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Abstract: Since cloud images captured from different views possess extreme variations, multi-view
ground-based cloud recognition is a very challenging task. In this paper, a study of view shift is
presented in this field. We focus both on designing proper feature representation and learning
distance metrics from sample pairs. Correspondingly, we propose transfer deep local binary
patterns (TDLBP) and weighted metric learning (WML). On one hand, to deal with view shift,
like variations of illuminations, locations, resolutions and occlusions, we first utilize cloud images to
train a convolutional neural network (CNN), and then extract local features from the part summing
maps (PSMs) based on feature maps. Finally, we maximize the occurrences of regions for the final
feature representation. On the other hand, the number of cloud images in each category varies greatly,
leading to the unbalanced similar pairs. Hence, we propose a weighted strategy for metric learning.
We validate the proposed method on three cloud datasets (the MOC_e, IAP_e, and CAMS_e) that are
collected by different meteorological organizations in China, and the experimental results show the
effectiveness of the proposed method.

Keywords: ground-based cloud recognition; transfer deep local binary patterns; weighted metric
learning; convolutional neural network

1. Introduction

Clouds are aerosols consisting of large amounts of frozen crystals, minute liquid droplets,
or particles suspended in the atmosphere (https://www.weather.gov/). Their size, type, composition
and movement reflect the atmospheric motion. Especially the cloud type, as one of crucial cloud
macroscopic parameters in the cloud observation, plays a vital role in the weather prediction and
climate change research [1]. Currently, a large quantity of labor and material resources are consumed
because ground-based cloud images are classified by qualified professionals. Therefore, developing
automatic techniques for ground-based cloud recognition is vital. To date, there are various devices
for digitizing ground-based clouds, for example the whole sky imager (WSI) [2], the infrared cloud
imager (ICI) [3], and the whole-sky infrared cloud-measuring system (WSIRCMS) [4] etc. With the
help of these devices, various methods for automatic ground-based cloud recognition [5–7] have
been proposed. However, the cloud features used in these methods are not discriminative enough to
represent cloud images.

Practically, the appearance of clouds can be regarded as a type of natural texture [8]. Hence making
it reasonable to use texture descriptors to portray cloud appearances. Inspired by the success of
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local features in the texture recognition field [9–12], some local features are proposed to recognize
ground-based cloud images [13,14]. This kind of method includes two procedures; initially, the cloud
image is described as a feature vector using local features. Secondly, the Euclidean distance or
chi-square distance is utilized in the matching or recognizing process.

The major focal point of the existing methods is based on recognizing cloud images which
originate from similar views. These methods are implemented under the condition that the training
and test images come from the same feature space. Nevertheless, these methods are not suitable for
multi-view cases. This is because the cloud images captured from different views belong to different
feature spaces. Practically, we often handle cloud images in two views. For instance, the cloud images
collected by a variety of weather stations possess variances in image resolutions, illuminations, camera
settings, occlusions and so on. This kind of cloud images actually distributes in different feature
spaces. As illustrated in Figure 1a, the cloud images are captured in multiple views, and vary greatly
in appearance. The competitive methods for ground-based cloud recognition, i.e., local binary patterns
(LBP) [15], the bag-of-words (BoW) model [16], and the convolutional neural network (CNN) [17],
generally achieve promising results when training and testing in the same feature space, while the
performances degrade significantly when training and testing in different feature spaces, as shown
in Figure 1b. Therefore, we hope to employ cloud images from one view (feature space) to train
a classifier, which is then used to recognize cloud images from other views (feature spaces). This is
a kind of view shift problem, and we define it as the multi-view ground-based cloud recognition. It is
very common worldwide. For instance, for the sake of obtaining completed weather information,
it is essential to set up more new weather stations to capture cloud images. However, due to the
fact that there are insufficient labelled cloud images in the new weather stations to train a robust
classifier makes it unrealistic to expect users to label the cloud images for new weather stations. This is
time-consuming and a dissipate of manpower. Considering that there are many labelled cloud images
accumulated in the established weather stations, we aspire to employ such labelled cloud images to
train a classifier which can be used to recognize cloud images in new weather stations.

