-overlapping and overlapping cases by
computational fluid dynamics techniques. The considered structures are as follows: Simple Cubic (SC),
Body-Centred Cubic (BCC), Face-Centred Cubic (FCC), and Tetragonal structure (i.e., mono-disperse
CaF2-type), whose morphology was deeply analysed.

A novel morphological parameter, the here-called Limit Porosity Value (εLim), was identified and
evaluated numerically for each structure considered. Such a parameter represents the porosity value
below which all the inner voids are completely disconnected from each other, which corresponds to a
condition of infinite tortuosity and, thus, zero connectivity.

After providing a comparison between the tortuosity trends calculated in the present work and
some correlations of literature, the connectivity of all of the considered structures was calculated as a
function of porosity. Such a trend has revealed that the connectivity of the BCC structure is the highest
among the analysed structures, followed by FCC and SC, which show similar trends in the extreme
limit values of porosity close to unity and close to zero. Within these limits, the connectivity of the
FCC structure is found to be higher than SC. We highlight that, interestingly, they show a very similar
value of εLim. As for the tetragonal structure, it was found to show the lowest connectivity with respect
to the others.

The proposed approach, which is applicable also to studies where tortuosity is evaluated
experimentally, represents a systematic and general methodology to easily define and measure the
connectivity degree of whatever structure, providing a powerful tool for morphological investigation
on porous media membranes.



Appl. Sci. 2018, 8, 573 15 of 17

Acknowledgments: A. Caravella has received funding for this research through the “Programma Per Giovani
Ricercatori “Rita Levi Montalcini” granted by the “Ministero dell’Istruzione, dell’Università e della Ricerca, MIUR”
(Grant no. PGR12BV33A), which is gratefully acknowledged.

Author Contributions: S.B. performed the simulations on the BCC, FCC and Tetragonal structures and wrote
the paper with input from all Authors. G.A., Y.S. and A.C. carried out the data analysis. M.G. performed the
simulations on the SC structures. V.S. contributed to structure construction and data analysis. G.D. contributed
to the computational settings for the solution of the diffusion problem. A.C. devised the study, supervised the
manuscript progress and introduced the presented novel morphological parameters (connectivity factor and limit
porosity value).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chiappetta, G.; Clarizia, G.; Drioli, E. Theoretical analysis of the effect of catalyst mass distribution and
operation parameters on the performance of a Pd-based membrane reactor for water-gas shift reaction. Chem.
Eng. J. 2008, 136, 373–382. [CrossRef]

2. Li, A.; Lim, C.J.; Grace, J.R. Staged-separation membrane reactor for steam methane reforming. Chem. Eng. J.
2008, 138, 452–459. [CrossRef]

3. Caravella, A.; Di Maio, F.P.; Di Renzo, A. Computational Study of Staged Membrane Reactor Configurations
for Methane Steam Reforming: I. Optimization of Stage Lengths. AIChE J. 2010, 56, 248–258. [CrossRef]

4. Caravella, A.; Di Maio, F.P.; Di Renzo, A. Computational Study of Staged Membrane Reactor Configurations
for Methane Steam Reforming: II. Effect of Number of Stages and Catalyst Amount. AIChE J. 2010, 56,
259–267. [CrossRef]

5. Caravella, A.; Di Maio, F.P.; Di Renzo, A. Optimization of membrane area and catalyst distribution in
a permeative-stage membrane reactor for methane steam reforming. J. Membr. Sci. 2008, 321, 209–221.
[CrossRef]

6. Lichtner, A.Z.; Jauffrès, D.; Roussel, D.; Charlot, F.; Martin, C.L.; Bordia, R.K. Dispersion, connectivity and
tortuosity of hierarchical porosity composite SOFC cathodes prepared by freeze-casting. J. Eur. Ceram. Soc.
2015, 35, 585–595. [CrossRef]

7. Promentilla, M.A.B.; Sugiyama, T.; Hitomi, T.; Takeda, N. Quantification of tortuosity in hardened cement
pastes using synchrotron- based X-ray computed microtomography. Cement Concrete Res. 2009, 39, 548–557.
[CrossRef]

8. Guo, P. Dependency of Tortuosity and Permeability of Porous Media on Directional Distribution of Pore
Voids. Transp. Porous Media 2012, 95, 285–303. [CrossRef]

9. Kong, W.; Zhang, Q.; Gao, X.; Zhang, J.; Chen, D.; Su, S. A Method for Predicting the Tortuosity of Pore
Phase in Solid Oxide Fuel Cells Electrode. Int. J. Electrochem. Sci. 2015, 10, 5800–5811.

