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Abstract: To avoid stick-slip vibration, one of the most important forms of self-excited vibrations in
deep hole drilling, this paper studies the stability and bifurcation characteristics of a drilling system
based on a two-degree-of-freedom discrete model. It is a state-dependent delay model that could
describe the non-linear dynamic characteristic of drilling systems more accurately, compared with the
traditional constant delay models. In this paper, linear stability analyses of both the state-dependent
delay model and the traditional constant delay model are carried out. Hopf bifurcation analyses
are then performed by the method of multiple scales. The results show that the state-dependent
delay model can provide more precise stability boundaries and more desirable supercritical Hopf
bifurcation properties compared to the constant delay model. The control parameters (rotational
velocity and feed velocity) will affect these results. It is noted that the method is reliable for deep
hole drilling stability prediction and can provide a reference for dynamic optimization design.

Keywords: stick-slip vibration; self-excited vibration; state-dependent delay; method of multiple
scales; Hopf bifurcation analysis

1. Introduction

Delay differential equations (DDEs) often appear in various fields of science and engineering,
such as control systems [1], lasers [2], neuroscience [3] and cutting process dynamics. For cutting
dynamics, the cutting effect of tools can cause vibrations in the cutting system, resulting in accelerated
wear of tools and influencing the cutting process in machines (turning, milling and grinding), coal seam
mining, geological prospecting and oil drilling.

Tobias [4] proposed the theory of regenerative cutting of the tool. During the cutting process,
the cutting thickness of the workpiece is constantly changing due to the relative vibration of the tool
and the workpiece. The cutting force of the cutter is a function of cutting thickness and depends on the
tool’s current and delay position. This theory has been widely accepted as the basis for cutting theory
and experimental research.

This paper mainly studies the non-linear dynamic stability of the deep hole drilling in coal seam
gas exploitation (see Figure 1). Mine gas extraction is an important guarantee of safety and efficiency
in coal mining. However, the drilling process can lead to strong self-excited vibration, which will
affect the drilling stability. The self-excited vibration in drilling is similar to the chatter vibration in the
cutting; both are caused by the regenerative cutting of the tool or drill bit.
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Figure 1. Deep hole drilling in coal seam gas exploitation: (a) Deep drill rig; (b) 3D model. 
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improve the drilling efficiency, the specific conditions need to be studied. Leine [6,7] contrasted the 

bifurcation phenomenon of the stick-slip model, the whirl model, and the stick-slip whirl model at 

the equilibrium point of the drilling system in oil drilling and found that the whirl had a certain 

influence on the stick-slip, mainly due to the existence of fluid force in drilling. However, the effect 

of fluid force is not so obvious in directional drilling due to the different drilling’s structures. Liao 

[8–10] analyzed the influence of whirl on the frequency components and the motion law of the axis 

trajectory of the drilling system by establishing a drilling test bed. However, the research was more 

biased towards the rubbing of rotor and stator, and could not really reflect the cutting motion of the 

drill bit. 

In fact, the regenerative cutting motion of the bit is the main cause of the system vibration, which 

is determined by the axial feed and torsional speed of the drilling system. Germay [11] used singular 

perturbation analysis to decouple axial and torsional dynamics in the model, and then conducted a 

detailed analysis of the axial limit cycle ensuring drilling outside of an unstable region. Besselink [12] 

considered the axial damping in Germay’s model and analyzed the effect of axial periodic motion by 

a semi-analytical method. The results of the literature have confirmed that the influence of axial 

vibration on stick-slip vibration cannot be ignored. On the other hand, stick-slip was observed at low 

rotational velocity and high feed velocity of the bit [13,14], while bit whirl occurred at high rotational 

velocity and low feed velocity [15,16]. So, stick-slip vibration is the main form of self-excited 
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Kovalyshen [18] and Richard [17] specifically described stick-slip vibration that was 
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that included non-linear stiffness and non-linear cutting force. Kovalyshen [17] considered non-linear 

contact stress in the drilling process. These studies have shown that the non-linear factors have a 

significant impact on system stability. Shi and Tobias [24] pointed out the non-linearity of a drilling 

system is mainly caused by the non-linear cutting force. Their study was supported by subsequent 

experimental research. 

The factors of the non-linear cutting force are mainly reflected in the changing delay time. 

However, the most commonly delay model used in previous studies is the linear constant delay (CD) 
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(CD-DDE). Models with constant time delay capture the main characteristics of regenerative 

Figure 1. Deep hole drilling in coal seam gas exploitation: (a) Deep drill rig; (b) 3D model.

There are three types of self-excited vibration of drill string, axial vibration, torsional vibration and
lateral vibration. They can lead to bit bounce, stick-slip and bit whirl, respectively [5]. These vibrations
can affect the stability of machines and the drill string could be broken when the frequency of
self-excited vibration is close to the natural frequency of the system. To avoid these vibrations
and improve the drilling efficiency, the specific conditions need to be studied. Leine [6,7] contrasted
the bifurcation phenomenon of the stick-slip model, the whirl model, and the stick-slip whirl model
at the equilibrium point of the drilling system in oil drilling and found that the whirl had a certain
influence on the stick-slip, mainly due to the existence of fluid force in drilling. However, the effect of
fluid force is not so obvious in directional drilling due to the different drilling’s structures. Liao [8–10]
analyzed the influence of whirl on the frequency components and the motion law of the axis trajectory
of the drilling system by establishing a drilling test bed. However, the research was more biased
towards the rubbing of rotor and stator, and could not really reflect the cutting motion of the drill bit.

In fact, the regenerative cutting motion of the bit is the main cause of the system vibration, which is
determined by the axial feed and torsional speed of the drilling system. Germay [11] used singular
perturbation analysis to decouple axial and torsional dynamics in the model, and then conducted a
detailed analysis of the axial limit cycle ensuring drilling outside of an unstable region. Besselink [12]
considered the axial damping in Germay’s model and analyzed the effect of axial periodic motion
by a semi-analytical method. The results of the literature have confirmed that the influence of axial
vibration on stick-slip vibration cannot be ignored. On the other hand, stick-slip was observed at low
rotational velocity and high feed velocity of the bit [13,14], while bit whirl occurred at high rotational
velocity and low feed velocity [15,16]. So, stick-slip vibration is the main form of self-excited vibrations
for deep hole drilling with low rotational velocity and high feed velocity [17].

Kovalyshen [18] and Richard [17] specifically described stick-slip vibration that was characterized
by alternate stick and slip phases. In a stick phase, the bit stops and the drill pipe continues to twist.
In a slip phase, the rotational velocity of the bit increases instantly because of the energy stored by
the drill pipe in the stick phase. This phenomenon would periodically change stress and strain to
accelerate the fatigue failure of the drilling system.

The most common stick-slip model used in the present study is non-linear, including material
non-linearity [19] as well as structural non-linearity [20]. The effect of cutting force is the largest among
all the non-linear factors [21,22]. Hanna and Tobias [23] proposed a non-linear cutting model that
included non-linear stiffness and non-linear cutting force. Kovalyshen [17] considered non-linear
contact stress in the drilling process. These studies have shown that the non-linear factors have a
significant impact on system stability. Shi and Tobias [24] pointed out the non-linearity of a drilling
system is mainly caused by the non-linear cutting force. Their study was supported by subsequent
experimental research.