(a)

Training and Test Images LBP BoW CNN

The same view 80.38% 84.56% 93.72%
The different views 32.54% 41.26% 56.18%

(b)

Figure 1. (a) We present cloud images from two different views; (b) The performance of three competitive
methods degrade when presented with view shift.

In this paper, we propose a novel multi-view ground-based cloud recognition method by
transferring deep visual information. The cloud features used in the existing methods are not
discriminative enough to sufficiently describe cloud images when presented with view shift,
and therefore we propose an effective method named transfer deep local binary patterns (TDLBP) for
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feature representation. Concretely, we first train a CNN model, and we propose part summing maps
(PSMs) based on all feature maps for one convolutional layer. Then we extract LBP in local regions
from the PSMs, and each local region is represented as a histogram. Finally, in order to adapt view
shift, we discover the maximum occurrence to make a stable representation.

After cloud images are represented as feature vectors, we compute the similarity between feature
vectors to classify ground-based cloud images. Classical distance metrics are predefined, such as
the Euclidean distance [18], chi-square metric [13] and quadratic-chi metric [19]. Hence, we propose
a learning-based method called weighted metric learning (WML) which aims to utilize sample pairs
to learn a transformation matrix. In Figure 2, green and blue indicate two kinds of feature spaces.
Two samples from both feature spaces comprise a sample pair. Here, the red lines denote similar pairs,
while black lines denote dissimilar pairs. In practice, the number of cloud images in each category
greatly differs. For example, there are many clear sky images as the clear sky appears frequently,
while there are few images of altocumulus which has a low probability of occurrence. There exists
an unbalance problem of sample pairs when we learn the transformation matrix. Hence, to avoid the
learning process being dominated by sample pairs in which clouds appear frequently, and neglecting
limited sample pairs in which clouds occur rarely, we propose a weighted strategy for metric learning.
We assign a corresponding weight for sample pairs in each category. Thus, we assign a small weight to
sample pairs that possess a large number (squares in Figure 2) and assign a large weight to sample
pairs that possess a small number (circles in Figure 2). Finally, we utilize the nearest neighborhood
classifier, where the distances are determined by the proposed distance metric, to classify cloud images
which are from another feature space.

Figure 2. The green and blue indicate two kinds of feature spaces. Then we employ weighted pairwise
constraints to the feature spaces. Here, red and black lines denote similar pairs and dissimilar pairs,
respectively. The final feature space is learned for cloud recognition.

The rest of this paper is organized as follows. Section 2 presents the related work including feature
representation for ground-based cloud recognitions and metric learning. The details of the proposed
TDLBP and WML are introduced in Section 3. In Section 4, we conduct a series of experiments to verify
the proposed method. Section 5 summarizes the paper.

2. Related Work

In recent years, researchers have developed a number of algorithms for ground-based cloud
recognition. The co-occurrence matrix and edge frequency were introduced in [5] to extract local
features to describe cloud images, and recognized five different sky conditions. The work [20]
extended to classify cloud images into eight sky conditions by utilizing Fourier transformation and
statistical features. Since the BoW model is an effective algorithm for texture recognition, some
extension methods [21,22] were proposed. Since the appearance of clouds is a kind of natural
texture, Sun et al. [23] employed LBP to classify infrared cloud images. Liu et al. [19] proposed
illumination-invariant completed local ternary patterns (ICLTP), which can effectively handle the
illumination variations. They soon proposed the salient LBP (SLBP) [13] to capture descriptive cloud
information. The desirable property of SLBP is the robustness to noises. However, these features are
not robust to view shift for describing cloud images.
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Recently, due to the inspiration caused by the success of convolutional neural networks (CNNs)
in image recognition [17,24], Ye et al. [25] first proposed to apply CNNs to ground-based cloud
recognition. They employed Fisher Vector (FV) to encode the last conventional layer of CNNs, and they
further proposed to extract the deep convolutional visual features to represent cloud images in [26].
Shi et al. [27] employed the deep convolutional activations-based features (DCAFs) to describe cloud
images. These aformentioned methods showed promising recognition results when trained and tested
on the same feature space. In other words, these features are also not robust to view shift.

