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Abstract: Home energy management systems (HEMS) face many challenges of uncertainty,
which have a great impact on the scheduling of home appliances. To handle the uncertain parameters
in the household load scheduling problem, this paper uses a robust optimization method to rebuild
the household load scheduling model for home energy management. The model proposed in this
paper can provide the complete robust schedules for customers while considering the disturbance of
uncertain parameters. The complete robust schedules can not only guarantee the customers’ comfort
constraints but also cooperatively schedule the electric devices for cost minimization and load shifting.
Moreover, it is available for customers to obtain multiple schedules through setting different robust
levels while considering the trade-off between the comfort and economy.
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1. Introduction

Residential customers are faced with diverse pricing schemes implemented by utilities to stimulate
demand response [1–3], and are hence faced with the subsequent problem on how to operate the
household appliances to minimize the electricity payment under the premise of human comfort.
The growing integration of household generation, mainly intermittent renewable generation, makes
this problem even more complex. By integrating advanced automatic control and information
and communication technologies, home energy management systems (HEMS) make it possible
for residential customers to optimally manage their household appliances, i.e., to shift and curtail
household loads to properly respond to the various pricing schemes [4]. Under this background,
HEMS have been attracting increasing attention in recent years.

There are many studies that model the household load scheduling problem as a deterministic
optimization problem [5,6]. In [7], a detailed home energy management system structure is developed to
determine the optimal day-ahead appliances scheduling under hourly pricing and peak power-limiting.
In [8], in order to distinguish the energy consumption modes and corresponding status of different
appliances, home appliances are assigned dynamic priorities, and a real-time household load priority
scheduling algorithm, based on the allocated priority and renewable source availability prediction,
is proposed to minimize the cost of energy consumption with customers’ comfort constraints. Aiming at
minimizing the electricity bill and customers’ dissatisfaction at the same time, Soares et al. [9] propose
a multi-objective genetic algorithm to optimize the time allocation of domestic loads, and similar to
the Non-dominated Sorting Genetic Algorithm II, some changes have been introduced in the proposed
algorithm to adapt the physical characteristics of the load scheduling problem and improve the usability
of results.
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However, in these studies, many parameters, such as the time-varying prices, ambient temperature,
customer behaviors, etc., are assumed to be obtained through day/hour/minute-ahead forecasting,
which contains inevitable uncertainties that will undermine the feasibility and optimality of the load
schedules obtained. In order to tackle this issue, many researchers have conducted a large number of works
and made very large achievements. In general, these works are divided into the following two methods.
One method is to enhance the accuracy of forecast parameters by improving the forecasting methods.
In [10], a new hybrid model that combines two well-known methods for short-term power forecasting of a
grid-connected photovoltaic plant is introduced. And hourly forecasts of photovoltaic power output show
a quite good accuracy and efficiency of the developed hybrid model. In [11], Weron collects a variety of
methods and ideas about electricity price forecasting. Although these methods have different strengths
and weaknesses, it is proved that these methods have obtained varying degrees of success and forecasting
precision. Another method is to make ultimate schedules to withstand the uncertainty through various kinds
of uncertain optimizations. In [12], a stochastic scheduling technique is used to handle the uncertainties
contained in the energy consumption and runtime of household appliances. In [13], typical uncertain
parameters in the day-ahead temperature scheduling for air-conditioning are modeled by membership
functions with fuzzy set theory. In [14], normally distributed random variables are used to describe the
uncertain parameters, and a chance constrained optimization model is then formulated to accommodate
the uncertainties.

Although the aforementioned papers make great success to deal with these uncertain parameters
in HEMS, there exists some limitations and shortcomings. Due to the complexity of impacting sources
in the forecast model and randomness of human behaviors, some forecast parameters, especially like
the ambient parameters and customer behavioral parameters, are still not accurate enough to represent
the real environment. Meanwhile, most forecast methods need a large amount of historical data which
is difficult or expensive for household customers to obtain. Especially, the stochastic programming
accounts for a large part of the uncertain optimization methods. Since the characteristics of heuristic
algorithms are widely used in the stochastic programming, it is inevitable that the results will be
trapped in local optima and make the iteration rather time-consuming.

Differing form the above studies, this paper applies a robust optimization method to tackle
the uncertainties in household load scheduling. In 1973, Soyster firstly gained the solutions under
the worst situation of uncertain parameters through linear robust optimization [15]. To decrease
the conservatism of linear robust optimization, Ben-Tal et al. [16] proposed the adjustable robust
optimization counterpart. Bertsimas and Sim [17,18] extended the robust optimization by introducing
an adjustable factor to reflect the different choices from the uncertain parameters set. The robust
optimization proposed by Bertsimas has some advantages in handling the uncertainties in parameters:
through modeling the uncertain parameters varying in a given uncertainty set, it avoids complex
random variables which are subjected to the probability distribution or fuzzy membership function,
and it maintains the linearity of the problem so that the global optimal solution can be obtained by a
linear programming solver. Additionally, based on setting different values of the factor, it can flexibly
control the conservative levels of the results. Based on these, quite a few works [19–21] pay significant
attention to robust optimization in HEMS. Thus, this robust method is applied in HEMS to solve the
scheduling problem with uncertainties.

