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Abstract: Model predictive control (MPC) is commonly used to compensate for modeling inaccuracies
and measurement noise in voltage control problems. The length of the prediction horizon and control
horizon of a MPC-based method has significant impact on the control performances. In existing
relevant works, those horizon parameters are determined off-line based on experience or enumeration,
and keeps constant during the entire receding-horizon optimization process. This paper presents a
system voltage correction scheme based on adaptive horizon model predictive control (AH-MPC).
The reactive power compensation and voltage regulation devices are coordinated to maintain the
system voltages within a desired range. An evaluation index is proposed to determine the horizon
parameters, which reflects the maximum voltage regulation ability with the current parameter
configuration. Within each sampling interval, the horizon parameters are updated according to the
evaluation index and real-time measurements periodically, which comprehensively considers the
system uncertainties and voltage recovery speed, and the computational effort is remarkably reduced.
The validation and effectiveness of the proposed method is verified by the simulation analysis on the
test system.

Keywords: voltage control; adaptive horizon; model predictive control (MPC); power system;
real-time control

1. Introduction

The power system voltages should be maintained within predefined limits according to the
operation requirements. Nowadays, the increasing penetration of distributed renewable energy has
had significant impacts on system behavior due to its variability and uncertainty. Besides, the power
systems are operated more closely to their physical limits. The risk of temporary voltage problems
or even voltage collapse has increased [1]. When abnormal or unstable voltage profiles are detected,
appropriate countermeasures should be taken to enhance voltage quality, power system security and
operating economy.

A reliable real-time optimal corrective voltage control scheme requires valid power system
prediction models and feedback signals. Due to the inevitable modeling inaccuracies and measurement
noise, it is impossible to build an accurate mathematical model to describe all the dynamic
features of power systems, thus non-optimal or even inappropriate control decisions may be made.
Model predictive control (MPC) is an appealing approach for dealing with the above issues [2],
which is especially suitable for complicated systems with changeable dynamics and uncertain factors.
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The prediction model of a MPC-based method traces the operating state of practical system, and the
control sequences are updated and corrected by real-time measurements.

In order to reduce prediction complexity for real-time application, linear prediction models are
commonly applied in a MPC-based voltage control scheme. In [3,4], the coordinated voltage control is
realized using tree search optimization method based on MPC. The authors of [5,6] apply trajectory
sensitivity and MPC to solve the optimal voltage control problem. In [7], the prediction model of a
MPC-based real time voltage control scheme is simplified using wide area measurement information in
receding horizons. In [8,9], the search solution space of the MPC-based voltage controller is significantly
reduced with the prepared control knowledge. A distributed model predictive control scheme for
interconnected power systems is presented in [10]. In [11], MPC is applied in a large power system
with most effective controls identified.

In recent years, the increasing penetration of renewable power can introduce high variability
into transmission and distribution systems, which can be well handled by MPC-based methods.
A hierarchical controller based on MPC is proposed to regulate voltages in system with high
penetration of wind power in [12]. Model predictive voltage control methods of wind farms are
introduced in [13–15]. Reference [16] proposes a centralized controller based on MPC to mitigate
voltage violations in active distribution networks (ADN) by coordinating power outputs of distributed
generation units and the voltage set-point of the transformer load tap changer. The impact of the
model predictive control of the ADN voltages to the transmission grid is discussed in [17]. A two-level
real-time voltage correction scheme is proposed in [18]. The local level provides the fast response to a
disturbance, and the central level coordinates the various distributed generation units relying on the
concept of MPC. In [19], the performance of a MPC-based voltage controller is verified by the field test
in a real distribution system.

The length of the control horizon and prediction horizon of the existing MPC-based voltage
control method has significant impact on the voltage control performances. A larger value of control
horizon leads to smoother control but increased computation time. A smaller value of control horizon
leads to less control steps and more aggressive control decisions, but it weakens the ability to deal
with the modeling inaccuracies and measurement noise problem. The length of the prediction horizon
should be equal to the length of the control horizon unless the controller is requested to consider
changes happening beyond the control horizon [16]. References [3,4,6–15,18,19] apply constant horizon
parameters, but how those parameters are determined is not discussed. The horizon parameters in [5]
is chosen to be the time in which the predicted voltage drops by a predefined percentage at the initial
control instant, and the horizon parameters are kept constant during the entire receding-horizon
optimization process. In [16,17], the controller uses constant horizon parameters unless the prediction
horizon is increased to anticipate load tap changer actions. The control methods discussed so far
determines the control horizon parameters off-line based on experience or enumeration without
quantitative analysis.

In this paper, a coordinated voltage correction scheme based on adaptive horizon model predictive
control (AH-MPC) is proposed to maintain a satisfactory voltage profile while minimizing the control
cost. Generator voltage references, shunt capacitors and on-load tap changers are considered as
candidate control actions. The proposed scheme is based on the principles of MPC. However, it differs
from the standard MPC-based method by way the horizon parameters are chosen and embedded in
the optimization procedure. The main contribution of this paper is developing a principle of determine
the horizon parameters, which is a key feature missing in previous control schemes. An index is
formulated to evaluate and ensure the applicability of the horizon parameter configurations, and barely
consume extra computation time. Within each sampling interval, the length of the horizon parameters
are updated according to the proposed evaluation index and real-time measurements, aiming at better
control performances compared with the traditional MPC-based methods.