In the recognition procedure to compute similarities or distances between two feature vectors,
many predefined metrics cannot show the desirable topology that we are trying to capture.
A sought-after alternative is to apply metric learning in place of these predefined metrics. The key idea
of metric learning is to conduct a Mahalanobis distance where a transformation matrix is applied to
compute the distance between a sample pair. Since metric learning has shown remarkable performance
in various fields, such as image retrieval and classification [28], face recognition [29–31] and human
activity recognition [32,33], we employ the framework of metric learning to ground-based cloud
recognition and meanwhile consider the sample imbalance problem.

3. Approach

3.1. Part Summing Maps

With the appearance of large-scale image datasets and the development of high-performance
computing systems, CNNs have shown promising performance in image classification [34] and object
detection [35,36]. Hence, we extract features from a CNN model to describe cloud images. Generally,
an effective CNN requires a large number of training images. When there are insufficient training
images to train a CNN, it results in overfitting. In this tribulation, we fine-tune the VGG-19 model [17]
on our cloud datasets to train a CNN. As presented in Table 1, the VGG-19 model consists of 16
convolutional layers and three fully-connected (FC) layers. The size of receipt fields throughout the
whole model is set to 3× 3 pixels, and the number of receipt fields is different for each convolutional
layer. In the process of fine-tuning the VGG-19 model, we replace the number of kernels in the final FC
layer with the number of cloud categories.

A lot of processes have been developed in utilizing feature maps for image representations in
computer vision fields [37–39]. Furthermore, the feature maps for a convolutional layer describe
different patterns. To obtain completed information from the convolutional layer, we propose PSMs
based on all feature maps for image representations. Practically, we divide all feature maps from one
convolutional layer into several parts for one cloud image evenly. Suppose that there are K parts of
feature maps, as shown in Figure 3. Then we add the feature maps of each part into one part summing
map (PSM), denoted as Ck (k = 1, 2, ..., K), and it is formulated as:

Ck =
kJ

∑
j=(k−1)J+1

ck
j (1)

where ck
j indicates the j-th feature map and J is the number of the feature maps in each part.
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Table 1. The configuration of the VGG-19 model. con_i denotes the i-th convolutional layer, and the
convolution stride is set to 1 pixel. Max pooling is implemented by a sliding window of 2× 2 pixels
with stride 2.

Config. The VGG-19 Model

conv_1 3× 3× 64
conv_2 3× 3× 64

max pooling

conv_3 3× 3× 128
conv_4 3× 3× 128

max pooling

conv_5 3× 3× 256
conv_6 3× 3× 256
conv_7 3× 3× 256
conv_8 3× 3× 256

max pooling

conv_9 3× 3× 512
conv_10 3× 3× 512
conv_11 3× 3× 512
conv_12 3× 3× 512

max pooling

conv_13 3× 3× 512
conv_14 3× 3× 512
conv_15 3× 3× 512
conv_16 3× 3× 512

max pooling

fc_17 4096-d
fc_18 4096-d
fc_19 1000-d, softmax

Figure 3. The procedure of generating part summing maps.

