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Abstract: The PASCAL VOC Challenge performance has been significantly boosted by the prevalently
CNN-based pipelines like Faster R-CNN. However, directly applying the Faster R-CNN to the small
remote sensing objects usually renders poor performance. To address this issue, this paper investigates
on how to modify Faster R-CNN for the task of small object detection in optical remote sensing images.
First of all, we not only modify the RPN stage of Faster R-CNN by setting appropriate anchors but
also leverage a single high-level feature map of a fine resolution by designing a similar architecture
adopting top-down and skip connections. In addition, we incorporate context information to further
boost small remote sensing object detection performance while we apply a simple sampling strategy
to solve the issue about the imbalanced numbers of images between different classes. At last,
we introduce a simple yet effective data augmentation method named ‘random rotation” during
training. Experimental results show that our modified Faster R-CNN algorithm improves the mean
average precision by a large margin on detecting small remote sensing objects.

Keywords: object detection; modified faster R-CNN; remote sensing; feature pyramid

1. Introduction

With the development of remote sensing technology, the research of remote sensing images has
been receiving remarkable attention. Meanwhile, ship and plane detection in the optical remote
sensing images [1-3] plays an important role in a wild range of applications. Several breakthroughs
have been witnessed in the area of large object detection with high resolution on the PASCAL VOC
dataset in the past decade by the family of region-based convolutional neural networks (R-CNN)
methods [4-7], especially Faster R-CNN [7]. However, they usually fail to detect very small objects, as
rich representations are difficult to learn from their poor-quality appearance and structure. However,
the object in the optical remote sensing images usually has the characteristic of small object size, which
has posed much more challenges than normal object detection and good solutions are still rare so far.

Some efforts have been devoted to addressing small object detection problems. The common
way [8,9] is to increase the feature resolution of small objects by simply magnifying the input images,
which often results in heavy time consumption for training and testing. Another way [10,11] is
centered on generating multi-scale representation which enhances high-level features by combining
multiple lower-level features, which is to naively increase the feature dimension. This practice is not
able to guarantee that the constructed features are interpretable and discriminative enough for small
objects. FCN [12] combines coarse-to-fine predictions from multiple layers by averaging segmentation
probabilities. SSD [9] and MS-CNN [13] predict objects at different layers of the feature hierarchy.
Another category of approaches, including HyperNet [14], ION [15], PVANET [16], and FPN [17],
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combine outputs from multiple layers to extract more effective features. In fact, it is a critical role to
elaborately design the scale of feature maps to recognize objects across multiple scales.

Empirically, the context information can conduce to improving the object detection performance
in natural scenes. R*CNN [18] building on Fast R-CNN [6] uses more than one region for classification
while still maintaining the ability to localize the action. MR-CNN [19] develop a multi-region CNN
recognition model that yields an enriched object representation capable to capture a diversity of
discriminative appearance factors. Mottaghi et al. [20] designed a novel deformable part-based model
that exploits both global and local context around each candidate detection, which can help in detecting
objects at all scales especially at tiny objects.

As we know, the PASCAL VOC dataset which contains 20 object categories is the most widely
used benchmark dataset for generic object detection. The object instances in the PASCAL VOC
are usually large because they occupy a major portion of the image. However, the concerned
remote sensing object instances such as plane and ship usually have smaller object size in which
the difficulty with small objects is intuitive. Current object detectors, like Faster R-CNN, always
leverage the convolutional neural networks to extract increasingly abstract feature representations.
During this process, the intermediate feature maps are usually down-sampled too many times by the
convolutional layer or the pooling layer whose stride is greater than one. Obviously, it is expected that
directly applying the Faster R-CNN to detecting the small remote sensing objects only obtains poor
performance. To address this issue, we investigate how to modify Faster R-CNN for the task of small
object detection in optical remote sensing images.

In this paper, we extend the prevailing Faster R-CNN for the small object detection in optical
remote sensing images. Firstly, we elaborately modify anchors in the RPN stage of Faster R-CNN based
on the statistics of our training set to generate the small object proposals. Secondly, an effective method
is raised to produce higher-resolution feature maps, simultaneously utilizing low-level features and
high level features, which is very critical to enable us to detect small remote sensing objects. Thirdly,
we leverage the context information enclosing an object proposal during the training process to further
boost the small object detection performance. Finally, we present a simple yet effective approach, called
‘random rotation’, to augment our available optical remote sensing data while applying a sampling
strategy to solve the problem of non-uniform class distribution during training.