In this paper, a home energy management system equipped with photovoltaic generation and
an energy storage device is established. A household load scheduling with uncertain parameters is
formulated to minimize the electricity bill of customers and operates under the comfort constraints.
Specifically, the main contributions of this paper can be summarized as follows:

1. Two typical examples of uncertain parameters, outdoor temperature and hot water demand,
are modelled as uncertainty sets, based on which household load scheduling problem with
uncertainties is formulated. For researching the uncertainties, the uncertain parameters are
presented in the form of interval numbers.
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2. A robust optimization method is applied to deal with the uncertainties in the comfort constraints.
The robust counterpart transformation is the key component of robust optimization. Via deducing
the robust counterpart, the original scheduling problem is transformed into a mixed integer linear
programming problem, of which the global optimum can be found by mature tools, such as
CPLEX. The proposed method avoids the time-consuming iterations in many other uncertain
optimization methods.

3. An uncertainty analysis that quantifies the violation degree of the comfort constraints is designed
and conducted to test the proposed method. The results show that the complete robust schedules
is able to guarantee that the comfort constraints will not be violated. Moreover, schedules with
different robust levels can be obtained to make a trade-off between the comfort violation and
electricity payment.

This paper is organized as follows: Section 2 introduces the mathematical model of the home
energy management system, including the uncertain parameters, objective function, and constraints;
Section 3 introduces the robust optimization method and completes the derivation of the robust
counterpart; and, finally, the simulation results are presented and analyzed in Sections 4 and 5.

2. Mathematical Model

2.1. Uncertain Parameters

In household load scheduling, the outdoor temperature and hot water demand for the next day
are representative uncertain parameters that are closely affected by the randomness in the environment
and human behaviors and cannot be predicted precisely in practice. Thus, the deviation from the
forecast value will lead to the ineffectiveness of the original optimal schedules especially for the loads
associated with the uncertain parameters.

To formulate the uncertainties, it is assumed that the uncertain parameters vary in given intervals
(i.e., the uncertainty sets) of which the boundaries are set around the predicted values. In practice,
the uncertain parameters may take any value in the uncertainty set. Note that no complex probability
distribution is assumed within the uncertain parameters.

According to the analysis in [13] and [22], the actual outdoor temperature will fluctuate around
the forecast values. Thus, the uncertainty set for the outdoor temperature can be described as follows:

θ̃out,i ∈ [θout,i − θ̂out,i, θout,i + θ̂out,i] (1)

where θ̃out,i represents the outdoor temperature (which is uncertain during the scheduling stage) at the
ith time step of the next day. θout,i and θ̂out,i are the forecast value and the maximum deviation value
of the outdoor temperature considered at the ith time step of the next day. Generally, the forecast
values are obtained through the weather forecast issued by the local meteorological department.
The maximum deviation considered can be confidently summarized by using sufficient historical
data. If no sufficient data is available, it can be set as a certain percentage of the forecast value as an
approximate estimation.

According to [23], the uncertainty of hot water demand comes from random human behavior,
such as an extra shower that will lead to extra usage of hot water. Therefore, the uncertainty set for the
hot water demand can be described as follows:

d̃i ∈ [di, di + d̂i] (2)

where d̃i represents the uncertain hot water demand at the ith time step of the next day; di and d̂i
are the forecast value and maximum extra usage of the hot water demand at the ith time step of the
next day.

To respond to flexible electricity prices, the household load scheduling problem is formulated into
a mathematical programming problem, of which the objective is to minimize the next-day electricity bill
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for a customer and the constraints are the operational and comfort limits of the appliances. The solution
of the programming problem are the operational schedules for every appliances. The formulation of
the problem is detailed below.

2.2. Objective Function

Considering the fact that customers with local generation may feed electricity back to the bulk
grid, the objective function is formulated to minimize the electricity bill of the next day, which consists
of the payment from buying electricity and the revenue from selling electricity. The objective function
is expressed as:

min
N

∑
i=1

pricei(( ∑
δ∈A

Pδ,i)− (Pdch
ESD,i + PPV,i))∆t (3)

pricei =


pricebuy,i

(
∑

δ∈A
Pδ,i

)
≥
(

Pdch
ESD,i + PPV,i

)
pricesell,i

(
∑

δ∈A
Pδ,i

)
<
(

Pdch
ESD,i + PPV,i

) (4)

In Equations (3) and (4), N is the total number of the time steps for the next day; ∆t is the time
length of a single step; A is the set of all household loads; Pδ,i is the power consumption of the load δ

at the ith time step; Pdch
ESD,i and PPV,i represent the active power output of the energy storage device

and photovoltaic generation respectively; and pricebuy,i and pricesell,i denote the price of buying and
selling electricity at the ith time step.