3.2. Transfer Deep LBP

We propose TDLBP to address the view shift problem. The convolutional layers can capture
more local characteristics [40,41]. Therefore, we propose to extract local patterns from the PSMs
of a convolutional layer to represent cloud images. TDLBP is an improved operator over LBP,
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which computes a region representation based on the PSMs. The TDLBP is not only invariance
to intensity scale changes, but is robust to view shift and obtain the completed scale information of
cloud. We first partition each PSM into L× L (L = 1, 2, 3) regions. Second, we extract LBP in each
region of the PSMs. We take the PSMs of 2× 2 regions as an example (see Figure 4) and perform the
following steps:

(1) Feature extractions for each region in the PSMs. Within each region, we extract three scales of
LBP histograms, i.e., (P, R) = (8, 1), (16, 2) and (24, 3). Hence, each region can be described as
a 54 dimensional descriptor.

(2) Feature pooling. Max pooling is applied on all local features of the local regions at the same
position, i.e., preserving the maximum value of each bin among all histograms, resulting in
four histograms. The pooled feature of each local region is more robust to view shift.

(3) Feature concatenation. The four histograms are concatenated into one histogram to represent each
cloud image. The resulting histogram can capture global information and local characteristics of
image regions, simultaneously.

Figure 4. Each PSM is divided into 2× 2 regions, which are denoted as four colors, i.e., blue, green,
yellow, and pink, respectively. We extract features from each region, and apply max pooling for the
final feature representation.

3.3. Weighted Metric Learning

Suppose there is a sample pair (i, z), where i ∈ Rd×1 and z ∈ Rd×1 are the feature vectors of
two cloud images from two views, respectively (i.e., i and z come from two feature spaces). If the
category labels of i and z are the same (or different), we define (i, z) as a similar pair (dissimilar pair).
The number of cloud categories from each view is N, and we further construct N sets of similar pairs:

Cn : (i, z) ∈ Cn, (n = 1, 2, ..., N) (2)
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where Cn is a set of similar pairs in the n-th category. We formulate the dissimilar pairs as:

I : (i, z) ∈ I (3)

We aspire to learn a transformation matrix M ∈ Rd×r (r ≤ d) to parameterize the squared
Mahalanobis distance:

DM(i, z) = (i− z)T M(i− z) (4)

where M = GGT is a positive semidefinite matrix. For convenience, we denote s = (i− z). The squared
Mahalanobis distance is a scalar, and hence we reformulate Equation (4) as:

DM(i, z) = sT Ms

= Tr(sTGGTs)

= Tr(GTssTG)

(5)

Our goal is to minimize the distance between similar pairs, and meanwhile maximize the distance
between dissimilar pairs. For this purpose, we conduct the following objective function:

min
M

DC − DI

s.t. M ≥ 0

Tr(M) = 1

(6)

where DC − DI is the cost function, the distances of all similar pairs are added to obtain DC, and DI is
the sum of the distances of dissimilar pairs. DC and DI are defined in the following. The first constraint
ensures a valid metric, and the second one excludes the trivial solution [42].

When computing DC in the learning process, the classical metric learning methods assign the same
weight to each similar pair of all categories. This does not consider that the numbers of similar pairs in
each category is largely unbalanced. This weight strategy is not suitable for multi-view ground-based
cloud recognition, because the occurrence probabilities of various weather conditions are different,
and the number of cloud images in each category varies greatly resulting in the unbalanced similar
pairs. Therefore, we propose WML to solve the problem of sample unbalance. For similar pairs,
we assign a different weight to each category. Concretely, we first compute the distances between
similar pairs of each category, and give a weight to each category according to the similar pair number.
Then we sum the weighted distance of all categories. We compute DC and DI by:

DC =
N

∑
n=1

1
|Cn| ∑

(i,z)∈Cn

Tr(GTssTG) (7)

DI =
1
|I| ∑

(i,z)∈I
Tr(GTssTG) (8)

where |Cn| is the number of similar pairs in the n-th category, and |I| is the total number of dissimilar
pairs of all categories.