2. Modifying Faster R-CNN for Small Object Detection in Optical Remote Sensing Images

In the feature extraction process of Faster R-CNN, a region proposal network (RPN) shares
convolutional layers with region-based detectors, especially Fast R-CNN, which can significantly
reduce the proposal cost in comparison with the popular Selective Search. RPN is designed to
efficiently predict region proposals with a wide range of scales and aspect ratios for the rather large
object in PASCAL VOC. What is noticed is that the smallest RPN anchor boxes are much bigger than
the most instances of our remote sensing object dataset.

It can be found from Figure 1 that the areas of most bounding boxes are between 10? and 1002
pixels in our dataset. In the original paper, their anchor-based method is built on a pyramid of anchors
with multiple scales and aspect ratio. The three aspect ratios used are 0.5, 1, 2, and the areas of the
square shape bounding boxes at the three scales are 1282, 2562, and 5122 pixels, respectively. However,
the default setting of the anchor parameters, which is not able to cover the range of small object size in
optical remote sensing images, enable to deliver good results on datasets such as PASCAL VOC where
the objects are typically relatively large. In order to address this problem, several modifications are
described as below.
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Figure 1. Histogram of object sizes in our remote sensing dataset.

It is noteworthy that the original RPN anchors are too large to cover the range of object sizes
in our remote sensing dataset, which can be shown in the Figure 1. Based on this observation, we
could either choose adequate anchors by experience or simply add additional anchors using the same
powers-of-two scheme while keeping the default aspect ratios used in the original paper. Furthermore,
we notice that the feature map size of the last shared convolutional layer is so small that the extracted
features are only sensitive to the large objects. Because the intermediate feature maps are usually
down-sampled four times by the stride of two pixels. Ren et al. [21] has experimentally proved
that choosing the pre-trained ResNet-50 [22] model enable to obtain better performance than other
pre-trained models like VGG [23] and Inception [24-26]. Following this, we choose the ResNet-50
model as the backbone in the Faster R-CNN by default. However, the intermediate feature maps are
naturally down-sampled five times using the convolutional layer with the stride of 2.

Built on the successful FPN, the top-down pathway is adapted to generate higher resolution but
semantically stronger feature maps for the shared feature extractor as shown in the Figure 2. These
feature maps are then concatenated channel by channel with the feature maps from the bottom-up
pathway via lateral connections. Furthermore, all the channel dimensions are beforehand adjusted to a
fixed number by a1 x 1 convolutional layer. Thus each lateral connection combines feature maps of
the same spatial size from the bottom-up pathway and the top-down pathway. There are often many
layers producing output maps of the same size and we say these layers are in the same network stage.
Specifically, we use the feature maps output by the last residual block of second three stages which are
denoted as res3d, res4f, and res5c in the Figure 2 respectively. Meanwhile, we notice that they have
strides of {8, 16, 32} pixels and the final feature output has the stride of 8 pixels. We simply up-sample
the feature maps of the last layer of higher stages by the bilinear interpolation method. After merging
the three feature outputs by element-wise addition, a 3 x 3 convolutional layer is appended to generate
the final feature map, which is used to degrade the aliasing effect of up-sampling.
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Figure 2. Illustration of the proposed modified Faster R-CNN for small remote sensing objects.

3. Contextual Detection Model

In this section, we design a new contextual model to better exploit contextual information for
our remote sensing dataset. After generating the object proposals in the RPN stage, an ROI-Pooling
layer is used to project each proposal onto the shared feature maps based on the strides of the network
in the Fast R-CNN stage. The feature maps corresponding to each proposal are then encoded into
a fixed-dimensional representation with a predefined spatial resolution. Following this, several
fully connected layers are fed with these presentations for classification and class-specific bounding
box regression.

Since context contributes to the object detection, we expect that it will help to effectively detect
small remote sensing objects. Moreover, the feature maps corresponding to the small candidate
proposals, whose spatial resolution may be less than 1 x 1 after enduring multiple down-sampling
process, are less discriminable because small objects usually only occupy a small image area. Therefore,
we focus on leveraging the context information to boost the performance of small remote sensing
object detection.