2.3. Constraints

The constraints include the operational limits of household loads and the comfort requirement
of customers. For a residential home, the number of appliances can reach about 15 or more.
Several appliances have similar operational characteristics so they are classified into the same
category. In this paper, the household loads are classified into four main categories: the loads
with uncertain parameters, uncontrollable loads, uninterruptible loads, and interruptible loads.
Additionally, the energy storage device can be regarded as one special load in which the active power
is negative while discharging. Furthermore, because the uncontrollable loads cannot be scheduled,
it is directly modeled as a fixed load curve, which will be used in the objective function to calculate the
electricity bill.

2.3.1. Loads with Uncertain Parameters

The loads with uncertain parameters widely exist in houses, such as the air conditioner (AC),
water heater (WH), refrigerator, etc. As stated in Section 2.1, this paper takes the AC and WH as the
typical examples to be studied, which are associated the uncertainties in the outdoor temperature and
hot water use.

As for an AC, due to the heat exchange between the indoor and outdoor environment, the indoor
temperature is closely related to the uncertain outdoor temperature, thus being an uncertain variable
as well. This relationship can be described as the following Equation (5), which is derived based on
the recursive formula presented in [24]:

θ̃room,i+1 =
i

∑
n=1

R · pr
AC(1− e

−∆t
RC ) · (e−∆t

RC )
i−n
· xAC,n +

i
∑

n=1
(1− e

−∆t
RC ) · (e−∆t

RC )
i−n
· θ̃out,n

+θroom,1 · (e
−∆t
RC )

i
∀i ∈ {1...N}

(5)

where θ̃room,i and θ̃out,i are the uncertain indoor and outdoor temperatures at the ith time step,
respectively; xAC,i represents the working status of the AC (0—off status, 1—heating status
and −1—cooling status); the constants R and C are the equivalent heat resistance and capacity;
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pr
AC represents the rated power of the AC. It should be noted that θroom,1 is the initial indoor

temperature, which is given as an initial condition before scheduling.
The main constraint associated with the AC is the thermal comfort constraint. That is, the uncertain

indoor temperature has to be maintained in a preset range at each time step:

θmin
room ≤ θ̃room,i+1 ≤ θmax

room ∀i ∈ {1 . . . N} (6)

PAC,i = |xAC,i| · pr
AC (7)

where θmin
room and θmax

room are the lower and upper boundaries of the preset comfort range. Equation (7) shows
the relationship among the power consumption, the working status and the rated power of the AC.

As for a WH, the decrease of the water temperature in tank results from the heat exchange with
the environment and the hot water usage. Due to the excellent insulation, the heat loss in the process
of the heat exchange can be ignored [25]. Then the main cause of the temperature dropping is the
hot water usage and the followed supplementary cold water. Based on the energy conservation law,
the water temperature in tank can be calculated as follows:

θ̃water,i+1 =


xEWH,i ·ρ

CM + (1− d̃i
M ) · (θwater,1 − θcold) + θcold, i = 1

i−1
∑

n=1
[

i
∏

k=n+1
(1− d̃k

M )] · xEWH,n ·ρ
CM +

xEWH,i ·ρ
CM +

i
∏

n=1
(1− d̃n

M ) · (θwater,1 − θcold) + θcold, i = 2 · · ·N
(8)

where θ̃water,i+1 is the uncertain water temperature in tank at the ith time step; d̃i is uncertain hot water
usage; xEWH,i is the heating power; the constant ρ is the transfer coefficient between J and kWh, taking
the value of 3.6 × 106; the constant C is the specific heat capacity of water, being 4.2 × 103; M is the
mass of the water in full tank; and θwater,1 is the initial water temperature in tank, which is also given
before scheduling.

Similar to AC, the constraint of the WH is also about thermal comfort:

θmin
water ≤ θ̃water,i+1 ≤ θmax

water ∀i ∈ {1...N} (9)

PEWH,i = xEWH,i (10)

where θmin
water and θmax

water are the lower and upper thresholds which are preset by customers. Equation (10)
shows that the heating power of the WH is the decision variable to be optimized.

2.3.2. Interruptible Loads

Interruptible loads (IL) are allowed to be stopped during their working time so that load shifting
can be achieved. Electric vehicles (EVs) and clothes washers (CWs) are two examples of this category
of load. The constraints for interruptible loads can be expressed as follows:

xIL,i =

{
0 ∀i ∈ [1, bIL) ∪ (eIL, N], i ∈ N+

0 or 1 ∀i ∈ [bIL, eIL], i ∈ N+ (11)

eIL

∑
i=bIL

xIL,i = lIL (12)

PIL,i = xIL,i ∗ pr
IL (13)

where xIL,i is the working status of interruptible loads (0—off, 1—on); [bIL, eIL] represents the allowable
working period; lIL is the required working time to; and pr

IL is the rated power.
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2.3.3. Uninterruptible Loads

Uninterruptible loads (UIL) have very similar operational characteristic to interruptible loads
and are also allowed to be shifted. However, uninterruptible loads, like a clothes dryer (CD) or a
dishwasher (DW), cannot be interrupted once it starts working. Therefore, additional constraints
should be proposed [20].