We minimize the objective function, i.e., Equation (6), subject to two constraints to learn M.
Since M = GGT is a positive semidefinite matrix, the first constraint can be relaxed when explicitly
solved for M [42]. Equations (7) and (8) are substituted into Equation (6), and then we make use of the
standard Lagrange multiplier on Equation (6):
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ϕ(G, λ) =
N

∑
n=1

1
|Cn| ∑

(i,z)∈Cn

Tr(GTssTG)−

1
|I| ∑

(i,z)∈I
Tr(GTssTG)−

λ(Tr(GTG)− 1)

(9)

Then the partial derivative of the Lagrangian function with respect to M is computed, and we set
the result to zero:

(WC −WI)G = λG (10)

where

WC =
N

∑
n=1

1
|Cn| ∑

(i,z)∈Cn

ssT (11)

and
WI =

1
|I| ∑

(i,z)∈I
ssT (12)

We solve the eigenvalue of Equation (10), and preserve r eigenvectors of (WC−WI) corresponding
to the first r largest eigenvalues. As a result, the learned transformation matrix M is equal to:

M = (m1, m2, ..., mr) (13)

where m1 ∈ Rd×1 is the eigenvector of (WC − WI) corresponding to the largest eigenvalue,
and m2 ∈ Rd×1 is the eigenvector of (WC −WI) corresponding to the second largest eigenvalue,
and so on.

4. Experiments

4.1. Datasets and Experimental Setup

In this paper, each cloud dataset is divided into seven categories according to the criteria published
in World Meteorological Organization (WMO). The first cloud dataset MOC_e is collected in Wuxi,
Jiangsu Province, China, and provided by Meteorological Observation Centre, China Meteorological
Administration. The cloud images have strong illuminations and no occlusions, and have the
resolution of 2828 × 4288. There are two cloud datasets, i.e., the CAMS_e and IAP_e, captured
in Yangjiang, Guangdong Province, China, but provided by Chinese Academy of Meteorological
Sciences, and Institute of Atmospheric Physics, Chinese Academy of Sciences, respectively. Each cloud
image in the CAMS_e is 1392× 1040 pixels with weak illuminations and no occlusions. The acquisition
device used to collect the IAP_e differs from that of the CAMS_e, and as a result, the cloud images
from the IAP_e have higher resolution of 2272× 1704, strong illuminations and occlusions. The total
number of the MOC_e is 2107, and the CAMS_e’s total number is 2491. The IAP_e has a large number
of 3533. The number of each category is listed in Table 2. Samples for each category are shown in
Figure 5. It is observed that each cloud dataset is captured from different views and belongs to different
feature spaces.

All images from the three datasets are resized to 224× 224 pixels, and we employ the feature
maps of the fourth convolutional layer. We select two parts of the images as the training images,
i.e., all of the images from one view and half of images in each category from another view, and the
remaining are taken as the test images. We implement experiments 10 times, and we take the average
accuracy over these 10 times as the final results.
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Table 2. The sample number in each category of three datasets.

Cloud Category
Number of Cloud Images

MOC_e CAMS_e IAP_e

Cumulus 278 397 1072
Cirrus and cirrostratus 303 373 516

Cirrocumulus and altocumulus 109 113 32
Clear sky 302 171 88

Stratocumulus 35 188 536
Stratus and altostratus 836 192 679

Cumulonimbus and nimbostratus 244 1057 610
Total number 2107 2491 3533

Figure 5. We present cloud samples of each category (each row indicates one category) from the three
cloud datasets, i.e., (a) the MOC_e, (b) the CAMS_e, and (c) the IAP_e.