As is demonstrated in the Figure 3, we incorporate the corresponding context region enclosing
the proposal region with the candidate proposal after the ROI-Pooling layer in which the spatial
resolution follows the default setting, namely 7 x 7. This is a simple and intuitive manner to merge the
context information, which is proved to be effective in our experiments. Furthermore, the concatenated
feature maps are fed into a 1 x 1 convolutional layer to reduce channel dimensions considering for
the computation cost. Besides, we construct the shared feature maps with all the convolutional layers
from the pre-trained ResNet-50 model which has no fully connected layers. So we attach two hidden
1024-d fully connected layers (each followed by Dropout [27] and ReLU layer), which are randomly
initialized by the Xavier method, before the final classification and bounding box regression.
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Figure 3. The contextual detection model.

4. Data Pre-Processing

In this section, we present a simple yet effective approach to augment our available optical remote
sensing data while applying a sampling strategy to solve the problem of non-uniform class distribution
during training.

As a matter of fact, the available optical remote sensing data are very scarce while they can be
gathered difficultly. We only focus on two remote sensing object instances, ship and plane. Currently
only the NWPU VHR-10 dataset [28], which contains totally 800 very-high-resolution (VHR) optical
remote sensing images that were cropped from Google Earth and Vaihingen dataset and then manually
annotated by experts, is available to the public. This dataset includes 10 categories—which are airplane,
ship, storage tank, baseball diamond, tennis court, basketball court, ground track field, harbor, bridge,
and vehicle—but there are only 90 images involved in the plane class and 57 images for the ship class,
which is not enough for training. Getting more data is essential for our current situation.

We augment our training data by two methods: manual annotation and data augmentation. A set
of 2608 images containing the ‘ship’ category in our dataset are collected from multiple sensors and
platforms such as Google Earth with multiple resolutions. In addition, the flip operation is usually used
for data augmentation in object detection. Built on Random Erasing (RE) [29], we introduce Random
Rotation (RR) which is a simple yet effective data augmentation technique for training our modified
Faster R-CNN. In particular, RR happens in a certain probability. An image within a mini-batch is
randomly chosen to undergo either RR with probability p or kept unchanged with probability 1 — p.
RR randomly rotates an image by an angle 6. Notably, the four points of the ground truth, annotated
by a rectangle region, are rotated by the angle 6. The original coordinates of these points are denoted
anticlockwise as {(x;,y;),i = 1,2,3,4}, respectively. Hence, the rotated points {(x;/,y;/),i = 1,2,3,4}
can be calculated under the following Equation (1).

xil | _ c9s9 —sinf X; i=1234 (1)

yi! sinf cosf Vi
What is noteworthy is that the original bounding box of each ground truth becomes parallelogram
after RR operation so that we employ their minimum enclosing rectangle (MER), whose upper left
corner (Xyin, Ymin) and lower right corner (Xax, Ymax) can be calculated by the following Equation (2),

as the rotated bounding box. This has the advantage of leveraging the context information to some
extent because the MER crops more regions than the original bounding box.

Xin = min(xq/, xo/, x31, X4/)
Ymin = min(yllry2/1y3/ry4/)
Xmax = max(x1/, X!, x3/, x4/)
Ymax = max(y1/, Y2/, y3l, ya!)

)

Fortunately, in total we collected 5922 optical remote sensing images, 5216 for ‘ship” and 706
for ‘plane’. Obviously, the numbers of images in different classes are imbalanced, which pose great
challenges for training. To address this, we apply a sampling strategy named ‘balanced sampling’
(BS) [30] during training. This strategy is aim at iterating as uniform as possible within an epoch with
respect to classes. In reality, we use one type of list, namely a training list. A typical example for
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three classes is shown in the Figure 4. Firstly, we sort our training list class by class and count the
largest category number denoted as K3 in the Figure 4. Then we generate a random list of K3 integers
with the interval [0, K3 — 1] for each class. For each class, we leverage the mod operator to obtain a
corresponding indexed-value list which the images are sampled according to. Finally, a new training
list is generated by concatenating and shuffling the sampled image list. After an epoch, the foregoing
operators are repeated again until the end of the whole model training. Apparently, our sampling
strategy is not only cost effective but very easy to implement.
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Class Name ID — = img_008 2
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Figure 4. The pipeline of balanced sampling.