The factors of the non-linear cutting force are mainly reflected in the changing delay time.
However, the most commonly delay model used in previous studies is the linear constant delay
(CD) model, which is equal to the period of the drill bit (workpiece) rotation in drilling (turning,
milling). The mathematical model is usually an autonomous delayed differential equation with
constant delay (CD-DDE). Models with constant time delay capture the main characteristics of
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regenerative dynamics, but these models can only be applied in linearized systems. When the system
is non-linear, the calculated results cannot be in good agreement with the experiments.

Recently, the concept of non-linear state-dependent delay (SDD) was presented [25,26]. Long [27]
and Balachandran [28] pointed out that the regenerative delay was time-dependent due to the feed rate
in an accurate model of the milling process. They showed that the traditional constant delay models
overestimate stability limits for large feed rates. The regeneration of delay in the turning system is
mainly determined by the workpiece’s speed, but also affected by the current and delay position of
the tool. This is the state-dependency delay (SDD) model, and the mathematical model is a delayed
differential equation with state-dependent delay (SD-DDE).

The SD-DDE is an autonomous non-linear equation and its solution is non-differentiable due
to the state-dependent time delay τ(x(t)) = τ0 + x(t), as shown in Equation (1). CD-DDE can be
considered a linear variational system, corresponding to Equation (1) at the equilibrium point x(t) = 0,
as shown in Equation (2). Therefore, the analysis of a drilling system represented by a SD-DDE is more
complicated than the conventional constant DDE (C-DDE). Richard [29,30] investigated drilling with
drag bits and found that state-dependent regenerative delay arose due to the torsional vibration of the
tool. For deep hole drilling, the effect of state-dependent delay is especially apparent.

.
x(t) = x(t − (τ0 + x(t))) (1)

.
y(t) = y(t − τ0) (2)

In order to study the influence of non-linear state-dependent delay on deep hole drilling systems,
this paper studied and compared the stability of CD and SDD models through the lobes diagram.
On the other hand, control parameters (rotational velocity and feed velocity) could be chosen to ensure
a stable cutting process without stick-slip vibration based on the lobes diagram. The non-enclosed
stability lobes diagram is a function of axial cutting depth on spindle speed, which can be drawn using
numerical or semi-analytic methods [31–35].

Recently, Liu and Balachandran [36,37] carried out a stability analysis using a semi-discretization
and constructed a stability volume in the three-dimensional parameter space of spin speed, cutting
depth and a cutting coefficient. They used a two degree-of-freedom model and a multisegment model
of drill strings with state-dependent delay. Nandakumar [38] plotted the stability charts in the plane of
drilling rates and rotary speeds. In order to understand the root cause of stick-slip vibrations in deep
drilling, Kovalyshen [17] analyzed the stability of the following three cases: (i) the case of negligible
torsional compliance (pure axial vibrations); and (ii) the case of negligible axial compliance (pure
torsional vibrations); (iii) the general case of coupled axial–torsional vibrations. Results showed the
axial vibration of drill-string systems play a key role in stabilizing the torsional vibration. However,
the studies were based on the state-dependent delay model and did not indicate the differences in
stability of the constant delay model and state-dependent delay model.

On the other hand, a stable cutting state can also cause vibrations due to Hopf bifurcation,
which accompanies stick-slip vibration. For turning models with constant delay, subcritical Hopf
bifurcations occur, i.e., unstable periodic orbits coexist with the stable stationary cutting below
the stability lobes. This means that chatter may arise in cases where the system is linearly stable.
This phenomenon was clearly shown by Inspergera [16]. Therefore, it is necessary to carry out Hopf
bifurcation analysis on the deep hole drilling system.

In this paper, a two-degree-of-freedom model considering axial and torsional vibration was
established, and the linear stability and the characteristics of Hopf bifurcation of the drilling system
were studied by using the method of multiple scales. The results of the constant model and
state-dependent delay model were analyzed to find the most appropriate control parameters and avoid
stick-slip vibration.
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2. Dynamic Model of Drilling System

2.1. Dynamic Equations of Drilling System

In deep hole drilling, the vibration of the system mainly refers to the vibration of the drill bit
and the drill pipe, which could also be called a drilling system (see Figure 1b). The rotational velocity
Ωrot and feed velocity V0 decided by the rig are the most important control parameters in deep hole
drilling. After establishing the dynamic model, the output characteristic of the drill bit at any time
could be analyzed by the geometric structure of the drill, the rock characteristics, and the rock breaking
mechanism of the drill bit, i.e., the actual drilling speed V and rotating speed Ω of the drill bit.
Also, the control parameters could be changed to achieve the desired output characteristics of the
drilling system and avoid stick-slip vibration, which is the purpose of this paper.

The stick-slip vibration frequency is similar to its torsional vibration frequency of the drilling
system through test analysis and field observation. On the other hand, the axial drilling speed and
torsional rotational speed can directly affect the drilling process of the drill bit. So a discrete model of
the drilling system is characterized by two degrees of freedom, Z and φ, corresponding to the axial and
angular position of the bit, respectively. This model has six mechanical elements from Table 1, namely
point mass m, moment of inertia I, torsional stiffness KT and axial stiffness KA, torsional damping βT
and axial damping βA (see Figure 2). The mass m and the moment of inertia I are taken to represent the
bit, while the spring K and the damper β are assumed to stand for the drill pipe. The drilling system is
affected by two boundary conditions, the input of the drill rig (constant input drilling speed V0 and
rotational speed Ωrot) and the bit-coal interaction (the bit weight W and torsion T of the drill bit).

The perturbation dynamic equations of the drilling system can thus be written in the form:

m
..
z(t) + βA

.
z(t) + kAz(t) = −∆W(t) (3)

I
..
φ(t) + βT

.
φ(t) + kTφ(t) = −∆T(t), (4)

where z and φ are the disturbed axial displacement and angular displacement under stable drilling of
the drilling system. ∆W and ∆T are the non-linear disturbance cutting force, which is determined by
the nature of the coal, the structure of the drill and the depth of the cutting depth, i.e., the difference
between the instantaneous cutting force and steady-state cutting force at any time of the drilling system.

Table 1. Parameters in the discrete model.