10. Popova, L.; van Dusschoten, D.; Nagel, K.A.; Fiorani, F.; Mazzola, B. Plant root tortuosity: An indicator of
root path formation in soil with different composition and density. Ann. Bot. 2016, 118, 685–698. [CrossRef]
[PubMed]

11. Manickam, S.S.; Gelb, J.; McCutcheon, J.R. Characterization of Thin Film Composite Membranes Using
Porosimetry and X-ray Microscopy. Microsc. Microanal. 2013, 19, 634–635. [CrossRef]

12. Wiedenmann, D.; Keller, L.; Holzer, L.; Stojadinovic, J.; Munch, B.; Suarez, L.; Fumey, B.; Hagendorfer, H.;
Bronnimann, R.; Modregger, P.; et al. Three-Dimensional Pore Structure and Ion Conductivity of Porous
Ceramic Diaphragms. AIChE J. 2013, 59, 1446–1457. [CrossRef]

13. Landesfeind, J.; Hattendorff, J.; Ehrl, A.; Wall, W.A.; Gasteiger, H.A. Tortuosity Determination of Battery
Electrodes and Separators by Impedance Spectroscopy. J. Electrochem. Soc. 2016, 163, A1373–A1387.
[CrossRef]

14. Epstein, N. On Tortuosity and the Tortuosity Factor in Flow and Diffusion through Porous Media. Chem. Eng.
Sci. 1989, 44, 777–779. [CrossRef]

15. Ghanbarian, B.; Hunt, A.G.; Ewing, R.P.; Sahimi, M. Tortuosity in porous media—A critical review. Soil Sci.
Soc. Am. J. 2013, 77, 1461–1477. [CrossRef]

16. Carman, P.C. Fluid flow through a granular bed. Trans. Inst. Chem. Eng. 1937, 15, 150–167. [CrossRef]
17. Carman, P.C. Flow of Gases through Porous Media; Academic Press: New York, NY, USA, 1956.

http://dx.doi.org/10.1016/j.cej.2007.05.036
http://dx.doi.org/10.1016/j.cej.2007.06.024
http://dx.doi.org/10.1002/aic.11961
http://dx.doi.org/10.1002/aic.11960
http://dx.doi.org/10.1016/j.memsci.2008.04.058
http://dx.doi.org/10.1016/j.jeurceramsoc.2014.09.030
http://dx.doi.org/10.1016/j.cemconres.2009.03.005
http://dx.doi.org/10.1007/s11242-012-0043-8
http://dx.doi.org/10.1093/aob/mcw057
http://www.ncbi.nlm.nih.gov/pubmed/27192709
http://dx.doi.org/10.1017/S1431927613005163
http://dx.doi.org/10.1002/aic.14094
http://dx.doi.org/10.1149/2.1141607jes
http://dx.doi.org/10.1016/0009-2509(89)85053-5
http://dx.doi.org/10.2136/sssaj2012.0435
http://dx.doi.org/10.1016/S0263-8762(97)80003-2


Appl. Sci. 2018, 8, 573 16 of 17

18. Scheidegger, A.E. The Physics of Flow through Porous Media; University of Toronto Press: Toronto, ON,
Canada, 1974.

19. Kim, J.H.; Ochoa, J.A.; Whitaker, S. Diffusion in anisotropic media. Transp. Porous Media 1987, 2, 327–356.
[CrossRef]

20. Whitaker, S. Simultaneous heat, mass and momentum transfer in porous media: A theory of drying. Adv. Heat
Transf. 1977, 13, 119–203.

21. Quintard, M. Diffusion in isotropic and anisotropic porous systems: Three- dimensional calculations. Transp.
Porous Media 1993, 11, 187–199. [CrossRef]

22. Quintard, M.; Whitaker, S. Transport in ordered and disordered porous media: Volume-averaged equations,
closure problems and comparison with experiments. Chem. Eng. Sci. 1993, 48, 2537–2564. [CrossRef]

23. Gao, H.Y.; He, Y.H.; Zou, J.; Xu, N.P.; Liu, C.T. Tortuosity factor for porous FeAl intermetallics fabricated by
reactive synthesis. Trans. Nonferr. Met. Soc. China 2012, 22, 2179–2183. [CrossRef]