4.2. Effect of TDLBP

We compare the proposed TDLBP with the other two texture features, i.e., LBP and DLBP. It should
be noted that we extract LBP from the original cloud images and the PSMs, respectively, so we define
the second one as DLBP. For fair comparison, we partition all original cloud images (for LBP) and the
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PSMs (for DLBP and TDLBP) into L× L (L = 1, 2, 3) regions. For each region, we extract three scales
LBP with (P, R) equal to (8, 1), (16, 2) and (24, 3). As for LBP, we accumulate LBP histograms in each
divided region, and concatenate all histograms into one histogram with 1× 54 + 4× 54 + 9× 54 = 756
dimensions. As for DLBP, within each region of the PSMs, we extract LBP histograms, and then
apply sum pooling to aggregate all features in each region. Each image is also described as a feature
vector with 756 dimensions. The chi-square metric is used in this section, and Table 3 presents the
recognition accuracies.

Table 3. Multi-view cloud recognition accuracies (%) using different features.

One View The Other View LBP DLBP TDLBP

MOC_e CAMS_e 31.38 63.25 64.87
MOC_e IAP_e 41.24 69.56 70.85

CAMS_e IAP_e 32.54 65.18 66.32
CAMS_e MOC_e 39.17 68.82 69.65

IAP_e CAMS_e 33.86 65.23 67.74
IAP_e MOC_e 42.95 70.83 71.41

From Table 3, in all six situations, the highest classification accuracies are obtained by TDLBP.
Both TDLBP and DLBP outperform LBP, because the CNN can learn highly nonlinear features for
view shift. Moreover, TDLBP and DLBP are extracted from the PSMs which contain the completed
and spatial information of clouds. The TDLBP outperforms DLBP by about 1% in all six situations.
Since cloud images have some interferences and noises in general, max pooling could opt for
the discriminative and salient features. Hence, TDLBP is more suitable for adapting view shift.
Furthermore, the best performance is obtained in the situation of the IAP_e to MOC_e shift. This is
probably because the cloud images of IAP_e have some similarities with the ones of MOC_e, such as
illuminations, occlusions and locations.

We replaced chi-square metric with metric learning to classify the cloud images with the three
features, and we denote them as LBP + ML, DLBP + ML and TDLBP + ML, respectively. From the
results shown in Table 4, with the help of metric learning, the performance improvement is more
significant, i.e., it all improves approximately by 2%. Particularly, TDLBP + ML achieves the best
recognition results in all six conditions. It demonstrates that TDLBP is effective both in predefined
metric and learning-based metric. In addition, it is observed that metric learning is more suitable for
measuring the similarity between sample pairs when presented with view shift.

Table 4. Multi-view cloud recognition accuracies (%) using LBP, DLBP, and TDLBP with metric learning.

One View The Other View LBP + ML DLBP + ML TDLBP + ML

MOC_e CAMS_e 34.26 65.98 67.24
MOC_e IAP_e 43.81 72.46 73.53

CAMS_e IAP_e 34.63 66.71 69.25
CAMS_e MOC_e 41.96 71.35 72.12

IAP_e CAMS_e 36.50 67.23 68.89
IAP_e MOC_e 46.75 73.88 74.05

4.3. Effect of WML

In this subsection, we evaluate WML combined with the above mentioned features. LBP + WML,
DLBP + WML and TDLBP + WML denote LBP, DLBP and TDLBP with the proposed WML, respectively.
We choose r = 150 in Equation (13) when learning M, and the number of PSMs K = 8. The results
are shown in Table 5 where we can observe that TDLBP + WML achieves the best performance in all
multi-view recognitions once again. Comparing Table 5 with Table 4, the proposed WML achieves
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better results than ML when using the same features, because it considers the imbalanced sample
problem by using a weight strategy.

Table 5. Multi-view cloud recognition accuracies (%) comparing the proposed method with LBP + WML
and DLBP + WML.