Quantities Variable Value Unit

Mass of Bit m 2.0 × 104 kg
Rotary inertia of Bit I 2.5 × 102 kg·m2

Axial damping βA 2.4 × 104 N·s/m
Torsion damping βT 72 N·m·s/rad

Axial stiffness kA 7 × 105 N/m
Torsion stiffness kT 5.2 × 102 N·m/rad
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The PDC (Polycrystalline Diamond Compact) bit is widely used in deep hole drilling in coal seam
with good impact toughness and the ability to handle minor accidents. According to the single blade
cutting experiment of PDC bit [18], the action of such a bit consists of two independent processes,
i.e., a cutting process taking place on the cutting face and a frictional contact process taking place on
the wearflat. So, we can synthesize the bit-rock interaction into bit weight W and torsion T, see Figure 3
and the disturbance cutting force could be written as follows:

∆W(t) = −ζsaN(d(t)− d0) (5)

∆T(t) = −1
2

sa2N(d(t)− d0), (6)

where ζ and s are the parameters that characterize the angle of cutter and the coal properties, a is the
radius of the bit, N is the identical blades number of bit, d and d0 are the instantaneous and stable
cutting depth per revolution of the drill bit, respectively. The axial displacement of bit from time t̃ to
time t is d(t) in Figure 4. Z(t) and Φ(t) are the axial and torsional position of the bit at time t.

d(t) = Z(t)− Z
(
t̃
)
, (7)

where t̃ = t − tn. tn is a state-dependent delay time required for the bit to rotate an angle 2π/N to its
current position at time t and determined by the following equation:

Φ(t)− Φ
(
t̃
)
=

2π

N
. (8)

The spatial location at any time of the drill bit can be expressed as:

Z(t) = V0t + z(t), Φ(t) = Ωrott + φ(t). (9)

The cutting depth can be obtained by Equations (7)–(9), which is calculated by the delay time and
disturbed value:

d(t) = z(t)− z(t − tn) + V0tn (10)

d0 =
2πV0

NΩrot
. (11)
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On the other hand, the delay time of the drilling system can be sorted into Equation (12), which is a
function determined by time and torsional state, called state-dependent delay (SDD). It is also possible
to see the importance of torsional vibration of the drilling system through the form of SDD. At the
same time, we can simplify the SDD into a constant delay (CD), as follows:

tn(t) =
2π

NΩrot
− φ(t)− φ(t − tn)

Ωrot
(12)

tn =
2π

NΩrot
. (13)

Then the SDD model Equations (14) and (15) and CD model Equations (16) and (17) can
be obtained by the substitution of Equations (5), (6) and (10)–(13) into the perturbation dynamic
equations, respectively.

m
..
z(t) + βA

.
z(t) + kAz(t) = −ζsaN

[
z(t)− zτ −

V0

Ωrot
(φ(t)− φτ)

]
(14)

I
..
φ(t) + βT

.
φ(t) + kTφ(t) = −1

2
sa2N

[
z(t)− zτ −

V0

Ωrot
(φ(t)− φτ)

]
(15)

m
..
z(t) + βA

.
z(t) + kAz(t) = −ζsaN[z(t)− zτ ] (16)

I
..
φ(t) + βT

.
φ(t) + kTφ(t) = −1

2
sa2N[z(t)− zτ ], (17)

where zτ = z(t − tn), φτ = φ(t − tn).
It is worth noting that the drilling system will have a bit bounce and the drill bit will be separated

from the coal when d < 0. So the analysis is based on d > 0 in this paper.

2.2. Scaling

The stick-slip vibration is essentially for the development of the torsional vibrations. So the
torsional natural frequency of the drill string is used to simplify the time scale and the torsional rigidity
is used to simplify the axial cutting depth. In order to describe the influence of control parameters
Ωrot, V0 on the drilling system, a control parameter ρ was defined. For deep hole drilling, these control
parameters are from Table 2.

τ = ωTt, ψ =
sa2N
2kT

, ρ =
V0

Ωrot
(18)

kr =
2ζkT
akA

, v =
ωT
ωA

, QA =
mωA

βA
, QT =

IωT
βT

, Ω =
Ωrot

ωT
(19)
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Table 2. Control parameters of the deep hole drilling.

Quantities Variable Value Unit

Feed velocity V0 (2–5) × 102 mm/s
Rotational velocity Ω0 15–50 rad/s
control parameter ρ 5–35 mm/rad

Using Equation (18) to simplify the SDD, CD model:

v2 ..
z(τ) + Q−1

A v
.
z(τ) + z(τ) = −ψkr[z(τ)− z(τ − τn)− ρ(φ(τ)− φ(τ − τn))] (20)

..
φ(τ) + Q−1

T

.
φ(τ) + φ(τ) = −ψ[z(τ)− z(τ − τn)− ρ(φ(τ)− φ(τ − τn))] (21)

v2 ..
z(τ) + Q−1

A v
.
z(τ) + z(τ) = −ψkr[z(τ)− z(τ − τn)] (22)

..
φ(τ) + Q−1

T

.
φ(τ) + φ(τ) = −ψ[z(τ)− z(τ − τn)], (23)

where

τn(τ) = τn0

[
1 − N

2π
(φ(τ)− φ(τ − τn(τ)))

]
, τn0 =

2π
NΩ

. (24)

Parameter τn is the dimensionless delay time, ωA is the natural frequency of the axial vibrations,
QA and QT are the axial and torsional amplification factors, respectively. The parameter kr

characterizes the torsional stiffness and bit structure. The parameters used in the numerical studies are
ν = 0.2, N = 4, kr = 10, QA = QT = 5. The dimensionless rotational speed Ω is usually less than 5
(Ω < 5) and the parameter ψ is less than 1 (ψ < 1).

2.3. Taylor Series Expansion of the Nonlinear Cutting Force

Stability analysis of system with state-dependent delay is more complicated than the system
with constant time delay, because the solution of the system is non-differentiable. At the same time,
the traditional numerical method cannot be used directly due to the implicit form of the state-dependent
delay. The SDD model cannot be completely linearized. So a linear differential equation needs to be
sought that has a common dynamic characteristic with SDD. Hartung and Turi [39] linearized the
regular SD-DDEs, Hartung [40] linearized the SD-DDEs of the time period. In this paper, the Taylor
series was used to linearize the implicit SDD.

To analyze the Hopf bifurcation characters in the SDD and CD model of the drilling system,
the implicit SDD was successfully converted into an explicit form through a series of expansion
procedures. Assuming that small displacement disturbances ξ and η occur in the z and φ directions of
the drilling system, respectively, and the displacements in the dynamic equations can be expressed as:

z = εξ, φ = εη. (25)

The series expansion for the SDD at the equilibrium point (ε = 0) can be expressed as [41]:

τn(τ) = τn0[1 − α(φ(τ)− φτ)] = τn0 − ε(τn0αηt) + ε2(τ2
n0α2ηt

.
ητ

)
−ε3

(
τ3

n0α3ηt
.
η

2
τ − 1

2 τ3
n0α3η2

t
..
ητ

) , (26)

where ε is a small, positive parameter, α = N
2π , ητ = η(τ − τn0), ηt = η(τ)− η(τ − τn0).