This paper is organized as follows: Section 2 introduces the standard MPC-based voltage control
model. Section 3 presents the determination of the adaptive horizon parameters. The voltage correction
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scheme based on AH-MPC is presented in Section 4. The simulation results and conclusions are
presented in Sections 5 and 6 respectively.

2. Voltage Control Model Based on MPC

2.1. Voltage Prediction

MPC finds a sequence of control actions applied within the control horizon in order to achieve
the control objectives within the prediction horizon considering equality and inequality constraints.
At each sampling point, only the first step of the so-computed sequence is applied. The principle of
MPC is shown in Figure 1. The length of the control horizon and prediction horizon are tc and tp

respectively. ts is the sampling interval. Nc and Np are the number of sampling intervals within the
control horizon and prediction horizon respectively, tc = Ncts, tp = Npts.
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Real-time optimization requires reliable and quick decisions. A linear model based on
trajectory analysis is applied to predict the trajectory of the system with different control sequences.
The discrepancies arising from the model mismatch problems and system uncertainties can be resolved
by the closed-loop feature of the centralized MPC-based controller [2]. The trajectory sensitivity
analysis can provide valuable insights evaluating the effects of slight control variations on the system
evolution. The detailed theory and analytical basis of trajectory sensitivity is discussed in [20].

The system model can be expressed by the differential-algebraic Equations (DAE) (1) and (2)
subject to some constraints, the detailed introduction of the DAE model can be found in [1].

.
x = f(x, y, u) (1)

0 = g(x, y, u) (2)

where x is the vector of state variables, which is related to the generator and its regulation system,
the load recovery behavior et al., y is the vector of algebraic variables such as active and reactive
powers P and Q, voltage magnitudes V and phase angles θ, y = [P, Q, V , θ]. u is the vector of control
variables. In this paper, the set points of automatic voltage regulators (AVR), the switching of shunt
capacitors and the position of on-load tap changers (OLTCs) are considered as candidate control
actions. The sensitivity Equations (3) and (4) are obtained by differentiating (1) and (2) with respect
to u.

.
xu(t) = fx(t)xu(t) + fy(t)yu(t) + fu(t) (3)
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0 = gx(t)xu(t) + gy(t)yu(t) + gu(t) (4)

where yu(t) is composed of the trajectory sensitivity of all the algebraic variables with respect to
the candidate control variables at a time instant t, which can be obtained by solving (3) and (4).
yu(t) = [Pu(t), Qu(t), Vu(t), θu(t)]. When the time domain simulation of the system (1) and (2) is based
on the trapezoidal numerical integration, the Jacobian obtained during the numerical integration
process is the same as the coefficient matrix of solving the sensitivity Equations (3) and (4). When the
result of time domain simulation is obtained, the calculation of trajectory sensitivity involves little
extra computation [20]. When control action ∆u is applied, the corresponding voltage variation at a
sampling point k can be approximately expressed as ∆V̂k = Vu(tn + kts)∆u, Vu(tn + kts) is the voltage
trajectory sensitivity at sampling point k with respect to control u, and also one of the elements that
constitute yu(t).

The voltage prediction based on trajectory sensitivity analysis is graphically illustrated in Figure 2.
According to the proportion and superposition characteristics of linear systems, the predicted voltage
at a sampling point k is composed of two parts: the voltage without control V̂∗k during the prediction
horizon and the voltage variation ∆V̂k cause by the control actions applied at each sampling points.
At the initial control time, V̂∗k is solved based on trapezoidal numerical integration of (1) and (2). ∆V̂k is
solved based on the Jacobian obtained during the numerical integration process. The vector consist of
all the predicted voltages at each sampling point can be expressed as:

V̂k = V̂∗k + ∆V̂k (5)
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2.2. Optimization Model

The proposed scheme aims at minimizing the system voltage deviation and the corresponding
control cost. The optimization problem can be formulated as follows:

min(
Np

∑
k=1

(Vr − V̂k)Q(Vr − V̂k)
T
+

Nc

∑
k=1

∆ukR∆uT
k ) (6)

Subject to:

uk = u0 +
k

∑
l=1

∆ul (7)

Vmin ≤ V̂Np ≤ Vmax (8)

umin ≤ uk ≤ umax (9)
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|∆uk| ≤ ∆umax (10)

where Vr is the vector consists of the control references. V̂k is the predicted voltage at sampling point
k. ∆uk is the vector consists of the control variable changes at sampling point k. Q and R are both
diagonal matrices which define the weight coefficients of the controlled voltages and the cost of the
control actions respectively.

The voltage constraints in the prediction horizon is shown in Equation (8), V̂Np represents the
predicted voltage at the sampling point Np. The objective function sets a target of minimizing the
voltage deviations at every sampling point under the constraints of control input (9) and (10), and the
voltage constraints are only enforced at the end of the prediction horizon. The inequality constraints
(9) stipulates the upper and lower bounds of the control inputs.