One View The Other View LBP + WML DLBP + WML TDLBP + WML

MOC_e CAMS_e 38.15 70.21 71.87
MOC_e IAP_e 48.39 74.36 76.91

CAMS_e IAP_e 38.26 71.41 73.58
CAMS_e MOC_e 44.05 73.73 74.65

IAP_e CAMS_e 40.27 70.65 72.84
IAP_e MOC_e 49.68 77.93 78.52

In order to further verify the effectiveness of the WML, we compare WML with SMOTEBoost [43]
and RUSBoost [44] based on TDLBP. SMOTEBoost and RUSBoost are the representative methods
for alleviating the problem of class sample imbalance where we make use of the default optimal
parameters for them. From Table 6, the proposed TDLBP + WML still achieves the best recognition
result in all multi-view recognition cases. The performances of SMOTEBoost and RUSBoost are very
similar, but RUSBoost is a preferable alternative for learning from imbalanced data because it is simpler,
faster, and less complex than SMOTEBoost.

Table 6. Multi-view cloud recognition accuracies (%) comparing the proposed TDLBP + WML with
TDLBP + SMOTEBoost and TDLBP + RUSBoost.

One View The Other View TDLBP + SMOTEBoost TDLBP + RUSBoost TDLBP + WML

MOC_e CAMS_e 68.73 69.61 71.87
MOC_e IAP_e 73.04 73.53 76.91

CAMS_e IAP_e 69.82 70.64 73.58
CAMS_e MOC_e 71.86 72.37 74.65

IAP_e CAMS_e 68.15 68.92 72.84
IAP_e MOC_e 73.68 74.85 78.52

4.4. Comparison to the Competitive Methods

We compare the proposed method TDLBP + WML with three competitive methods, i.e., LBP,
BoW and CNN. Note that the experimental results of LBP in this section are the same as the
one mentioned in Table 4. For BoW, we stretch a 9 × 9 neighborhood around each pixel into
an 81 dimensional vector to represent each patch, and apply Weber’s law [45] to normalize the
patch vectors. Then, we learn a dictionary for each category by using K-means clustering [46] over
patch vectors, and the size of dictionary for each category is set to 300. Each image is described as
a 2100 dimensional vector. Finally, we make use of LIBSVM [47] for SVM training and classification
with the radial basis function (RBF) kernel, where the parameters C and γ are set to 200 and 2,
respectively. The C is a penalty coefficient that trades off the relationship between the misclassification
and the complexity of the decision surface. The γ is a parameter of the RBF kernel, and can be seen as
the inverse of the radius of influence of samples selected by the model as support vectors. For CNN,
we utilize the widely-used VGG-19 model [17] for fine-tuning the network on the cloud datasets.
Then we treat the final FC layer as the feature vector. Note that LBP, BoW and CNN utilize the same
training samples as TDLBP + WML.

From the experimental results listed in Table 7, LBP, BoW and CNN are not suitable for multi-view
ground-based cloud recognition. However, BoW and CNN still outperform LBP, because LBP is a fixed
feature extraction method without learning process. Compared with BoW and CNN, we not only
extract the feature vectors from PSMs, but also sufficiently consider the diverse numbers of cloud
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images in each category. Hence, the proposed method outperforms BoW and CNN by more than 30%
and 17%, respectively.

Table 7. Multi-view cloud recognition accuracies (%) comparing TDLBP + WML with three representative
methods, i.e., LBP, BoW, and CNN.

One View The Other View LBP BoW CNN TDLBP + WML

MOC_e CAMS_e 31.38 38.91 54.47 71.87
MOC_e IAP_e 41.24 43.85 58.82 76.91

CAMS_e IAP_e 32.54 41.26 56.18 73.58
CAMS_e MOC_e 39.17 42.57 56.87 74.65

IAP_e CAMS_e 33.86 40.25 54.35 72.84
IAP_e MOC_e 42.95 45.86 61.26 78.52

4.5. Influence of Parameter Variances

In this section, we analyze the proposed TDLBP + WML in three aspects, including the selection
of the convolutional layers for PSMs, and the influences of K and r. It is noted that we select the IAP_e
as one view, and the MOC_e as the other view to implement the following experiments.