xUIL,i =

{
0 ∀i ∈ [1, bUIL) ∪ (eUIL, N], i ∈ N+

0 or 1 ∀i ∈ [bUIL, eUIL], i ∈ N+ (14)

eUIL

∑
i=bUIL

xUIL,i = lUIL (15)

j+lUIL−1

∑
i=j

xUIL,i = (xUIL,j − xUIL,j−1) · lUIL∀j ∈ (bUIL, eUIL − lUIL + 1], j ∈ N+ (16)

PUIL,i = xUIL,i ∗ pr
UIL (17)

Similar to interruptible loads, xUIL,i is the working status of uninterruptible loads (0—off, 1—on);
[bUIL, eUIL] represents the allowable working period; lUIL is the required working time; pr

UIL represents
the rated power. Among the constraints, Equation (16) is the additional one for describing the
uninterruptible feature.

2.3.4. Energy Storage Device

Household energy storage devices are usually batteries (e.g., lead-acid, Li-ion). Batteries charge
and discharge to match the output of the local photovoltaic generation. The operational limits during
the charging and discharging process are as follows [26]:

SOCi+1 = SOCi +
ηch · Pch

ESD,i · ∆t
Qr

−
Pdch

ESD,i · ∆t
ηdch ·Qr

− ε · ∆t (18)

0 ≤ Pch
ESD,i ≤ pch

max · xch
ESD,i ∀xch

ESD,i ∈ {0, 1} (19)

0 ≤ Pdch
ESD,i ≤ pdch

max · xdch
ESD,i ∀xdch

ESD,i ∈ {0, 1} (20)

xch
ESD,i + xdch

ESD,i ≤ 1 (21)

SOCmin ≤ SOCi+1 ≤ SOCmax ∀i ∈ {1...N} (22)

SOCN+1 ≥ SOCini (23)

where Pch
ESD,i and Pdch

ESD,i represent the charging and discharging power; xch
ESD,i and xdch

ESD,i represent the
charging and discharging status (xch

ESD,i = 1 and xdch
ESD,i = 0 indicate that the energy storage device is

charging; xch
ESD,i = 0 and xdch

ESD,i = 1 indicate that the energy storage device is discharging); ηch and ηdch

are the efficiency of charging and discharging; pch
max and pdch

max are maximum power of charging and
discharging; ε represents self-discharge rate; Equations (18)–(22) constrain that the battery should not
overcharge and overdischarge; and Equation (23) ensures that the battery capacity at the final time
step of the day is no less than that of the initial time step at the beginning of the day.

3. Robust Optimization for Household Load Scheduling

3.1. Robust Optimization

In the view of mathematics, the above scheduling problem is a mixed integer programming (MIP)
problem with uncertainties. A nominal mixed integer programming is given as Equation (24).
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minimize c′x
subject to Ax ≤ b, l ≤ x ≤ u

xi ∈ Z, i = 1, · · · , k
(24)

However, the existence of the uncertain parameters (some elements in b of the Equation (24)) hinder
the available methods like branch and bound method from solving the problem. Therefore, the robust
optimization technique proposed by Bertsimas et al. is applied to make the uncertain programming
problem solvable and to make the solutions robust.

In the robust optimization, if the element aij in the matrix A is uncertain, it should be replaced
by ãij that takes value in

[
aij − âij, aij + âij

]
of which aij and âij are the mean value and range of

the coefficient (the elements in b can be seen as aij through some transformations [12,13]). A new
parameter is then defined aszij =

(
ãij − aij

)
/âij, so zij is a bounded random variable (but with

unknown distribution) which is within [−1,1].
In order to deal with the uncertain but bounded parameters, Bertsimas et al. also introduced

a number Γi that takes value in the interval [0,| Ji|], where Ji =
{

j
∣∣âij > 0

}
for each constraint.

The purpose of intruding this parameter Γi is to adjust the robustness against the level of conservatism
of the solution. Specifically, the number of the coefficients that are considered as uncertain equals
to (bΓic + 1). For the former bΓic uncertain coefficients, the coefficients are considered to vary
in the interval

[
aij − âij, aij + âij

]
; for the final uncertain coefficient, it is considered to vary in[

aij − (Γi − bΓic)âij, aij + (Γi − bΓic)âij
]
. The larger Γi is, the more uncertainties will be considered

during the optimization, and the more robust of the solution will be. When Γi equals to |Ji|, it means
that the solution can satisfy all the situations regardless of what value the uncertain parameter takes.

3.2. Robust Counterpart Transformation

Based on the above definition and method, the original programming problem Equation (24) can
be transformed into the following robust counterpart [18]:

n

∑
j=1

aijxj + max
zi∈Zi
{∑

j∈Ji

âijxjzij} ≤ bi ∀i (25)

l ≤ X ≤ u, Z = {z
∣∣∣∣∣∣∣zij

∣∣ ≤ 1, ∀j ∈ Ji, ∑
j∈Ji

∣∣zij
∣∣ ≤ Γi } (26)

3.2.1. Robust Counterpart Transformation of the Uncertain Outdoor Temperature

When it comes to household load scheduling, the constraints with uncertain parameters need to
be transformed into the robust counterpart. Firstly, we should transform the constraints of AC into the
matrix form. From the above paper, only one parameter is uncertain in each constraint and it does not
appear in matrix A. Thus, introducing a new variable xAC,N+1 = 1 makes this uncertain parameter
classified into matrix A. To simplify the proof, set k1 = e−∆t/RC, k2 = (1− e−∆t/RC). Then the matrix
form for constraints is as follows:

c ≤ Ã ·



xAC,1
xAC,2

...