When undesirable bus voltage magnitudes are detected, appropriate voltage control actions
should be applied as soon as possible to reduce the negative influence to the consumers and avoid the
deterioration of system voltages. The single-step optimization approach or large control variations
in one control step may suffers from deficiencies such as low optimization efficiency or undesirable
control results [21]. Thus the constraint of control variation in one control step (10) is included in
the model.

3. Adaptive Horizon Parameters

MPC is a receding-horizon multi-step optimization method. The computation time and control
performance are closely related to the horizon parameter selection, which determines when and how
the system variables will reach their target states. This section presents the determination of adaptive
horizon parameters, which are periodically updated according to the real-time measurements and
system trajectory prediction during the entire optimization process of MPC.

3.1. Principles for the Horizon Parameter Settings

At each sampling point, the MPC-based method obtains an optimal control sequence
[u1, u2, . . . , uNc] distributed within the control horizon. The control variables of the control sequence
keeps constant between sampling intervals, and only changes at sampling points within the control
horizon. The basic principles for the horizon parameters are listed as follows:

• Sampling interval ts. The length of sampling interval ts should fulfill the requirements of
measurement collection, data processing and optimization, which change little during the entire
receding horizon optimization process. A constant value ts = 10 s is applied in the proposed
scheme, which also matches the value used in the coordinated secondary voltage control in
operation in practical systems [22].

• Control horizon tc. With a constant sampling interval, the optimal length of the control horizon
is related to the voltage evolution and response feature, which varies over the receding horizon
optimization process. In this paper, the system voltage is predicted using a linear model as is
introduced in Section 2. The sensitivity feature changes little if no disturbances occur during the
optimization process [21], and the solved control variation is proportional to the detected voltage
deviation. When severe voltage deviation is detected, the length of the control horizons should
be short enough to meet the requirement of the voltage recovery speed and online computation
time, and should be long enough to deal with modeling inaccuracies and measurement noise.
As the receding horizon optimization progressed, the controlled voltages are gradually closer to
its desired range, and smaller control variations are needed to accomplish the control objective.
In this situation, shorter control horizon parameters could reduce settling times of the optimization
process and computational effort.

• Prediction horizon tp. The system response caused by the control actions are predicted within
the prediction horizon, thus the length of the prediction horizon should be greater or equal to
the length of the control horizon. When the controlled voltages are gradually stabilized to the
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steady state values, the necessity to consider changes happening beyond the control horizon is
reduced from a computational viewpoint. Therefore, at the beginning of the MPC implementation,
the length of the prediction horizon is set longer than the length of control horizon. As the receding
horizon optimization progressed, the length of the prediction horizon gradually approaches the
length of the control horizon, which could also save unnecessary computation time

3.2. Voltage Regulation Ability Evaluation

Under the condition of fulfilling the control variation constraint (10), large control variations are
forced to be applied in multi-steps. The limited candidate control actions in one control step have
theoretical maximum voltage regulation ability for every bus. The procedure to estimate the ability is
summarized as follows:

(1) At tn, the voltage evolution trajectories are predicted within a predetermined prediction horizon
[tn, tn + tpn] based on the trapezoidal numerical simulation. tpn is the length of prediction horizon
applied in the n-th optimization. If the predicted voltage deviation of load bus i satisfies the
inequality constraint (11) at the initial time instant t1, the voltage magnitude of bus i is determined
as the evaluation target. ∣∣∣Vr − V̂∗(i)(t1 + tp1)

∣∣∣ ≥ DB/2 (11)

where V̂∗(i)(t1 + tp1) is the voltage magnitude of bus i without control at the prediction time
instant (t1 + tp1) obtained by numerical simulation. DB is the control deadband. Vmax and Vmin

initially presented in Equation (8) are subject to: Vmax = Vr + DB/2, Vmin = Vr − DB/2.
(2) The trajectory sensitivity matrix of the evaluation targets at time instant tn + tpn with respect to

the control action of each step can be expressed as:

Sk =


Sk(1,1)(tn + tpn) Sk(1,2)(tn + tpn) · · · Sk(1,Nj)

(tn + tpn)

Sk(2,1)(tn + tpn) Sk(2,2)(tn + tpn) · · · Sk(2,Nj)
(tn + tpn)

...
...

...
Sk(Ni ,1)(tn + tpn) Sk(Ni ,2)(tn + tpn) · · · Sk(Ni ,Nj)

(tn + tpn)

 (12)

where Sk(i, j) represents the trajectory sensitivity of the i-th evaluation target with respect to the
j-th candidate control in the k-th control step. Ni and Nj are the total number of evaluation targets
and available control actions respectively.

(3) Based on the voltage prediction and trajectory sensitivity analysis, the maximum control target
variation caused by controls applied at sampling point k is evaluated as follows.