24. Pisani, L. Simple Expression for the Tortuosity of Porous Media. Transp. Porous Media 2011, 88, 193–203.
[CrossRef]

25. Caravella, A.; Hara, S.; Obuchi, A.; Uchisawa, J. Role of the bi-dispersion of particle size on tortuosity in
isotropic structures of spherical particles by three-dimensional computer simulation. Chem. Eng. Sci. 2012,
84, 351–371. [CrossRef]

26. Maxwell, J.C. Treatise on Electricity and Magnetism, 2nd ed.; Clarendon Press: Oxford, UK, 1881; Volume I.
27. Neale, G.H.; Nader, W.K. Prediction of transport processes within porous media, Diffusive flow processes

within a homogeneous swarm of spherical particles. AlChE J. 1973, 19, 112–119. [CrossRef]
28. Solorzano, E.; Pardo-Alonso, S.; Brabant, L.; Vicente, J.; Van Hoorebeke, L.; Rodríguez-Pérez, M.A.

Computational Approaches for Tortuosity Determination in 3D Structures. In Proceedings of the 1st
International Conference on Tomography of Materials and Structures (ICTMS 2013), Ghent, Belgium,
1–5 July 2013; pp. 71–74. Available online: https://biblio.ugent.be/publication/4178455/file/4178457.pdf
(accessed on 17 February 2018).

29. Wang, P. Lattice Boltzmann Simulation of Permeability and Tortuosity for Flow through Dense Porous Media.
Math. Prob. Eng. 2014. [CrossRef]

30. Anovitz, L.M.; Cole, D.R. Characterization and Analysis of Porosity and Pore Structures. Rev. Mineral.
Geochem. 2015, 80, 61–164. [CrossRef]

31. Berg, C.F. Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity. Transp.
Porous Media 2015, 103, 381–400. [CrossRef]

32. Annunziata, R.; Kheirkhah, A.; Aggarwal, S.; Hamrah, P.; Trucco, E. A Fully Automated Tortuosity
Quantification System with Application to Corneal Nerve Fibres in Confocal Microscopy Images. Med. Image
Anal. 2016, 32, 216–232. [CrossRef] [PubMed]

33. Deepagoda, T.K.K.C.; Moldrup, P.; Yoshikawa, S.; Kawamoto, K.; Komatsu, T.; Rolston, D.E.
The gas-diffusivity-based Buckingham tortuosity factor from pF 1 to 6.91 as a soil structure fingerprint.
In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane,
Australia, 1–6 August 2010; pp. 2008–2011.

34. Vallavh, R. Modeling Tortuosity in Fibrous Porous Media using Computational Fluid Dynamics. Ph.D.
Thesis, North Carolina State University, Raleigh, NC, USA, 2009.

35. Chen-Wiegart, Y.C.K.; Demike, R.; Erdonmez, C.; Thornton, K.; Barnett, S.A.; Wang, J. Tortuosity
characterization of 3D microstructure at nano-scale for energy storage and conversion materials. J. Power
Sources 2014, 249, 349–356. [CrossRef]

36. Moldrup, P.; Olesen, T.; Komatsu, T.; Schjonning, P.; Rolston, D.E. Tortuosity, Diffusivity, and Permeability in
the Soil Liquid and Gaseous Phases. Soil Sci. Soc. Am. J. 2001, 65, 613–623. [CrossRef]

37. Kim, A.S.; Chen, H. Diffusive tortuosity factor of solid and soft cake layers: A random walk simulation
approach. J. Membr. Sci. 2006, 279, 129–139. [CrossRef]

38. Rezanezhad, F.; Quinton, W.L.; Price, J.S.; Elrick, D.; Elliot, T.R.; Heck, R.J. Examining the effect of pore size
distribution and shape on flow through unsaturated peat using 3-D computed tomography. Hydrol. Earth
Syst. Sci. Discuss. 2009, 6, 3835–3862. [CrossRef]