Substitution of Equations (25) and (26) into Equations (20) and (21) yields:

..
ξ + Q−1

A v−1
.
ξ + (1 + ψkr)v−2ξ − ρψkrv−2η − ψkrv−2ξτ + ψkrρv−2ητ = −ψkrv−2 f (27)

..
η + Q−1

T
.
η + (1 − ρψ)η + ψξ − ψξτ + ψρητ = −ψ f (28)
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f = ε
[
ρτn0αηt

.
ητ − τn0αηt

.
ξτ

]
+ ε2

[
ρ
(

1
2 τ2

n0α2η2
t

..
ητ − τ2

n0α2ηt
.
ητ

)]
−ε2

[
1
2 τ2

n0α2η2
t

..
ξτ − τ2

n0α2ηt
.
ξτ

.
ητ

] . (29)

Defining a state vector x = [x1, x2, x3, x4]
T =

[ .
ξ, ξ,

.
η, η

]T
and rewriting the equations in

vector form:
.
x(τ)− ASDDx(τ)− BSDDx(τ − τn0) = FNS. (30)

The state vector equation of the CD model is:

.
x(τ)− ACDx(τ)− BCDx(τ − τn0) = FNC, (31)

where the coefficient matrices ASDD, BSDD, ACD, BCD and the non-linear forcing vector are given in
Appendix A.

3. Linear Stability Analysis

The dynamic equations of the drilling system (Equations (14)–(17)) have a stable solution,
i.e., z(τ) = φ(τ) = 0 (drilling without vibration), which is the equilibrium point of the system.
The stability of the equilibrium point is analyzed in this section. The linearized homogeneous state
vector equation can be obtained from Equations (30) and (31) as:

.
x(τ)− Ax(τ)− Bx(τ − τn0) = 0 (32)

This is a delayed differential equation, and its characteristic equation is:∣∣∣λI − A − e−λτn0B
∣∣∣ = 0, (33)

where λ denotes an eigenvalue of the linearized system and the exponential term appears due to the
time delay.

There are an infinite number of eigenvalues in Equation (33). The drill string system is stable
only when all the eigenvalues have negative real part (Re(λ) < 0), otherwise the system is unstable.
Pure imaginary eigenvalues (Re(λ) = 0) corresponding to a specific condition determine the stability
boundaries that divide the stable and unstable regions. In this case, the responses of the drilling system
exhibit periodic oscillations with frequency ωc.

X = [λ, 1, λk, k]T (34)

kSDD =
λ2 + v−1Q−1

A λ + v−2

ρψkrv−2
(
1 − e−λτn0

) + ρ−1 (35)

kCD =
−ψ
(
1 − e−λτn0

)
λ2 + Q−1

T λ + 1
(36)

Assuming that the eigenvalue λ is equal to ωc (Re(λ) = 0), the characteristic Equation (33) could
be converted into a frequency equation, and the following four equations can be obtained by separating
the real part and imaginary part. Using ωc as the parameter, the stability diagrams of the SDD model
and CD model, respectively, could be drawn (see Figure 5). The abscissa is the non-dimensional
rotational speed Ω and the ordinate is the non-dimensional axial cutting depth ψ.

ΩSDD =
πωc

N
[
kπ+ arctan

(
CSDDC1+BSDDC2
CSDDC2−BSDDC1

)] (37)
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ψSDD =
C1

CSDD[1 − cos(τn0ωc)]− BSDD sin(τn0ωc)
(38)

ΩCD =
πωc

N
[
kπ+ arctan

(
CCDC1+BCDC2
CCDC2−BCDC1

)] (39)

ψCD =
C1

CCD[1 − cos(τn0ωc)]− BCD sin(τn0ωc)
, (40)

where k = 1, 2, 3, . . . , and represents the number of lobes.

BSDD = krv−2ωcQ−1
T + ρv−1Q−1

A ωc, BCD = krv−2ωcQ−1
T

CSDD = krv−2 − ρv−2 − krv−2ω2
c + ρω2

c , CCD = krv−2 − krv−2ω2
c

C1 = −v−2 + v−1ω2
c Q−1

T Q−1
A + v−2ω2

c + ω2
c − ω4

c

C2 = −v−2Q−1
T ωc − v−1Q−1

A ωc + Q−1
T ω3

c + v−1Q−1
A ω3

c

(41)

There are seven lobes in the Figure 5; the upper part of the lobe is the instability of the drilling
system, the lower part of the lobe is the stable interval, and the lobe represents the critical cutting depth.
In the case of drilling, the appropriate control parameters Ω and ρ can be chosen through the stability
lobes to realize a working condition without stick-slip vibration and improve drilling efficiency.
From the figure, it can be seen that the system stability interval increases with non-dimensional
rotational speed. On the other hand, the stability boundaries are higher for the state-dependent delay
model than for the constant delay model. For the SDD model, the system stability interval increases
with the control parameters ρ.
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In order to make a more intuitive analysis of the change law of the critical cutting depth with
the rotation speed of the SDD and CD model, 3D waterfalls (Figure 6) were drawn. These figures are
the change law of the critical non-dimensional cutting depth ratio of the first lobe and the seventh
lobe, respectively. The Z-axis is the critical non-dimensional cutting depth ratio between the SDD
and CD model (ψSDD/ψCD), the X-axis is the control parameter ρ, and the Y-axis is the vibrational
frequency ωc. From the figure, it can be seen that the critical non-dimensional cutting depth ratio
increases with the increase of control parameter ρ and vibrational frequency ωc, the maximum can
reach 1.1. Comparing the two figures, the change law of the critical non-dimensional cutting depth
ratio is consistent in each lobe and there is no significant difference. On the other hand, the ratio is
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small (closer to 1) in the case of small control parameters, but the value of critical non-dimensional
depth ratio increases significantly with the variation of vibrational frequency ωc.
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Figure 6. The change law of the critical dimensionless cutting depth ratio of SDD and CD model:
(a) the first lobe; (b) the seventh lobe.

In order to verify the accuracy of the stability lobes diagram, three points A, B and C at the Ω = 2
on the lobe graph are chosen. The coordinates are A (2, 0.01), B (2, 0.03) and C (2, 0.0234), respectively.
A is located in the stable cutting region, with B in the unstable cutting region. For SDD model, point C
is located at the stability boundary when ρ = 11. The perturbation axial velocity and perturbation
torsional velocity at A, B and C of the two models were solved by the Runge-Kutta numerical algorithm,
as shown in Figures 7–9, where the parameter value is v = 0.1, kr = 10, QA = QT = 5, N = 4.

At point A, the responses of the two models are significantly attenuated. There is no significant
difference in axial velocity between the two models. However, the SDD model has greater torsional
speed amplitude because the state-dependent delay depends not only on the time but also on the
system’s torsional state. At point B, the torsional speed of the two models increases dramatically
with time and the system is extremely unstable. When the disturbance torsional speed is equal to
the amplitude of the system input rotational speed, the system enters the stick-slip state. At point C,
the SDD model developed into periodic motion after 4 s, and the axial and torsional phase diagrams
show a strict limit cycle state, as seen in Figure 10.

The above numerical results show that the stability lobes diagram can accurately predict the stable
and unstable cutting area of the drilling system at Ω = 2. However, at a certain speed, this prediction
is less accurate due to the existence of Hopf bifurcation. Therefore, the Hopf bifurcation area of the
drilling system is solved in this paper.
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4. Resolving Process of Method of Multiple Scales

The method of multiple scales (MMS) is the most representative for solving the stable periodic
responses of non-linear delay differential equations (DDEs). The non-linearity of such systems is very
small. Therefore, it is possible to take non-linear factors as perturbations of a linear system, and then
find the approximate solution of a non-linear system on the basis of a linear system. The Taylor
approximation and small parameterization of non-linear delay time have been performed in this paper.