When Sk(i,j) · (Vr − V̂∗(i)(tn + tpn)) ≥ 0, the optimization tends to increase the j-th control in

order to raise (when Sk(i,j) ≥ 0 and Vr ≥ V̂∗(i)(tn + tpn)) or reduce (when Sk(i,j) ≤ 0 and

Vr ≤ V̂∗(i)(tn + tpn)) the voltage magnitude of bus i towards its desired value. Under the inequality
constraints (9) and (10), the predicted voltage magnitude variation of bus i reaches its maximum
value when the variation of control j equals its maximum positive value:

∆Vk(i,j)max(tn + tpn) =

{
Sk(i,j)(tn + tpn) · ∆u(j)max i f uk(j) + ∆u(j)max ≤ u(j)max
Sk(i,j)(tn + tpn) · (u(j)max − uk(j)) i f uk(j) + ∆u(j)max ≥ u(j)max

(13)

where ∆Vk(i,j)max(tn + tpn) is the predicted maximum variation of the evaluation target i at a
future time instant tn + tpn, which is caused by the j-th control action applied at the sampling
point k. ∆u(j)max is the j-th element in vector ∆umax, representing the maximum value of the
corresponding control variation. u(j)max is the j-th element in vector umax.
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Similarly, when Sk(i,j) · (Vr − V̂∗(i)(tn + tpn)) < 0, the optimization tends to reduce the j-th control

in order to reduce (when Sk(i,j) > 0 and Vr < V̂∗(i)(tn + tpn)) or raise (when Sk(i,j) < 0 and

Vr > V̂∗(i)(tn + tpn)) the voltage magnitude of bus i towards its desired value. The maximum
voltage variation value of bus i:

∆Vk(i,j)max(tn + tpn) =

{
Sk(i,j)(tn + tpn)(−∆u(j)max) i f uk(j) − ∆u(j)max ≥ u(j)min
Sk(i,j)(tn + tpn)(u(j)min − uk(j)) i f uk(j) − ∆u(j)max ≤ u(j)min

(14)

where u(j)min is the j-th element in vector umin.

The maximum voltage variation of the i-th evaluation target considering all candidate control
actions applied at sampling point k can be expressed as:

∆Vk(i)max(tn + tpn) =

Nj

∑
j=1

∆Vk(i,j)max(tn + tpn) (15)

(4) Considering multi control steps applied at the first m sampling points, The maximum voltage
regulation ability at time instant tn + tpn caused by the control sequence (∆u1,∆u2, . . . , ∆um) is
evaluated as follows:

Va(i)m = V̂∗(i)(tn + tpn) +
m

∑
k=1

∆Vk(i)max(tn + tpn) (16)

where Va(i)m is the evaluated voltage regulation ability of the i-th evaluation target when the
length of control horizon is mts.

3.3. Determination of the Horizon Parameters

Based on the voltage regulation ability evaluation, an applicability judgment index for control
horizon parameter settings is proposed:

Is(i)m =
DB
2

+
Vr − V̂∗(i)(tn + tpn)∣∣∣Vr − V̂∗

(i)(tn + tpn)
∣∣∣ (Va(i)m −Vr) (17)

where Is(i)m is the applicability judgment index of the i-th evaluation target when the control horizon is
set to mts. It should be noted that the proposed scheme will not be triggered if Vr = V̂∗(i)(tn + tpn).

When the predicted voltage without control is lower than its reference value (Vr > V̂∗(i)(tn + tpn)),
Equation (13) can be written as:

Is(i)m = Va(i)m − (Vr −
DB
2

) = Va(i)m −Vmin (18)

Similarly, when Vr < V̂∗(i)(tn + tpn), Equation (13) can be written as:

Is(i)m = (Vr +
DB
2

)−Va(i)m = Vmax −Va(i)m (19)

If Is(i)m > 0, it indicates that the controller is able to bring the voltage magnitude of bus i back
to its desired range with the current horizon parameter settings. Let Ism be a vector that consists the
applicability judgment index of all the evaluation targets, Ism = (Is(1)m, Is(2)m, . . . . . . , Is(Ni)m). The initial
value of m is set to 1. If ∀Is(i)m ≤ 0 in vector Ism, the proposed algorithm will keep increasing m until all
the elements in Ism meet Is(i)m > 0, then mts is determined as the control horizon of the n-th optimization
and the prediction horizon of the (n + 1)-th optimization, mts = tcn = tp(n+1).
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If it is evaluated that the candidate control variables cannot achieve ∀Is(i)m > 0 according to
Equations (13)–(16), m will be reset to 1, and control actions with high cost such as load shedding
will be added to the candidate control actions. In this paper, it is assumed that the power system is
equipped with adequate reactive power compensation and voltage regulation devices for a voltage
correction scenario.

As is presented in Figure 3, the length of the control horizon and prediction horizon are adaptively
adjusted during the receding-horizon optimization process.
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4. Voltage Correction Scheme Based on AH-MPC

The structure of the proposed scheme is shown in Figure 4. The system measurements are
collected and processed by a state estimator in the control center. The results are then used to initialize
the state variable of the system model and predict the future system trajectory. Compared with
a standard MPC controller, the byproduct of the voltage prediction results are used to update the
horizon parameter settings. With the numerical simulation results of V̂∗ and the trajectory sensitivity
information already available, the calculation of the horizon parameters based on Equations (13)–(17)
requires solving a set of linear algebraic equations, which involves little extra computation.