...
xAC,N

xAC,N+1


≤ b, Ã =



k2 · R · pr
AC 0 · · · · · · 0 k2 · θ̃out,n

k2 · k1 · R · pr
AC k2 · R · pr

AC 0 · · ·
...

2
∑

n=1
k2 · k1

2−n · θ̃out,n

...
...

. . . . . .
...

...
...

...
...

. . . 0
...

k2 · k1
N−1 · R · pr

AC k2 · k1
N−2 · R · pr

AC · · · · · · k2 · R · pr
AC

N
∑

n=1
k2 · k1

N−n · θ̃out,n


b =

[
θmax

room − θroom,1 · k1 θmax
room − θroom,1 · k1

2 · · · · · · θmax
room − θroom,1 · k1

N
]T

c =
[

θmin
room − θroom,1 · k1 θmin

room − θroom,1 · k1
2 · · · · · · θmin

room − θroom,1 · k1
N
]T

(27)
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Since θ̃out,i ∈ [θout,i − θ̂out,i, θout,i + θ̂out,i], then there exists ãij ∈ [aij − âij, aij + âij], aij ∈ A, âij ∈ Â.
The details are shown in Equation (28):

A =



k2 · R · pr
AC 0 · · · · · · 0 k2 · θout,n

k2 · k1 · R · pr
AC k2 · R · pr

AC 0 · · ·
...

2
∑

n=1
k2 · k1

2−n · θout,n

...
...

. . . . . .
...

...
...

...
...

. . . 0
...

k2 · k1
N−1 · R · pr

AC k2 · k1
N−2 · R · pr

AC · · · · · · k2 · R · pr
AC

N
∑

n=1
k2 · k1

N−n · θout,n



Â =



0 0 · · · · · · 0 k2 · θ̂out,n

0 0 0 · · ·
...

2
∑

n=1
k2 · k1

2−n · θ̂out,n

...
...

. . . . . .
...

...
...

...
...

. . . 0
...

0 0 · · · · · · 0
N
∑

n=1
k2 · k1

N−n · θ̂out,n



(28)

Based on the robust optimization method proposed by Bertsimas, Γi ∈ [0, |Ji|] = [0,1] and
Ji = {N + 1}. Thus, the original robust counterparts from Equations (25) and (26) can be transformed
into the following formulas:

N

∑
j=1

aijxAC,j + max
zi∈Zi
{∑

j∈Ji

âijxAC,jzij} ≤ bi ∀i (29)

N

∑
j=1

aijxAC,j + min
zi∈Zi
{∑

j∈Ji

âijxAC,jzij} ≥ ci ∀i (30)

l ≤ X ≤ u, Z = {z
∣∣∣∣∣∣∣zij

∣∣ ≤ 1, ∀j ∈ Ji, ∑
j∈Ji

∣∣zij
∣∣ ≤ Γi }, Γi ∈ [0, 1], xAC,N+1 = 1 (31)

Then, going on the simply conversion of the max and min functions, the transformed formulas are:

N

∑
j=1

aijxAC,j + ∑
j=N+1

âijxAC,jΓi ≤ bi ∀i (32)

N

∑
j=1

aijxAC,j + ∑
j=N+1

âijxAC,jΓi ≥ ci ∀i (33)

Bringing the detailed elements in Equation (28) back into Equations (32) and (33), the final linear
robust counterparts can be obtained:

(
i

∑
n=1

R · pr
AC(1− e

−∆t
RC ) · (e−∆t

RC )
i−n
· xAC,n +

i
∑

n=1
(1− e

−∆t
RC ) · (e−∆t

RC )
i−n
· θout,n + θroom,1 · (e

−∆t
RC )

i

+ΓAC,i ·
i

∑
n=1

(1− e
−∆t
RC ) · (e−∆t

RC )
i−n
· θ̂out,n) ≤ θmax

room, ∀i ∈ {1...N}
(34)

(
i

∑
n=1

R · pr
AC(1− e

−∆t
RC ) · (e−∆t

RC )
i−n
· xAC,n +

i
∑

n=1
(1− e

−∆t
RC ) · (e−∆t

RC )
i−n
· θout,n + θroom,1 · (e

−∆t
RC )

i

−ΓAC,i ·
i

∑
n=1

(1− e
−∆t
RC ) · (e−∆t

RC )
i−n
· θ̂out,n) ≥ θmin

room, ∀i ∈ {1...N}
(35)
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where ΓAC,i is the parameter that control the solution robustness for the air conditioner, which takes
a value in the range [0,1].