Different time scales for SDD model and the time-variable functions of different scales are treated
as independent variables. The derivative of the response x(τ) with respect to time can be expanded by
the power of ε.

Tn = εnτ, (n = 0, 1, 2) (42)

d
dτ

= D0 + εD1 + ε2D2 + . . . + εnDn (43)

with Dn = ∂
∂Tn

, (n = 0, 1, 2), which is a partial differential operator.
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Non-linear process can be expressed as the function of different scales of time, this article only
consider T0, T1 and T2 time variables to simplify calculation. The periodic solution and delay solution
of the state vector Equation (30) in the Hopf bifurcation point is expand to the second order of ε:

x(τ) = x(0)(T0, T1, T2) + εx(1)(T0, T1, T2) + ε2x(2)(T0, T1, T2) (44)

x(τ − τn0) = x(0)
(
T0 − τn0, T1 − ετn0, T2 − ε2τn0

)
+ εx(1)

(
T0 − τn0, T1 − ετn0, T2 − ε2τn0

)
+ε2x(2)

(
T0 − τn0, T1 − ετn0, T2 − ε2τn0

)
= x(0)(T0 − τn0, T1, T2) + ε

[
x(1)(T0 − τn0, T1, T2)− τn0D1x(0)(T0 − τn0, T1, T2)

]
+ε2

[
x(2)(T0 − τn0, T1, T2)− τn0D1x(1)(T0 − τn0, T1, T2)

]
+ε2

[
1
2 τ2

n0D2
1x(0)(T0 − τn0, T1, T2)− τn0D2x(0)(T0 − τn0, T1, T2)

]
, (45)

where x(n) is the nth order periodic function of the time scales (T0, T1, T2).
To satisfy the continuity requirement of Equation (44), the axial depth of cut ψSDD is set to be a

sum of the linear critical depth of cut ψCS and the perturbed depth of cut ψδS as:

ψSDD = ψCS + ε2ψδs. (46)

By substituting Equations (42)–(46) into Equation (30) and equating the coefficients of like powers
of ε, the differential equations with the zeroth, first and second orders of ε can be obtained:

ε0 : D0x(0) − ACSx(0) − Bcsx(0)d = 0 (47)

ε1 : D0x(1) − ACSx(1) − BCSx(1)d = F(1)
NS

(
x(0), x(0)d

)
− D1x(0) − τn0BCSD1x(0)d (48)

ε2 : D0x(2) − ACSx(2) − BCSx(2)d = F(2)
NS

(
x(0), x(0)d , x(1), x(1)d

)
− D1x(1) − D2x(0)

−τn0BCS

(
D1x(1)d + D2x(0)d − 1

2 τn0D2
1x(0)d

)
+ Aδsx(0) + Bδsx

(0)
d

, (49)

where x(n)d = x(n)(T0 − τn0, T1, T2), n = 1, 2, 3, ACS and BCS are the coefficient matrices of the
current and delayed state vectors with the linear critical depth of cut, respectively. AδS and BδS are
the coefficient matrices of the current and delayed state vectors with the perturbed depth of cut,
respectively. F(1)

NS and F(2)
NS are the first- and second-order functions of the non-linear forcing vector FNS

shown in Equation (31) (see Appendix B.1).
Equation (48) did not contain a secular term, so, D1x(1)(T0, T1, T2) = 0. Researching the system

responses near the Hopf bifurcation point, the solution of the zero order approximation equation is
written as the plural form:

x(0) = X1 A1(T2)eiωcT0 + X2 A2(T2)e−iωcT0 (50)

x(0)d = X1 A1(T2)eiωcT0 e−iωcT0 + X2 A2(T2)e−iωcT0 eiωcτn0 , (51)

where ωc is the linear vibrational frequency at the Hopf bifurcation point, X1 and X2 are the
eigenvectors associated with the eigenvalues λ = ±iωc, A1 and A2 are a pair of undetermined
conjugated complex functions.

The substitution of Equations (50) and (51) into Equation (48) yields the particular solution of the
non-homogeneous differential equation in the form:

x(1) = P(1)
2 A2

1e2iωcT0 + P(1)
0 A1 A2 + P(1)

2 A2
2e−2iωcT0 , (52)

where P(1)
2 , P(1)

0 , P(1)
2 are described in detail in Appendix B.2.
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Substitution of Equations (50)–(52) into Equation (49) yields:

D0x(2) − ACSx(2) − BCSx(2)d = Q(2)
1 (A1, A2)eiωcT0 + Q2

3(A1, A2)e3iωcT0 + c.c. =[
−
(
I + τn0e−iωcτn0BCS

)
X1D2 A1 + QF2

1 A2
1 A2 +

(
Aδs + e−iωcτn0Bδs

)
X1 A1

]
eiωcT0

+QF2
3 A3

1e3iωcT0 + c.c.

, (53)

where QF2
1 and QF2

3 are the coefficient vectors for the complex harmonic terms originating from F(2)
NS

(see Appendix B.3). c.c. is the conjugate term of its previous term.
To avoid secular term, we get an equation for A1, where cr and ci are real constants given in

Appendix B.4:
.
A1 = (cr1 + ici1)ψδs A1 + (cr2 + ici2)A2

1 A2. (54)

We introduce the polar form amplitudes:

A1 =
1
2

aeiϕ, A2 =
1
2

ae−iϕ. (55)

where a and ϕ are the amplitude and phase of the drilling system.
Substituting (55) into (54) and separating the real and imaginary parts of the resulting equation,

the first order bifurcation equation of the amplitude a and ϕ in real form can be obtained as:

.
a = cr1ψδsa +

1
4

a3cr2,
.
ϕ = ci1ψδs +

1
4

a2ci1. (56)

For periodic motion,
.
a = 0,

.
ϕ = 0, the bifurcation solution of drilling system amplitude and

phase can be obtained by:

a = 2

√
ψδs

(
− cr1

cr2

)
, ϕ = ε2τ

(
ci1ψδs +

1
4

a2ci1

)
. (57)

The stable periodic motion near the Hopf bifurcation point is subcritical when the sign of both cr1

and cr2 are the same; otherwise it becomes supercritical.
The second equation of ε (Equation (46)) is reduced to:

D0x(2) − ACSx(2) − BCSx(2)d = QF2
3 A3

1e3iωcT0 + QF2
3 A3

2e−3iωcT0 . (58)

Substitution of Equations (50)–(52) into Equation (55) yields:

x(2) = P(2)
3 A3

1e3iωcT0 + P(2)
3 A2

2e−3iωcT0 , (59)

where P(2)
3 , P(2)

3 is given in Appendix B.5.
Finally, the quadratic approximation of the drilling system in the Hopf bifurcation point is:

x = x(0) + εx(1) + ε2x(2). (60)

5. Hopf Bifurcation Analysis

In actual drilling, self-excited vibration system will be associated with the Hopf bifurcation
dynamic phenomenon. So the stable cutting zone is not well judged by the system linear stability
analysis. Hopf bifurcation refers to the phenomenon whereby the equilibrium point is changed from
stable to unstable and form limit cycles when the system parameter changes pass a critical value. It is
closely related to the production of self-excited vibration in engineering. The self-excited vibration
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with Hopf bifurcation will cause instability in the drilling system. The limit cycle exists when the value
of bifurcation parameter is less than the threshold and it is the subcritical Hopf bifurcation. Otherwise
it is supercritical Hopf bifurcation.