With adaptive horizons applied, the objective function (6) and constraint (8) in the standard
MPC-based optimization model are rewritten as:

min(
Npn

∑
k=1

(Vr − V̂k)Q(Vr − V̂k)
T
+

Ncn

∑
k=1

∆ukR∆uT
k ) (20)

Vmin ≤ V̂Npn ≤ Vmax (21)

Np(n+1) = Ncn = tcn/ts (22)

where Npn and Ncn are the number of prediction steps and control steps applied in the
n-th optimization.

Figure 5 shows the flow chart for the voltage correction scheme based on AH-MPC. The procedure
of the proposed scheme in the n-th optimization include the following.

• At a sampling point tn, trapezoidal numerical simulation is used to obtain the predicted system
trajectory within the prediction horizon [tn, tn + tpn].

• The trajectory sensitivity is obtained as a by-product of the first step.
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• Based on the predicted system trajectory and the trajectory sensitivity results, the adaptive horizon
parameters are determined as is introduced in Section 3.

• The optimal control model is formulated according to Equations (7), (9), (10), (20), (21) and (22).
• By solving the optimal control model, the first step of the so computed control sequence is applied

in the system at tn + ts.
• The above procedure is repeated at the initial time of the (n + 1)-th optimization.

If disturbances are detected by phase measurement unit (PMU) measurements and monitoring systems,
all the parameters are initialized at the next sampling point.
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5. Simulations

The proposed method is applied to the nine-bus system and the New England test system.
Dynamic recovery load models [23,24] are used in the simulation, with αs = βs = 0, αt = βt = 2 and
Tp = Tq = 60. The voltage reference Vr = 1, and the voltage control deadband is 0.1 p.u., which indicates
that the voltage magnitude should be kept within [0.95 p.u., 1.05 p.u.] with control. The sampling
interval ts is 10 s. The initial prediction horizon tp1 is 60 seconds. The diagonal elements of Q and
R are set to be 1 because the correction of each bus voltage is equally important and no expensive
control actions such as load shedding are considered in the simulation cases. The trajectory prediction
and adaptive horizon parameter determination is realized based on the quasi-steady state model [1],
and the actual control performance is illustrated by the full-time domain simulation on a detailed
system model.

The model prediction was realized with the Matlab/Simulink-based tool. The optimization
problem was solved by GAMS [25]. The calculations were completed using a windows machine with
Intel Core 2.50 GHz CPU and 8 GB of RAM.

5.1. Case A: Nine-Bus Test System

Simulation on a simple test system is presented in this section to demonstrate the basic idea
and implementation procedure of the proposed scheme. The topology of the test system is shown
in Figure 6. The available candidate control actions include the shunt capacitors at bus6, the AVR
set points of generator at bus2 and bus3, the OLTCs of the transformer between bus9 and bus3.
The constraint of control variation in one control step for the shunt capacitors, AVR set points and the
OLTCs are 0.1 p.u., 0.04 p.u. and 1.67% respectively.
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Line between bus 4 and bus 6 are tripped at t = 10 s. The evolution of voltages at load bus 5, 6 and
8 are illustrated in Figure 7. Due to the loss of the transmission system, the voltage magnitudes drops
below the lower bound if no control actions are applied.

The voltage evolution with the proposed control scheme is shown in Figure 8. The step-like
voltage variations are caused by the discrete control feature of the reactive power compensation
and voltage regulation devices, which is accordant with the voltage response feature in real-life
applications. At the initial time instant t1 = 10 s, the proposed controller predicts the system trajectory
over a predefined prediction horizon tp1 = 60 s. The voltage magnitude of load bus 6 and bus 8 fall
out of the lower limit 0.95 p.u at the end of the prediction horizon t1 + tp1 = 70 s, thus the voltage
magnitudes of these two buses are determined as the evaluation targets. The horizon parameters are
updated at the initial time of each optimization according to the applicability judgment index Ism.
The value of Ism and the applied horizon parameters in this case is listed in Table 1, where n represents
the n-th optimization.
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Table 1. The applicability judgment index Ism in case A.

n Is1 (p.u.) Is2 (p.u.) Control Horizon (s) Prediction Horizon (s)

1 (−0.0195, 0.0128) (0.0298, 0.0483) 20 60
2 (0.0285, 0.0429) 10 20

When n = 1 and m = 1, the applicability judgment index Is1 is obtain according to Equation (17).
As is shown in Table 1, the value of the element Is(1)1 = −0.00195 < 0, thus the proposed controller
increases m and calculate Is2. Since all the elements of Is2 are positive, the control horizon of the
current optimization tc1 and the prediction horizon of the next optimization tp2 are both determined
as 20 s. The control model of the current optimization is then formulated and solved. Considering
the time consuming of communication and calculation, the above procedure is started at 10 s, and the
first step of the so-computed control sequence is applied a sampling interval later. When n = 2 and
m = 1, all the elements of Is1 are positive, thus tc2 = tp3 = 10 s. According to the system trajectory
prediction implemented during the third optimization, the voltage magnitudes of all the system
buses has restored to the desired range and stops declining, the receding-horizon optimization is then
completed. The adaptive horizons applied in the simulation is graphically illustrated in Figure 9.
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The control actions are listed in Table 2, where Uref,Gi represents the AVR set point of generator i, Ci is
the applied shunt capacitor at bus i, nt(i − j) is the ratio of the transformer connecting bus i and j.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 18 
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Table 2. Control actions in case A.