5. Experiments and Results

5.1. Implementation Details

Our experiments are conducted based on the modified Faster R-CNN detector which employs the
ResNet-50 model if not specified. The model is initialized by the ImageNet classification model and
then fine-turned on our optical remote sensing dataset which contains two-class remote sensing object
instances, ship and plane. Some samples from our dataset, which have been resized to 128 x 128 pixels
for viewing conveniently, are shown in Figure 5. It can be seen from Figure 5 that the images contain
scenes of civilian ports, military bases, offshore areas, and far seas. In total, we collected 5922 optical
remote sensing images named ‘SORSI dataset’, 5216 for ship and 706 for plane. It is noteworthy that the
numbers of images in different classes are highly imbalanced, which poses great challenges for model
training. It can be found from Figure 6 that the areas of most bounding boxes are between 10> and
1002 pixels in our dataset. Besides, the areas of bounding boxes falling in the ship category dominate
from 107 to 50% pixels while those in the plane category possess from 502 to 1002 pixels. Obviously, it is
far more difficult to detect ships than to detect planes. To make an evaluation, our dataset is randomly
split into 80% for training and 20% for testing. In the training process, we flip all the training images
while subtracting the mean value (103.939, 116.779, 123.68).

In all of the experiments, we trained and tested both RPN and Fast R-CNN on images of a single
scale based on the deep learning framework, Caffe [31]. We resize the images such that their shorter
side is 608 pixels under the premise of ensuring the longer side less than 1024 pixels. Meanwhile,
we apply stochastic gradient descent (SGD) for 20K iterations to train the baseline model and the
training rate starts with 0.01 and decreases to 0.0001 after 15K iterations. For anchors, we adopt
three scales with box areas of 162, 402, and 1002 pixels, and three aspect ratios of 1:1, 1:2, and 2:1,
which are adjusted for better coverage of the size distribution of our optical remote sensing dataset.
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The evaluation metric is average precision (AP) of each object instance and mean average precision
(mAP) with Interception-of-Union (IoU) threshold as 0.5. To reduce redundancy, non-maximum
suppression (NMS) is adopted on the proposal regions based on their box-classification scores. The IoU
threshold is fixed for NMS at 0.7. All experiments were performed on Intel i7-6700K CPU and NVIDIA
GTX1080 GPU.

Figure 5. Some samples from SORSI dataset.
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Figure 6. Histogram of object sizes class by class.

5.2. Comparative Experiment

As a baseline to validate the effectiveness of our method, we perform an experiment on our
dataset, leaving the settings of the modified Faster R-CNN on the default parameters in which the
pre-trained model is ResNet-50 networks except that the total stride on the last shared convolutional
layer is 16 pixels in contrast. In this case, we only use the feature maps output by the last residual
block of second two stages which are denoted as res4f and res5c in the Figure 2 respectively. Similarly,
we up-sample the feature maps of the last layer of higher stages by a factor of 2 using the bilinear
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interpolation method for simplicity. Before that, we adopt a 1 x 1 convolutional layer to reduce
channel dimensions. After merging the two feature outputs, a 3 x 3 convolutional layer is appended to
generate the final feature map. Furthermore, a few experiments are separately performed to evaluate
the impact of using appropriate anchor boxes by setting different anchor scales.

We report the results with using various strategies during training the modified Faster R-CNN
on SORSI dataset in Table 1. The performance of the baseline is 66.6% mAP where the AP is 58.2%
for ship and 75.0% for plane. Apparently, we find that the modified Faster R-CNN with the total
stride of 8 achieves better performance than the baseline model with the total stride of 16 by a large
margin, especially for the ship whose areas of bounding boxes are between 10 and 50> pixels. Besides,
it is evidently shown that using appropriate anchor boxes can conduce to boosting the detection
performance by almost two percentage points. This may bring in some insights about how to choose
appropriate anchor boxes according to the existing dataset. Based on this conclusion, all of the
follow-up experiments will adopt three scales with box areas of 16?, 402, and 100 pixels.