The Hopf bifurcation feature is shown in Figure 11; the amplitude of the drilling system is a
function of axial dimensionless cutting depth ψ. The linear stability boundary of the drilling system
is ψCS; the cutting of system is stable when ψ < ψCS, otherwise it is unstable. In a subcritical case,
when an unstable limit cycle (periodic orbit) coexists with the stable equilibrium (stationary cutting),
the system may produce stick-slip vibration. In a supercritical case, a stable limit cycle coexists with
the unstable equilibrium, so the system is stable.
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5.1. Hopf Bifurcation for the Constant Delay Model

Figure 12 shows the change of the Hopf bifurcation to the stability lobes of the constant delay
model; the blue line represents the sub-critical Hopf bifurcation area. It can be seen that the system
only has the subcritical Hopf bifurcation in the case of the constant delay model because it is mainly
related to the dependence of the non-linear cutting force on the cutting thickness.

To verify the Hopf bifurcation feature of the constant delay model, the variation of amplitude
a and axial dimensionless cutting depth ψCD were plotted at Ω = 1.2, 2, 4; ρ = 11 (see Figures 13–15).
It can be seen that the amplitude of the drilling system will continue to increase until it loses stability
(sharp point) in the stable cutting area. Therefore, the linear stability region of the drilling system is
unstable and may be self-excited.
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5.2. Hopf Bifurcation for State-Dependent Delay Model

Figure 16 shows the change of the Hopf bifurcation to the stability lobes of the state-dependent
delay model with different values of control parameter ρ. The blue line represents the subcritical
Hopf bifurcation area and the red line represents the supercritical Hopf bifurcation area. In Figure 16,
Hopf bifurcation does not change the entire stability lobes. It can be seen that the right side of the lobes
becomes supercritical with the increase of ρ, while the left side does not change. The drilling system
has only supercritical Hopf bifurcation in the low rotational speed region (Ω < 0.5).

In the subcritical Hopf bifurcation section, there is a stable periodic motion when drilling in a
linear unstable region and the system’s linear stability region does not have unstable periodic motion.
This means that stick-slip vibration will not occur in the system when the stability parameter axis
cutting depth ψC is over a certain threshold. The periodic vibration occurs in the drilling system only
when it loses stability, and the amplitude of stick-slip vibration increases with ψC. Therefore, in the
supercritical Hopf bifurcation section, the system will not become unstable. Under practical conditions,
the supercritical Hopf bifurcation is more advantageous than the subcritical Hopf bifurcation.
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when the 𝜓𝑐 passes the threshold. So the system is in the subcritical Hopf bifurcation section. In 

Figures 18 and 20, the amplitude a is increasing in the unstable region when 𝜓𝑐 is above the threshold 

and the system is in the supercritical Hopf bifurcation section. 

Figure 16. The change of Hopf bifurcation to stability lobes of the SDD model: (a) ρ = 11; (b) ρ = 30.

Figure 17 shows the change of the control parameters ρ to the Hopf bifurcation properties (a) and
the critical control parameters ρ of the Hopf bifurcation at different rotational speeds Ω (b) in the first
stability lobe (1 < Ω < 4.5). In order to study the limit of deep hole drilling, we extend the range of
ρ to twice the rated working condition (ρ ≤ 70). It can be seen from the figure that no matter how
ρ changes, the bifurcation properties of the drilling system will not change in the non-dimensional
rotational speed range 1–3.5. Only when the non-dimensional rotational speed is greater than 3.5
will the subcritical Hopf bifurcation be converted into the supercritical Hopf with the increase in
ρ. In actual drilling, the corresponding control parameters can be selected according to Figure 17,
and the system is in the zone of supercritical Hopf bifurcation, which can ensure the stability of the
drilling system.
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Figure 17. Change of criticality along the first stability lobe of SDD model (1 < Ω < 4.5): (a) Change of
the control parameters ρ to the Hopf bifurcation properties; (b) change of the critical control parameters
ρ of the Hopf bifurcation at different rotational speeds Ω.

To verify the Hopf bifurcation feature of the state-dependent delay model, the variation of
amplitude a and axial dimensionless cutting depth ψSDD were plotted at Ω = 1.2, 2, 4; ρ = 11
(see Figures 18–20). It can be seen from Figure 19 that the amplitude a is increasing in the stable
region when the ψc passes the threshold. So the system is in the subcritical Hopf bifurcation section.
In Figures 18 and 20, the amplitude a is increasing in the unstable region when ψc is above the threshold
and the system is in the supercritical Hopf bifurcation section.
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The results of the Hopf bifurcation of the CD model and the SDD model are compared.
When Ω = 1.2 and 4, the Hopf bifurcation characteristic of SDD model is different from the subcritical
Hopf bifurcation of the CD model; it is a kind of supercritical Hopf bifurcation. However, when Ω = 2,
CD and SDD model are all subcritical Hopf bifurcation. The results show that the SDD model has
some regions in supercritical Hopf bifurcation compared with the CD model.

On the other hand, the control parameter ρ increases from 11 to 30 when Ω = 4; the resulting
amplitude curve is shown in Figure 21. In a supercritical Hopf state, the model is transformed from
subcritical Hopf bifurcation at ρ = 11 to supercritical Hopf bifurcation at ρ = 30; the results of Figure 19b
have thereby been proved. So we can change the Hopf bifurcation property of the drilling system by
controlling the parameter ρ.
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6. Conclusions 

In order to control and avoid the stick-slip vibration in deep hole drilling, this paper simplified 

the drilling system to a two-degree-of-freedom discrete model and studied the non-linear dynamic 

stability without considering the bit bounce. There are two kinds of delay models (CD model and 

SDD model) in stick-slip vibration that are caused by regenerative cutting. The linear stability solved 

by the characteristic equations and Hopf bifurcation characteristics solved by the MMS are compared 

with the two delay models; our conclusions are as follows: 

1. The stability interval of the drilling system increases with rotational speed. In the linear stability 

analysis, the stability difference between CD model and SDD model is very small when the 

control parameter ρ is small. However, when the control parameter ρ become large, the stable 

intervals of the SDD model are bigger than those of the CD model, which means the SDD model 

can be applied to a wider operational range. 

2. It is found that there are only subcritical Hopf bifurcation regions in the CD model through the 

study of Hopf bifurcation properties. The Hopf bifurcation properties of the SDD model depend 

on the control parameter ρ. The subcritical Hopf bifurcation point on the right of the stability 

lobe is transformed into the supercritical Hopf bifurcation point with the increase of ρ. 

3. In the subcritical Hopf bifurcation point, the stable cutting points that co-exist with the limit 

cycle (stable periodic motion) in the system stability interval may also generate the stick-slip 

vibration. In the supercritical Hopf bifurcation point, the stable periodic motion co-exists with 

the cutting points of the linear unstable region, while the linear stable region does not have stable 

periodic motion. Therefore, the system will not produce stick-slip vibration in the stability 

interval. 