Time (s) Control

20 Uref,G2 = 1.042 p.u., Uref,G3 = 1.033 p.u., C6 = 0.1 p.u., nt(12-11) = 1.0167
30 Uref,G2 = 1.064, C6 = 0.2 p.u.

5.2. Case B: New England Test System

In this case, the validation and effectiveness of the proposed method further verified by the
simulation on the New England 39-bus test system. Figure 10 shows the topology of the test system.
The candidate control actions include the shunt capacitors at bus 8, the AVR set points of all the 10
generators, the OLTCs of the transformers connecting bus12 and 11, 12 and 13, 19 and 20. The control
parameter settings are the same as case A.

At t = 10 s, generator 3 are tripped. As is shown in Figure 11.The voltage magnitude of load bus 4,
7, 8 and 12 drops below 0.95 p.u. after the fault occurs.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 18 

 
Figure 9. Adaptive horizons applied in case A. 

Table 2. Control actions in case A. 

Time (s) Control 
20 Uref,G2 = 1.042 p.u., Uref,G3 = 1.033 p.u., C6 = 0.1 p.u., nt(12-11) = 1.0167 
30 Uref,G2 = 1.064, C6 = 0.2p.u. 

5.2. Case B: New England Test System 

In this case, the validation and effectiveness of the proposed method further verified by the 
simulation on the New England 39-bus test system. Figure 10 shows the topology of the test system. 
The candidate control actions include the shunt capacitors at bus 8, the AVR set points of all the 10 
generators, the OLTCs of the transformers connecting bus12 and 11, 12 and 13, 19 and 20. The control 
parameter settings are the same as case A. 

At t = 10 s, generator 3 are tripped. As is shown in Figure 11.The voltage magnitude of load bus 
4, 7, 8 and 12 drops below 0.95 p.u. after the fault occurs. 

 
Figure 10. New England 39-bus test system. Figure 10. New England 39-bus test system.



Appl. Sci. 2018, 8, 641 13 of 18

Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 18 

 
Figure 11. Voltage evolution without control in case B. 

According to Equation (11), the voltage magnitudes of load bus 4, 7, 8 and 12 are determined as 
the evaluation targets. Figure 12 presents the corrected voltage trajectory with the proposed scheme 
started at t = 10 s. The applied control actions are listed in Table 3. As the receding horizon 
optimization progresses, the system voltages are gradually brought back inside the limits at t = 40 s. 
The applicability judgment index Ism is listed in Table 4. When large voltage deviation of the control 
targets is detected at the initial control instant t = 10 s, the proposed scheme applies three-step 
optimization according to the value of Is3. As the voltages gradually approaching the desired range, 
the declining voltage trajectories are stabilized, and smaller control variations are needed to complete 
the optimization process. In the third optimization, the control variation needed is small enough to 
be applied in one step without causing negative effect listed in [21], and shorter prediction length 
beyond the control horizon is needed due to the steadier voltage evolution trend, which reduces the 
computation time and settling times of the entire optimization process. The applied decreasing 
prediction horizon and control horizon are graphically illustrated in Figure 13. 

Table 3. Control actions in case B. 

Time (s) Control 

20 
Uref,G1 = 1.062 p.u., Uref,G2 = 1.025 p.u., Uref,G4 = 1.007 p.u., Uref,G5 = 1.036 p.u., Uref,G6 = 1.051 p.u., Uref,G7 = 1.069 p.u.,  

Uref,G8 = 1.017 p.u., Uref,G9 = 1.025p.u., Uref,G10 = 1.023 p.u., C8 = 0.1 p.u., nt(12-11) = 1.0227, nt(12-13) = 1.0227, nt(19-20) = 1.0767 

30 
Uref,G1 = 1.102 p.u., Uref,G2 = 1.065 p.u., Uref,G4 = 1.001 p.u., Uref,G5 = 1.017 p.u., Uref,G6 = 1.029 p.u., Uref,G7 = 1.061 p.u.,  

Uref,G8 = 1.021 p.u., Uref,G9 = 1.002 p.u., Uref,G10 = 1.055 p.u., C8 = 0.2 p.u., nt(12-11) = 1.0394, nt(12-13) = 1.0227, nt(19-20) = 1.0934 

40 
Uref,G1 = 1.128 p.u., Uref,G2 = 1.084 p.u., Uref,G4 = 0.998 p.u., Uref,G5 = 1.010 p.u., Uref,G6 = 1.004 p.u., Uref,G7 = 1.054 p.u.,  

Uref,G8 = 1.031 p.u., Uref,G9 = 0.989 p.u., Uref,G10 = 1.079 p.u., C8 = 0.3 p.u., nt(12-11) = 1.0394, nt(12-11) = 1.0227, nt(12-11) = 1.1101 

V
 (p

.u
.)