39. Matyka, M.; Khalili, A.; Koza, Z. Tortuosity-porosity relation in porous media flow. Phys. Rev. E 2008, 78,
026306. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/BF00136440
http://dx.doi.org/10.1007/BF01059634
http://dx.doi.org/10.1016/0009-2509(93)80266-S
http://dx.doi.org/10.1016/S1003-6326(11)61446-5
http://dx.doi.org/10.1007/s11242-011-9734-9
http://dx.doi.org/10.1016/j.ces.2012.08.050
http://dx.doi.org/10.1002/aic.690190116
https://biblio.ugent.be/publication/4178455/file/4178457.pdf
http://dx.doi.org/10.1155/2014/694350
http://dx.doi.org/10.2138/rmg.2015.80.04
http://dx.doi.org/10.1007/s11242-014-0307-6
http://dx.doi.org/10.1016/j.media.2016.04.006
http://www.ncbi.nlm.nih.gov/pubmed/27136674
http://dx.doi.org/10.1016/j.jpowsour.2013.10.026
http://dx.doi.org/10.2136/sssaj2001.653613x
http://dx.doi.org/10.1016/j.memsci.2005.11.042
http://dx.doi.org/10.5194/hessd-6-3835-2009
http://dx.doi.org/10.1103/PhysRevE.78.026306
http://www.ncbi.nlm.nih.gov/pubmed/18850935


Appl. Sci. 2018, 8, 573 17 of 17

40. Luquot, L.; Rodriguez, O.; Gouze, P. Experimental Characterization of Porosity Structure and Transport
Property Changes in Limestone Undergoing Different Dissolution Regimes. Transp. Porous Media 2014, 101,
507–532. [CrossRef]

41. Shen, L.; Chen, Z. Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 2007, 62, 3748–3755.
[CrossRef]

42. Melo, L.F. Biofilm physical structure, internal diffusivity and tortuosity. Water Sci. Technol. 2005, 52, 77–84.
43. Promentilla, M.A.B.; Sugiyama, T. Studies on 3D Micro-Geometry and Diffusion Tortuosity of Cement-Based

Materials Using X-ray Microtomography. In Proceedings of the 32nd Conference on Our World in Concrete
& Structures, Singapore, 28–29 August 2007.

44. Mackie, J.S.; Meares, P. The diffusion of electrolytes in a cation exchange resin membrane. Proc. R. Soc. A
1955, 232, 498–509. [CrossRef]

45. Elias-Kohav, T.; Moshe, S.; Avnir, D. Steady-state diffusion and reactions in catalytic fractal porous media.
Chem. Eng. Sci. 1991, 46, 2787–2798. [CrossRef]

46. Rayleigh, L. On the influence of obstacles arranged in rectangular order upon the properties of a medium.
Philos. Mag. 1892, 34, 481–489. [CrossRef]

47. Bruggeman, D.A. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I.
Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 1935,
24, 636–664. [CrossRef]

48. Petersen, E.E. Diffusion in a pore of varying cross section. AIChE J. 1958, 4, 343–345. [CrossRef]
49. Millington, R.J. Gas diffusion in porous media. Science 1959, 130, 100–102. [CrossRef] [PubMed]
50. Tomadakis, M.M.; Sotirchos, S.V. Transport properties of random arrays of freely overlapping cylinders with

various orientation distributions. J. Chem. Phys. 1983, 98, 616–626. [CrossRef]
51. van Brakel, J.; Heertjes, P.M. Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity

and a constrictivity factor. Int. J. Heat Mass Transf. 1974, 17, 1093–1103. [CrossRef]
52. Weissberg, H. Effective diffusion coefficients in porous media. J. Appl. Phys. 1963, 34, 2636–2639. [CrossRef]
53. Akanni, K.A.; Evans, J.W.; Abramson, I.S. Effective transport coefficients in heterogeneous media. Chem.

Eng. Sci. 1987, 42, 1945–1954. [CrossRef]
54. Ho, F.G.; Strieder, W. A variational calculation of the effective surface diffusion coefficient and tortuosity.

Chem. Eng. Sci. 1981, 36, 253–258. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11242-013-0257-4
http://dx.doi.org/10.1016/j.ces.2007.03.041
http://dx.doi.org/10.1098/rspa.1955.0234
http://dx.doi.org/10.1016/0009-2509(91)85148-Q
http://dx.doi.org/10.1080/14786449208620364
http://dx.doi.org/10.1002/andp.19354160705
http://dx.doi.org/10.1002/aic.690040322
http://dx.doi.org/10.1126/science.130.3367.100-a
http://www.ncbi.nlm.nih.gov/pubmed/17738602
http://dx.doi.org/10.1063/1.464604
http://dx.doi.org/10.1016/0017-9310(74)90190-2
http://dx.doi.org/10.1063/1.1729783
http://dx.doi.org/10.1016/0009-2509(87)80141-0
http://dx.doi.org/10.1016/0009-2509(81)85003-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Description of the System 
	Simulation Settings 
	Stacks of Unit Cells 
	Computational Fluid Dynamic Approach 
	Mesh Setup 

	Results and Discussion 
	Conclusions 
	References