In conclusion, the SDD model can be applied to a wider operational range than the CD model, 

and can better reflect the non-linear nature of the drilling system. On the one hand, the stability 

bounds of the SDD model are higher than for the CD model. On the other hand, the supercritical 

Hopf bifurcation point of the SDD model is more conductive to the stability of the drilling system. 

The method and results can be adopted for deep hole drilling stability prediction and provide a 

reference for the dynamic optimization design. 

Author Contributions: J.H. and A.Z. conceived and designed the study; H.S. and S.S. performed the simulation; 

A.Z. and H.L. wrote the manuscript. H.L. and B.W. reviewed and edited the manuscript. All authors read and 

approved the manuscript. 

Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant 

No. 51675091), the Joint Funds of the National Natural Science Foundation of China (Grant No.U1708257), and 

the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 21. The variation of the amplitude a with the dimensionless cutting depth ψSDD (Ω = 4,
ψc = 0.116, ρ = 30).

6. Conclusions

In order to control and avoid the stick-slip vibration in deep hole drilling, this paper simplified
the drilling system to a two-degree-of-freedom discrete model and studied the non-linear dynamic
stability without considering the bit bounce. There are two kinds of delay models (CD model and SDD
model) in stick-slip vibration that are caused by regenerative cutting. The linear stability solved by the
characteristic equations and Hopf bifurcation characteristics solved by the MMS are compared with
the two delay models; our conclusions are as follows:

1. The stability interval of the drilling system increases with rotational speed. In the linear stability
analysis, the stability difference between CD model and SDD model is very small when the
control parameter ρ is small. However, when the control parameter ρ become large, the stable
intervals of the SDD model are bigger than those of the CD model, which means the SDD model
can be applied to a wider operational range.

2. It is found that there are only subcritical Hopf bifurcation regions in the CD model through the
study of Hopf bifurcation properties. The Hopf bifurcation properties of the SDD model depend
on the control parameter ρ. The subcritical Hopf bifurcation point on the right of the stability
lobe is transformed into the supercritical Hopf bifurcation point with the increase of ρ.

3. In the subcritical Hopf bifurcation point, the stable cutting points that co-exist with the limit cycle
(stable periodic motion) in the system stability interval may also generate the stick-slip vibration.
In the supercritical Hopf bifurcation point, the stable periodic motion co-exists with the cutting
points of the linear unstable region, while the linear stable region does not have stable periodic
motion. Therefore, the system will not produce stick-slip vibration in the stability interval.

In conclusion, the SDD model can be applied to a wider operational range than the CD model,
and can better reflect the non-linear nature of the drilling system. On the one hand, the stability
bounds of the SDD model are higher than for the CD model. On the other hand, the supercritical
Hopf bifurcation point of the SDD model is more conductive to the stability of the drilling system.
The method and results can be adopted for deep hole drilling stability prediction and provide a
reference for the dynamic optimization design.
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Appendix A

ASDD =


−v−1Q−1

A −(1 + ψkr)v−2 0 ρkrv−2ψ

1 0 0 0
0 −ψ −Q−1

T ρψ − 1
0 0 1 0

 (A1)

BSDD =


0 ψkr 0 −ρψkrv−2

0 0 0 0
0 ψ 0 −ψρ

0 0 0 0

 (A2)

FNS =


εψkrv−2τn0αH1s + ε2ψkrv−2τ2

n0α2H2s
0

εψτn0αH1s + ε2ψτ2
n0α2H2s

0

 (A3)

H1s = xt4(xτ1 − ρxτ3), H2s =
1
2

x2
t4
( .

xτ1 − ρ
.
xτ3
)
− xt4xτ3(xτ1 − ρxτ3) (A4)

xtn = xn − xτn, xτn = xn(τ − τn0), n = 1, 2, 3, 4 (A5)

ACD =


−v−1Q−1

A −(1 + ψkr)v−2 0 0
1 0 0 0
0 −ψ −Q−1

T −1
0 0 1 0

, BCD =


0 ψkrv−2 0 0
0 0 0 0
0 ψ 0 0
0 0 0 0

 (A6)

FNC =


εψkrv−2τn0αH1c + ε2ψkrv−2τ2

n0α2H2c
0

εψτn0αH1c + ε2ψτ2
n0α2H2C

0

 (A7)

H1c = xt4xτ1, H2C =
1
2

x2
t4

.
xτ1 − xt4xτ3xτ1. (A8)

Appendix B

Appendix B.1. ACS, BCS, AδS, BδS and First- and Second-Order Forcing Functions F(1)
NS and F(2)

NS

ACS =


−v−1Q−1

A −(1 + ψCS) 0 ρkrv−2ψCS
1 0 0 0
0 −ψCS −Q−1

T ρψCS − 1
0 0 1 0

 (A9)

BCS =


0 ψCSkrv−2 0 −ρψCSkrv−2

0 0 0 0
0 ψCS 0 −ψCSρ

0 0 0 0

 (A10)

Aδs =


0 −ψδskrv−2 0 ρψδskrv−2

0 0 0 0
0 −ψδs 0 ρψδs
0 0 0 0

, Bδs =


0 ψδskrv−2 0 −ρψδskrv−2

0 0 0 0
0 ψδs 0 −ρψδs
0 0 0 0

 (A11)

FNS = εF(1)
NS + ε2F(2)

NS (A12)
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F(1)
NS =


ψCSkrv−2τn0αχ1

0
ψCSτn0αχ1

0

, F(2)
NS =


ψCSkrv−2τn0αχ2 +

1
2 ψCSkrv−2τ2

n0α2χ3

0
ψCSτn0αχ2 +

1
2 ψCSτ2

n0α2χ3

0

 (A13)

χ1 =
(

x(0)4 − x(0)d4

)(
x(0)d1 − ρx(0)d3

)
(A14)

χ2 = x(1)t4

(
x(0)d1 − ρx(0)d3

)
+ x(0)t4

(
x(1)d1 − ρx(1)d3

)
− τn0D1

(
x(0)4 − 2x(0)d4

)(
x(0)d1 − ρx(0)d3

)
(A15)

χ3 = x(0)t4

(
x(0)d1 − ρx(0)d3

)(
D0x(0)t4 − 2x(0)d3

)
(A16)

x(p)
tk = x(p)

k − x(p)
dk , x(p)

dk = x(p)
k (T0 − τn0, T1, T2), p = 0, 1; k = 1, 2, 3, 4. (A17)

Appendix B.2. P(1)
2 , P(1)

0 , P(1)
2

Substitution of Equations (50) and (51) into Equation (48) yields:

D0x(1) − ACSx(1) − BCSx(1)d = Q(F1)
2 A2

1e2iωcT0 + Q(F1)
0 A1 A2 + Q(F1)