 
Figure 12. Voltage evolution using AH-MPC in case B. 

Figure 11. Voltage evolution without control in case B.

According to Equation (11), the voltage magnitudes of load bus 4, 7, 8 and 12 are determined as
the evaluation targets. Figure 12 presents the corrected voltage trajectory with the proposed scheme
started at t = 10 s. The applied control actions are listed in Table 3. As the receding horizon optimization
progresses, the system voltages are gradually brought back inside the limits at t = 40 s. The applicability
judgment index Ism is listed in Table 4. When large voltage deviation of the control targets is detected
at the initial control instant t = 10 s, the proposed scheme applies three-step optimization according
to the value of Is3. As the voltages gradually approaching the desired range, the declining voltage
trajectories are stabilized, and smaller control variations are needed to complete the optimization
process. In the third optimization, the control variation needed is small enough to be applied in one
step without causing negative effect listed in [21], and shorter prediction length beyond the control
horizon is needed due to the steadier voltage evolution trend, which reduces the computation time
and settling times of the entire optimization process. The applied decreasing prediction horizon and
control horizon are graphically illustrated in Figure 13.
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Table 3. Control actions in case B.

Time (s) Control

20
Uref,G1 = 1.062 p.u., Uref,G2 = 1.025 p.u., Uref,G4 = 1.007 p.u., Uref,G5 = 1.036 p.u., Uref,G6 = 1.051 p.u., Uref,G7 = 1.069 p.u.,

Uref,G8 = 1.017 p.u., Uref,G9 = 1.025p.u., Uref,G10 = 1.023 p.u., C8 = 0.1 p.u., nt(12-11) = 1.0227, nt(12-13) = 1.0227, nt(19-20) = 1.0767
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Uref,G1 = 1.102 p.u., Uref,G2 = 1.065 p.u., Uref,G4 = 1.001 p.u., Uref,G5 = 1.017 p.u., Uref,G6 = 1.029 p.u., Uref,G7 = 1.061 p.u.,
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Table 4. The applicability judgment index Ism in case B.

n Is1 (p.u.) Is2 (p.u.) Is3 (p.u.) Control
Horizon (s)

Prediction
Horizon (s)

1 (−0.0211, −0.0301,
−0.0275, −0.0198)

(0.0013, −0.0045,
−0.0019, 0.0201)

(0.0196, 0.0152,
0.0177, 0.0510) 30 60

2 (0.0019, −0.0028,
−0.0012, 0.0225)

(0.0201, 0.0169,
0.0184, 0.0534) 20 30

3 (0.0148, 0.0144,
0.0177,0.0496) 10 20
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5.3. Simulating Modeling Inaccuracies

In this section, the modeling inaccuracies and disturbance are considered in the course of
controlling the system. The fault scenario, system parameter and other controller parameter settings
are the same as case B. At t = 25 s, A disturbance is imposed to the load at bus 3, bus 4, bus 6 and bus7
with 5% increase of the active and reactive power.

If the disturbance can be measured and sent to the control center, the voltage behavior based
on AH-MPC is shown in Figure 14. The system voltage drops dramatically due to the disturbance
at t = 25 s. At the next sampling point t = 30 s, the optimization is carried out based on the updated
system measurements.
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If the disturbance is ignored by the control center, there will be modeling inaccuracy problems at
all future control steps after t = 25 s. The voltage behavior based on AH-MPC is shown in Figure 15.
Although the prediction model is not completely updated after the disturbance, the controller will get
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the actual voltage responses according to measured feedback signals at each future sampling point,
and the structure of receding-horizon multi-step optimization offers chance to correct the consequences
of modeling errors.
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Table 5. Control performance comparison.

Control Method n Time Consuming per Optimization (s) tcn (s) tpn (s) Total Time Consuming (s) ∆Voffset (p.u.)

AH-MPC
1 1.919 30 60

3.567 3.4210 × 10−22 1.079 20 30
3 0.569 10 20

MPC

1 1.914

30 60 7.525 3.6610 × 10−22 1.876
3 1.902
4 1.833

The integration time ∆t = 300 s. Smaller value of ∆Voffset indicates faster voltage recovery speed
and better control performance.

The comparison results of Figures 12 and 16 and Table 5 show that both methods are able to
stabilize the system voltage within a desire range, and the AH-MPC-based method outperforms
MPC-based scheme with constant horizon in computation effort and voltage recovery speed.

The proposed scheme applies decreasing prediction parameters and control horizon. When n = 1,
both methods applies the same horizon parameters and cost almost the same computation time.
With the increase of n, the time consuming per optimization of the AH-MPC-based scheme is
remarkably reduced. This is mainly because the numerical simulation needed in the model prediction
is implemented within a shorter prediction horizon, and the control sequence consists of less control
steps is computed. Moreover, the proposed scheme takes less settling times, thus there are less optimal
control model to be formulated and solved, which also leads to decreased computational effort.