3.2.2. Robust Counterpart Transformation of Uncertain Water Demand

Similarly for the water heater, the linear robust counterparts for the constraints in Equations
(8) and (9) with the uncertain water demand should be given. However, unlike the air conditioner,
strong duality should be used to deduce the robust counterpart considering the multiple uncertainties
(i.e., outdoor temperature and hot water use) involved. Except the uncertain parameters in matrix
A, there is another one uncertain parameter which do not appear in matrix A in each constraint.
Thus, introducing the new variable xEWH,N+1 = 1 makes this uncertain parameter classified into
matrix A. To simplify the proof, set k = ρ/CM, r = (θwater,1 − θcold) > 0. Then the matrix form for
constraints is as follows:

c ≤ Ã ·



xEWH,1
xEWH,2

...

...
xEWH,N

xEWH,N+1


≤ b, Ã =



k 0 · · · · · · 0 (1− d̃1
M ) · r

k · (1− d̃2
M ) k 0 · · ·

...
2

∏
n=1

(1− d̃n
M ) · r

...
...

. . . . . .
...

...
...

...
...

. . . 0
...

k ·
N
∏

n=2
(1− d̃n

M ) k ·
N
∏

n=3
(1− d̃n

M ) · · · · · · k
N
∏

n=1
(1− d̃n

M ) · r


b =

[
θmax

water − θcold θmax
water − θcold · · · · · · θmax

water − θcold

]T

c =
[

θmin
water − θcold θmin

water − θcold · · · · · · θmin
water − θcold

]T

(36)

The functions with uncertain variables in the coefficient matrix are all monotonically decreasing
function, and d̃i ∈ [di, di + d̂i]. Thus, the elements in the coefficient matrix are decreasing, along with the
increase of d̃i. Thus, ãij ∈ [aij− âij, aij], aij ∈ A, âij ∈ Â and the details are shown in Equations (37) and (38):

A =



k 0 · · · · · · 0 (1− d1
M ) · r

k · (1− d2
M ) k 0 · · ·

...
2

∏
n=1

(1− dn
M ) · r

...
...

. . . . . .
...

...
...

...
...

. . . 0
...

k ·
N
∏

n=2
(1− dn

M ) k ·
N
∏

n=3
(1− dn

M ) · · · · · · k
N
∏

n=1
(1− dn

M ) · r


(37)

Â =



0 0 · · · · · · 0 [(1− d1+d̂1
M )− (1− d1

M )] · r

k · [(1− d2
M )− (1− d2+d̂2

M )] 0 0 · · ·
... [

2
∏

n=2
(1− dn

M )−
2

∏
n=1

(1− dn+d̂n
M )] · r

...
...

. . . . . .
...

...
...

...
...

. . . 0
...

k · [
N
∏

n=2
(1− dn

M )−
N
∏

n=2
(1− dn+d̂n

M )] k · [
N
∏

n=2
(1− dn

M )−
N
∏

n=3
(1− dn+d̂n

M )] · · · · · · 0 [
N
∏

n=2
(1− dn

M )−
N
∏

n=1
(1− dn+d̂n

M )] · r


(38)

Based on the robust optimization method proposed by Bertsimas, we can obtain Ji = {N + 1}, i = 1,
Ji = {1, · · · , i− 1, N + 1}, i = 2 · · ·N and Γi ∈ [0, |Ji|] = [0,i]. Thus, the original robust counterparts
(25–26) can be transformed into the following formulas:

N

∑
j=1

aijxAC,j + max
zi∈Zi
{∑

j∈Ji

âijxAC,jzij} ≤ bi ∀i (39)

N

∑
j=1

aijxAC,j + min
zi∈Zi
{∑

j∈Ji

âijxAC,jzij} ≥ ci ∀i (40)
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l ≤ X ≤ u, Z = {z
∣∣∣∣∣−1 ≤ zij ≤ 0, ∀j ∈ Ji, ∑

j∈Ji

∣∣zij
∣∣ ≤ Γi }, Γi ∈ [0, i], xAC,N+1 = 1 (41)

Obviously, there is max
zi∈Zi
{ ∑

j∈Ji

âijxAC,jzij} = 0 in Equation (39). While Equation (40) cannot be

directly solved which should apply the strong duality to transform. The final form of the linear robust
counterparts is directly given as follows:

N

∑
j=1

aijxAC,j ≤ bi ∀i (42)

N

∑
j=1

aijxAC,j − (ΓEWH,i · pi + ∑
j∈Ji

qij) ≥ ci ∀i (43)

pi + qij ≥ âijyj ∀i, ∀j ∈ Ji (44)

− yj ≤ xj ≤ yj ∀j (45)

pi, qij ≥ 0 ∀i, ∀j ∈ Ji (46)

aij ∈ A, âij ∈ Â, bi ∈ b, ci ∈ c (47)

where ΓEWH,i is the parameter that controls the solution robustness for the water heater, which takes
a value in the range [0,i].