2 A2
2e−2iωcT0 , (A18)

where

Q(F1)
2 =


ψCSkrv−2τn0αQ2

0
ψCSτn0αQ2

0

, Q(F1)
0 =


ψCSkrv−2τn0αQ0

0
ψCSτn0αQ0

0

, Q(F1)
2 =


ψCSkrv−2τn0αQ2

0
ψCSτn0αQ2

0

 (A19)

k1 = kSDD(λ = iωc), k2 = kSDD(λ = −iωc) (A20)

Q2 = iωck1(1 − ρk1)
(

e−iωcτn0 − e−2iωcτn0
)

(A21)

Q0 = iωck1

(
1 − eiωcτn0

)
(1 − ρk1)

(
e−iωcτn0 − e−2iωcτn0

)
(A22)

Q2 = −iωck2(1 − ρk2)
(

eiωcτn0 − e2iωcτn0
)

. (A23)

The particular solution of Equation (A18) can be obtained in the form:

x(1) = P(1)
2 A2

1e2iωcT0 + P(1)
0 A1 A2 + P(1)

2 A2
2e−2iωcT0 , (A24)

where
P(1)

n =
(
snI − ACS − e−snτn0BCS

)−1QF1
n , sn = inωc, (n = −2, 0, 2). (A25)

Appendix B.3. Coefficient Vector QF2
1 , QF2

1 , QF2
3 , QF2

1 in Equation (53)

QF2
1 =


ψCSkrv−2τn0α

(
G1 − 1

2 τn0αG2

)
0

ψCSτn0α
(

G1 − 1
2 τn0αG2

)
0

, QF2
1 =


ψCSkrv−2τn0α

(
G1 − 1

2 τn0αG2

)
0

ψCSτn0α
(

G1 − 1
2 τn0αG2

)
0

 (A26)
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G1 =
(

P(1)
01 k1 − ρP(1)

03 k1 − ω2
c k2

1τn0α − ω2
c k1k2τn0α + 2ω2

c k2
1k2ρτn0α

)(
1 − e−iωcτn0

)
−iωcP(1)

24 (1 − k2ρ)
(
eiωcτn0 − e−iωcτn0

)
−(

P(1)
21 k2 − ρk2P(1)

23 + ω2
c k1k2τn0α + ω2

c k2
1k2ρτn0α

)(
e−iωcτn0 − e−2iωcτn0

) (A27)

G1 =

(
P(1)

01 k2 − ρk2P(1)
03 − ω2

c k2
2τn0α − ω2

c k1k2τn0α + 2ω2
c k2

2k1ρτn0α

)(
1 − eiωcτn0

)
−iωcP(1)

24 (1 − k1ρ)
(
eiωcτn0 − e−iωcτn0

)
−(

P(1)
21 k1 − ρk1P(1)

23 + ω2
c k1k2τn0α − ω2

c k2
1k2ρτn0α

)(
eiωcτn0 − e2iωcτn0

) (A28)

G2 = ω2
c k2

1(1 − k2ρ)
(

2 − e−iτn0ωc − eiτn0ωc
)

, G2 = ω2
c k2

2(1 − k1ρ)
(

2 − e−iτn0ωc − eiτn0ωc
)

(A29)

QF2
3 =


ψCSkrv−2τn0α

(
H1 − 1

2 τn0αH2

)
0

ψCSτn0α
(

H1 − 1
2 τn0αH2

)
0

, QF2
3 =


ψCSkrv−2τn0α

(
H1 − 1

2 τn0αH2

)
0

ψCSτn0α
(

H1 − 1
2 τn0αH2

)
0

 (A30)

H1 = iωcP(1)
24 (1 − k1ρ)

(
e−iωcτn0 − e−3iωcτn0

)
+
(

P(1)
21 k1 − P(1)

23 k1ρ + ω2
c k2

1τn0α − ω2
c k3

1τn0αρ
)(

e−2iωcτn0 − e−3iωcτn0
) (A31)

H1 = −iωcP(1)
24 (1 − k2ρ)

(
eiωcτn0 − e3iωcτn0

)
+

(
P(1)

21 k2 − P(1)
23 k2ρ + ω2

c k2
2τn0α − ω2

c k3
2τn0αρ

)(
e2iωcτn0 − e3iωcτn0

) (A32)

H2 = ω2
c k2

1(1 − k1ρ)
(
e−iωcτn0 − 2e−2iωcτn0 + e−3iωcτn0

)
(A33)

H2 = ω2
c k2

2(1 − k2ρ)
(
eiωcτn0 − 2e2iωcτn0 + e3iωcτn0

)
(A34)

Appendix B.4. cr, ci in Equation (54)

Taking the forcing vector associated with the secular components including eiωcT0

(Equation (53)) gives:

D0x(2) − ACSx(2) − BCSx(2)d = Q(2)
1 (A1, A2)eiωcT0

=
[
−
(
I + τn0e−iωcτn0BCS

)
D2 A1X1 +

(
AδS + BδSe−iωcτn0

)
X1A1 + QF2

1 A2
1 A2

]
eiωcτn0

=
[
Q(D)

1 D2 A1 + Q(C)
1 A2

1 A2 + Q(δ)
1 ψδS A1

]
eiωcτn0

. (A35)

Introducing a possible unstable solution vector of the form

x(2) = P(2)
1 (A1, A2)eiωcT0 (A36)

into Equation (A35) and making the solution vector indeterminate, one obtains the solvability condition:∣∣∣∣∣∣∣∣∣∣
v−1Q−1

A + iωc v−2(1 − ψCSkr
(
1 − e−iωcτn0

))
0 Q(2)

11

−1 iωc 0 Q(2)
12

0 ψCS
(
1 − e−iωcτn0

)
Q−1

T + iωc Q(2)
13

0 0 −1 Q(2)
14

∣∣∣∣∣∣∣∣∣∣
= 0. (A37)
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Rewriting Equation (A37) gives the modulation equation in complex form:

.
A1 = − C(δ)

C(D)
ψCS A1 −

C(C)

C(D)
A2

1 A2, (A38)

where

C(n) = Q(n)
13

[
v−2 + ψCSkrv−2(1 − e−iωcτn0ωc

)
+ iωcQ−1

A v−1 − ω2
c

]
+Q(n)

14

[(
Q−1

T + iωc

)(
v−2 + ψCSkrv−2(1 − e−iωcτn0ωc

)
+ iωcQ−1

A v−1 − ω2
c

)]
−ψCS

(
1 − e−iωcτn0ωc

)[
Q(n)

11 + Q(n)
12

(
iωc + Q−1

A v−1
)]

, (n = D, C, δ.)

. (A39)

By comparing Equation (A39) with Equation (54), can be obtained as follows:

cr1 = Re

[
− C(δ)

C(D)

]
, ci1 = Im

[
− C(δ)

C(D)

]
(A40)

cr2 = Re

[
−C(C)

C(D)

]
, ci1 = Im

[
−C(C)

C(D)

]
. (A41)

Appendix B.5. P(2)
3 , P(2)

3

P(2)
3 =

(
3iωcI − ACS − e−3τn0ωc BCS

)−1
QF2

3 (A42)

P(2)
3 =

(
−3iωcI − ACS − e3τn0ωc BCS

)−1
QF2

3 (A43)
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