5.5. Discussion

A principle of determine the horizon parameters based on measurements and prediction is
developed in this paper, which is integrated with the standard MPC-based method as is graphically
illustrated in Figure 4. The determination of horizon parameters costs little computation effort,
and the performance of the controller can be improved, which has been verified by the simulations.
It should be noted that the basic idea of adaptive horizon parameter settings is not restricted to
the method presented in Section 2, but can be combined with any MPC-based method using linear
prediction model.

The time-consuming nature of the optimization is affected by many aspects, such as hardware
configuration, system scale and prediction method. Simulation results of a load increase scenario in
IEEE 118 bus test system [26] is presented to further verify the practicability of the proposed method.
The active and reactive powers of loads at buses 82, 83, 84, 85 and 86 are linearly increased at a rate of
10% per second until t = 20 s. The voltage trajectories of bus 83 with and without control are shown in
Figure 17. With the actions of the AVR set points of generators at bus 77, 85, 87, 89 and 90, the system
voltages are kept within a desired range. The maximum computation time for one optimization (when
n = 1) is 5.18 s.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 18 

The comparison results of Figures 12 and 16 and Table 5 show that both methods are able to 
stabilize the system voltage within a desire range, and the AH-MPC-based method outperforms 
MPC-based scheme with constant horizon in computation effort and voltage recovery speed. 

The proposed scheme applies decreasing prediction parameters and control horizon. When n = 
1, both methods applies the same horizon parameters and cost almost the same computation time. 
With the increase of n, the time consuming per optimization of the AH-MPC-based scheme is 
remarkably reduced. This is mainly because the numerical simulation needed in the model prediction 
is implemented within a shorter prediction horizon, and the control sequence consists of less control 
steps is computed. Moreover, the proposed scheme takes less settling times, thus there are less 
optimal control model to be formulated and solved, which also leads to decreased computational 
effort. 

Table 5. Control performance comparison. 

Control Method n Time Consuming per Optimization(s) tcn (s) tpn (s) Total Time Consuming (s) offsetV  (p.u.) 

AH-MPC 
1 1.919 30 60 

3.567 3.42 10-2 2 1.079 20 30 
3 0.569 10 20 

MPC 

1 1.914 

30 60 7.525 3.66 10-2 
2 1.876 
3 1.902 
4 1.833 

5.5. Discussion 

A principle of determine the horizon parameters based on measurements and prediction is 
developed in this paper, which is integrated with the standard MPC-based method as is graphically 
illustrated in Figure 4. The determination of horizon parameters costs little computation effort, and 
the performance of the controller can be improved, which has been verified by the simulations. It 
should be noted that the basic idea of adaptive horizon parameter settings is not restricted to the 
method presented in Section 2, but can be combined with any MPC-based method using linear 
prediction model. 

The time-consuming nature of the optimization is affected by many aspects, such as hardware 
configuration, system scale and prediction method. Simulation results of a load increase scenario in 
IEEE 118 bus test system [26] is presented to further verify the practicability of the proposed method. 
The active and reactive powers of loads at buses 82, 83, 84, 85 and 86 are linearly increased at a rate 
of 10% per second until t = 20 s. The voltage trajectories of bus 83 with and without control are shown 
in Figure 17. With the actions of the AVR set points of generators at bus 77, 85, 87, 89 and 90, the 
system voltages are kept within a desired range. The maximum computation time for one 
optimization (when n = 1) is 5.18 s. 

Without control
With control

t (s)0 100 200 300

V
 (p

.u
.)

0.90

0.92

0.94

0.96

0.98

1.00

 
Figure 17. Voltage evolution of bus 83 in IEEE 118 test system using AH-MPC. 





Figure 17. Voltage evolution of bus 83 in IEEE 118 test system using AH-MPC.



Appl. Sci. 2018, 8, 641 17 of 18

The measurement collection and optimization starts at each sampling point, and the control
decisions are applied to the practical system a sampling interval (ts = 10 s) later, which offers sufficient
time for the telecommunication and computation. In a real-life application, it is confidently expected
that the computation time can be further reduced:

• The simulations were carried out on a personal computer with the Matlab/Simulink-based
tool. Both the hardware and software configuration can be significantly improved in a real-life
application [27].

• The optimization problem can be solved concentrating on areas close to the disturbance with a
simple representation used for other areas [21].

6. Conclusions

This paper proposes a voltage correction scheme based on AH-MPC. By coordinating the control
actions of the AVR set points, OLTCs and shunt capacitors, the system voltages are kept within a
desired range after the disturbance occurs. The inevitable prediction model mismatch problem is
compensated by the closed-loop feature of the centralized controller. This paper also presents a
real-time determination method for horizon parameters which is commonly ignored in the related
research. The horizon parameters are updated at each sampling point according to the real-time
feedback signals and system prediction results, which effectively improves the control performance
compared with the traditional MPC-based method. The information needed to determine the horizon
parameters can be obtained as by-products of the prediction process in a standard MPC-based method,
thus little extra computation time is needed.
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