Table 1. The results of modified Faster R-CNN on SORSI dataset.

Method mAP (%) L(/o) Anchor Scale Context RR  BS
Ship  Plane
Baseline 66.6 58.2 750 {1282 256% 5122}
(stride = 16) 67.1 595 746 {642 1282 256%}
68.1 60.1  76.0 {102 402 1002}
735 710  76.0 {102 402 1002}
74.1 717 765 {102 402 1002} i
75.8 69.7 818 {102 402 1002} Vv
Modified Faster R-CNN 76.7 69.8 836 {102 402 1002} v
(stride = 8) 76.1 714 808 {102 402 1002} i v
77.1 704 839 {102 402 1002} v vV
783 723 843 {102 402 1002} Vv v
78.9 729  85.0 {102 402 1002} i N,

Due to the non-uniform class distribution, the plane class cannot be trained enough because
the batch size has to be fixed to 1 for RPN stage. The relevant experimental results indicate that the
balanced sampling strategy contributes to increasing the plane AP by 7.6% while the ship AP only
decreases by 1.2%, which proves that the BS strategy is able to solve the effect of the non-uniform class
distribution in some degree. Furthermore, we conduct several experiments to investigate the behavior
of the proposed RR as a data augmentation technique. In the experiments, the probability p is set at 0.5
while the rotate angle 6 is set at 10°. We observe that the behavior of the proposed RR is somewhat
similar to that of BS which enlarges our training set equivalently. When using the contextual detection
model during training, it is noted that we only obtain low-level improvements by 0.7% and 0.5%,
respectively. Besides, when adopting any two kinds of the three strategies during training, we find
that it can contribute to achieve better performance combining the balanced sampling strategy and
the contextual detection model. At last, the best performance can be obtained by combining the three
aforementioned strategies.

By comparing and analyzing the multiple groups of experiments, the validity of the proposed
structure is verified. Our modified Faster R-CNN delivers very impressive performance on detecting
small objects in optical remote sensing images. However, it can be seen from Table 1 that the mAP still
has room for improvement. Through observation of the test results, we attribute this to two points:
false alarm and misjudgment.

Some test results are shown in Figure 7 on the test set of our SORSI dataset. As shown in
Figure 7b—d, more small objects are able to be detected in the case that the stride is equal to 8, which
suggests that producing higher-resolution feature maps simultaneously utilizing low-level features
and high level features is very critical to enable us to detect small remote sensing objects. However,
ships tend to dock in a complex scene such as a port while planes always line up on the airfield. These
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scenes often contain objects with similar geometric construction, such as a long straight line. These
disturbances will cause false alarms on the detector, as shown in Figure 7. Furthermore, some objects
are too small to be detected, resulting in misjudgments as illustrated in Figure 7b. At the same time,
a few ground truths may be not annotated due to the manual annotation error as indicated in Figure 7a,

which leads to false alarms as well.

plane : 0.725

plane : 0.733

(a) false alarms caused by the manual (b) the detection results of small planes

annotation error
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Figure 7. Some test results on the test set of our SORSI dataset. The green boxes indicate the ground
truths while the red boxes refer to the detected objects annotated by their scores. There are two detection
results in every single image where the upper is the detection result in the case that the stride is equal

to 8 and the bottom is the detection result in the case that the stride is equal to 16.

6. Conclusions

In this paper, we proposed a modified Faster R-CNN method to deal with the small object
detection problem in optical remote sensing images. To address this, we designed a similar architecture
adopting top-down and skip connections to produce a single high-level feature map of a fine resolution

plane : 0.752
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as the final shared feature output, which is very critical to enable us to detect small remote sensing
objects. At the same time, we chose appropriate anchors to cover the size distribution of our optical
remote sensing dataset. Furthermore, we leveraged the context information enclosing an object
proposal to further improve the small object detection performance during training. We presented
a simple yet effective approach, named ‘random rotation’, to augment our available optical remote
sensing data while applying a sampling strategy to solve the problem of non-uniform class distribution
during training. We conducted a wide range of experiments and provided a comprehensive analysis of
the performance of our modified Faster R-CNN on the task of small object detection in optical remote
sensing images. Our future work will focus on applying our approach to other remote sensing objects
in complex scenes and detecting dense small optical remote sensing objects.
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