3.3. Solution to the Robust Counterpart

The household load scheduling with uncertain parameters is finally transformed into a mixed
integer linear programming (MILP) problem. In this MILP problem, the objective function is still
the one before transformation, but the constraints consist of the new constraints as presented as
Equations (34)–(35), (42)–(47), and the original constraints as presented by Equations (11)–(23).
Many existing methods, tools, and commercial software are available to obtain the ultimate solution.
Among the abundant methods, the heuristic-based evolutionary algorithms, like particle swarm
optimization (PSO), the model predictive method, and the commercial software CPLEX are some
representative ones.

However, because of numerous appliances, the MILP proposed in this paper contains too many
decision variables and constraints which may cause the curse of dimensionality. In this situation,
the heuristic algorithms are not suitable for solving. Given the powerful calculating capacity and
various solvers, this paper adopts the commercial software CPLEX (Version 12.6.3.0, IBM, New York, NY,
USA, 2016) to gain the optimal schedules. CPLEX is a commercial mathematical programming solver
produced by IBM Corporation in the United States. It can solve various mathematical programming
problems, including linear programming (LP), quadratic programming (QP), and mixed integer linear
programming (MILP) stably and efficiently.

4. Simulation Result

4.1. Simulation Design

In this paper, a day-ahead household load scheduling (from 0 a.m. to 12 p.m.) is presented.
The time length of each step is set as one hour, and that is to say, the total number of time steps
in the scheduling horizon is 24. The power output of the photovoltaic generation with 10 kWh
capacity and the power consumption of uncontrollable loads are taken from [19], as shown in Figure 1a.
The real-time price for buying electricity is easily taken from [14], shown in Figure 1b, and the price
for selling electricity is assumed to be a fixed tariff, being 0.34 yuan/kWh. The operational parameters
of interruptible loads, uninterruptible loads, and the energy storage device are listed in Tables 1–3.
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Taken from [13] and [27], the heat resistance and capacity for the air conditioner are 18 ◦C/kW
and 0.525 kWh/◦C, and the mass capacity of the tank is 100 L. Additionally, the rated power of
the air conditioner and water heater are 1.8 kW and 3.6 kW, respectively. The preset temperature
allowable ranges as comfort constraints of the air conditioner and water heater are [16 ◦C, 24 ◦C] and
[37 ◦C, 53 ◦C], respectively. Note that the air conditioner is working in the heating mode to warm
the room.

Figure 1. (a) Power output of the photovoltaic generation and power consumption of the uncontrollable
loads for the next day; and (b) the real-time price for the next day.

Table 1. Parameters of interruptible loads.

Appliance bIL eIL lIL (h) pr
IL (KWh)

Cloth Washer (CW) 7:00 17:00 3 1
Electrical Vehicle (EV) 0:00 8:00 4 2.5

Table 2. Parameters of uninterruptible loads.

Appliance bUIL eUIL lUIL (h) pr
UIL (KWh)

Cloth Dryer (CD) 12:00 22:00 2 3
Dish Washer (DW) 12:00 20:00 3 0.8

Table 3. Parameters of the energy storage device.

Parameter Value Parameter Value Parameter Value

ηch 0.95 pch
max (kW) 2 SOCmin 0.1

ηdch 0.95 pdch
max (kW) 2 SOCmax 0.9

ε (kWh/h) 0.004 SOCini 0.5 - -

According to the statistics in [17], the uncertainty set of the outdoor temperature (the possible
range of the outdoor temperature) for the next day is shown in Figure 2a. As for the hot water demand,
it is assumed that extra hot water usage occurs at each time step from 6 a.m. to 11 a.m., and thus the
corresponding uncertainty set is assumed as shown in Figure 2b. Given the above settings, based on
the theory of robust optimization, the robust parameter ΓEWH,i should follow:

ΓEWH,i ∈ {0}, i ∈ [1, 6]
ΓEWH,i ∈ [0, i], i ∈ [7, 11]
ΓEWH,i ∈ [0, 11], i ∈ [12, 24]

(48)
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Figure 2. (a) The uncertainty set of the outdoor temperature for the next day; and (b) the uncertainty
set of the hot water demand for the next day.

4.2. The Impact of the Uncertainties

In this subsection, the influence of the uncertainties will be analyzed. When the uncertainties in
the outdoor temperature and water demand are ignored during the scheduling stage, the household
load scheduling is just the result of a deterministic optimization where the average of the forecast
values are used as the input parameters. Under this situation, the schedules for all appliances
is shown in Figure 3. It is found that all interruptible and uninterruptible loads satisfy their
corresponding constraints.

Figure 3. The schedules of household appliances (without considering the uncertainties). CW: clothes
washers; EV: electric vehicles; CD: clothes dryer; DW: dishwasher; WH: water heater; AC: air conditioner.

However, with executing the obtained schedules, the real temperature ranges of the air in the
room and water in the tank, considering the uncertainties outdoor temperature and hot water use,
are shown in Figure 4a,b, respectively. It can be seen that the actual temperature of the indoor air
and hot water may take values from the blue intervals. Unfortunately, the uncertainty of the outdoor
temperature generates great volatility in the indoor temperature, and at some time steps have even
caused a violation of the comfort constraints (e.g., the minimum indoor temperature will reach as low
as 14 ◦C), which are unacceptable for common customers.
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Figure 4. (a) The actual temperature set of the air in room; and (b) the actual temperature set of the hot
water in tank.