Generally, we can extract structural and textural local features from shallow convolutional layers
of a CNN, and extract features with high-level semantic information from deep convolutional layers.
The appearance of clouds can be regarded as a type of natural texture, and therefore we extract feature
from the PSMs in the shallow convolutional layers. We select the first to eighth convolutional layers
for the PSMs to analyze the performance of TDLBP + WML. From Table 8, it is obvious that the highest
result of TDLBP + WML is obtained when we make use of the PSMs in the 4-th convolutional layer.

Table 8. The performance of TDLBP + WML in different convolutional layers.

Layer TDLBP + WML

conv_1 65.13
conv_2 67.68
conv_3 75.39
conv_4 78.52
conv_5 74.81
conv_6 68.23
conv_7 65.74
conv_8 64.85

Since each convolutional layer contains different information, we extract TDLBP features from
two different convolutional layers for cloud image representation in order to obtain the completed
cloud information. From Table 9, TDLBP + WML obtains the highest result when utilizing the PSMs
of conv_4, and therefore we combine conv_4 with each of the other convolutional layers for TDLBP
feature extraction. Specifically, we extract TDLBP features from this kind of two convolutional
layer, and the resulting TDLBP features are concatenated to form the final feature for describing
the cloud image. Comparing Table 9 with Table 8, the performances all improve, and the case of
conv_3 & conv_4 achieves the best result of 79.46%. Based on this result, we further combine TDLBP
features for three different convolutional layers, and follow the same procedure of feature extraction as
mentioned above. The results are shown in Table 10. Comparing Table 10 with Table 9, the performances
slightly degrade. Hence, considering both the computation complexity and the recognition accuracy,
we conclude that extracting TDLBP features from two different convolutional layers is optimal for
cloud image representation.

The effect of K on recognition performance is shown in Figure 6, and K is the number of PSMs for
the 4-th convolutional layer. We can conclude that larger K may result in better recognition accuracies,
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but may probably lead to heavier computational burden. We obtain the best result when K increases to
8. r is the the number of eigenvalues (see Section 3.3). r has an impact on recognition performance
as it controls the dimensionality of M. In addition, we evaluate the performance of TDLBP + WML
with respect to r. As illustrated in Figure 7, with r increasing, the recognition performance improves,
and the best result of 78.52% is obtained at a certain point where r is equal to 150. The proper r can
make the feature vectors contain the discriminative information with the favourable dimensionality.

Table 9. The performance of TDLBP + WML in combinations of two convolutional layers.

Layer TDLBP + WML

conv_1 & conv_4 66.82
conv_2 & conv_4 70.14
conv_3 & conv_4 79.46
conv_5 & conv_4 77.95
conv_6 & conv_4 71.57
conv_7 & conv_4 67.08
conv_8 & conv_4 65.93

Table 10. The performance of TDLBP + WML in combinations of three convolutional layers.

Layer TDLBP + WML

conv_1 & conv_3 & conv_4 66.51
conv_2 & conv_3 & conv_4 68.79
conv_5 & conv_3 & conv_4 77.83
conv_6 & conv_3 & conv_4 69.02
conv_7 & conv_3 & conv_4 66.47
conv_8 & conv_3 & conv_4 65.26

Figure 6. Recognition accuracies achieved by TDLBP + WML with varied numbers of K.
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Figure 7. Recognition accuracies achieved by TDLBP + WML with varied numbers of r.

5. Conclusions

In conclusion, we have proposed TDLBP + WML for multi-view ground-based cloud recognition.
Specifically, a novel feature representation called TDLBP has been proposed which is robust to view
shift, such as variances in locations, illuminations, resolutions and occlusions. Furthermore, since
the numbers of cloud images in each category is different, we propose WML which assigns different
weights to each category when learning the transformation matrix. We have verified TDLBP + WML
with a series of experiments on three cloud datasets, i.e., the MOC_e, CAMS_e, and IAP_e. Compared to
other competitive methods, TDLBP + WML achieves better performance.
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