Compared with the outdoor temperature, the extra hot water usage produces a more serious
impact on the water temperature for the WH. As shown in Figure 4b, when the behavior of extra hot
water usage happens, the water temperature immediately drops by a large degree, which is far below
the lower threshold. In addition, this impact will continue until many steps after the time of extra
water usage. As shown in Figure 4b, comfort violation will always happen after 7 a.m.

In summary, the uncertainties may lead to the comfort violation for both AC and WH if they are
not considered during the scheduling stage. Moreover, the uncertainties may affect the optimality
of schedules of other loads since they are co-scheduled in the HEMS.

4.3. Complete Robust Schedules

In order to tackle the problems caused by the uncertainties, the presented robust optimization
method is used and the complete robust schedules can be obtained, under which the comfort constraints
will not be violated regardless of what values the uncertain parameters take. To achieve this, all the
robust parameters (Γ) in the robust optimization formulation should be taken as the maximum values.
Figure 5a,b give the actual temperature ranges of the indoor air and hot water under the complete
robust schedules.

Figure 5. (a) The actual temperature range of the air in room (under the complete robust schedules);
and (b) the actual temperature range of the hot water in tank (under the complete robust schedules).
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Compared with Figure 4a, Figure 5a indicates that the AC turns on heating during the many
periods during which the indoor temperature may be lower than the lower threshold, so that the
comfort constraints are guaranteed. Additionally, compared with Figure 4b, Figure 5b shows that the
water is intelligently preheated to a higher temperature during the period of 3 a.m. to 6 a.m. before the
extra hot water usage. The effect of doing this is very obvious and attractive: firstly, it benefits from
the low electricity price during such periods; secondly, the higher water temperature withstands the
influence caused by extra hot water usage. Overall, the complete robust schedules absolutely satisfy
all comfort constraints for both the AC and WH. This proves the feasibility and effectiveness of the
proposed robust optimization in handling household load scheduling with uncertain parameters.

The schedules for other appliances in the complete robust schedules are shown in Figure 6.
From Figure 6, it can be seen that complete robust schedules optimally rearrange all schedules and
redesign the charging and discharging plans for the battery. This rescheduling leads to low electricity
payment (12.75 yuan) by shifting loads to the period with low electricity prices. In spite of this,
to guarantee the comfort constraints, the total electricity bill has inevitably increased by 2.94 yuan
when compared with that under deterministic optimization (9.81 yuan).

Figure 6. The complete robust schedules of household appliances.

4.4. Schedules with Different Robust Levels

When the robust parameter takes different values, different solutions with different levels of
conservatism can be obtained. For customers, different levels of conservatism make it possible to
make trade-offs between the economy and comfort. In order to compare the comfort and economy
of the schedules with different robust levels, the comfort is quantitatively described by the violation
rate of the comfort constraints (see [25]), which is calculated through Monte Carlo simulation where
all uncertain parameters are assumed to follow uniform distribution. Without loss of generality,
the robust level α (the ratio of the robust parameter to its maximum value), is defined to unify the
levels of conservatism for all comfort constraints. Table 4 shows the economy and comfort of the
schedules with different robust levels.

Table 4. The economy and violation rate of schedules with different robust levels.

Robust Level α Violation Rate for the
Comfort Constraints of AC

Violation Rate for the
Comfort Constraints of WH

Electricity Bill/Economy
(Yuan)

1 0 0 12.75
0.8 0.003 0.008 12.48
0.6 0.024 0.075 12.20
0.4 0.062 0.113 11.70
0.2 0.181 0.643 11.11
0 0.517 1.000 9.81
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As shown in Table 4, with the robust level increasing, the violation rates for the comfort constraints
of the AC and WH go on declining but the electricity bill is rising. This result demonstrates that the
customers can give up some comfort to save more money. Various schedules with different robust
levels are offered to customers.

5. Conclusions

In this paper, the household load scheduling problem with uncertain parameters is studied.
First of all, the scheduling problem is formulated as a mathematical programming problem which
aims at minimizing the electricity bill under various constraints. Unlike the deterministic household
load scheduling, the uncertain parameters, such as the outdoor temperature and extra hot water
usage, are focused and modeled into uncertainty sets. After that, robust optimization is applied in the
scheduling to deal with the uncertainties.

In the simulation results, the impact of uncertainties on the feasibility of the schedules is evaluated
and analyzed first. The result indicates that the uncertain parameters may cause the infeasibility of
the schedules derived from deterministic optimization. After that, the complete robust schedules are
proposed and verified, which are capable of withstanding all the uncertainties, leading to no comfort
violation. Finally, the economy and comfort of schedules with different robust levels are compared
quantitatively. The proposed robust optimization method allows customers to make a trade-off
between the economy and comfort, by choosing the schedules with different robust levels.
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