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Abstract: In localization estimation systems, it is well known that the sensor-emitter geometry can
seriously impact the accuracy of the location estimate. In this paper, time-difference-of-arrival (TDOA)
localization is applied to locate the emitter using unmanned aerial vehicle (UAV) swarms equipped
with TDOA-based sensors. Different from existing studies where the variance of measurement noises
is assumed to be independent and changeless, we consider a more realistic model where the variance
is sensor-emitter distance-dependent. First, the measurements model and variance model based on
signal-to-noise ratio (SNR) are considered. Then the Cramer–Rao low bound (CRLB) is calculated and
the optimal configuration is analyzed via the distance rule and angle rule. The sensor management
problem of optimizing UAVs trajectories is studied by generating a sequence of waypoints based on
CRLB. Simulation results show that path optimization enhances the localization accuracy and stability.

Keywords: time-difference-of-arrival (TDOA); Cramer–Rao low bound (CRLB); optimal configuration;
UAV swarms; path optimization

1. Introduction

Passive localization of an emitter from its radio frequency (RF) transmissions has many
applications such as search and rescue, electronic surveillance, cognitive radio networks, and wireless
sensor networks. The receiving platform can employ sensors measuring angle of arrival (AOA) [1],
time difference of arrival (TDOA) [2], and received signal strength (RSS) [3]. TDOA measurements
construct a time difference observation equation by measuring the time difference of the emitter
signal arriving at different sensors. Therefore, each time difference, corresponding to one hyperboloid,
and the emitter can be obtained from two or more hyperbolas. With its high accuracy and simplicity,
the TDOA localization technique is widely applied [4].

The equations of the TDOA technique are quadratic and the goal is to find the position of an
emitter by solving a set of nonlinear equations obtained from TDOA measurements. The TDOA
measurements can be calculated by a simple closed form, e.g., spherical intersection (SX) and spherical
interpolation (SI) [5], which usually uses nonlinear least-square solutions. Furthermore, the maximum
likelihood method, like the Chan algorithm, was also proposed in [6] and semidefinite programming
(SDP) methods in [7]. It is well known that location accuracy depends not only on the localization
algorithm but also on the sensor-emitter geometry. Therefore, the selection of an optimal configuration
can further improve the location accuracy. Yang et al. [8] initially performed a theoretical analysis
of the sensor-emitter geometry based on CRLB with uncorrelated TDOA measurements. Lui [9]
discussed optimal sensor deployment considering the correlated TDOA measurement, which makes
the configuration rule more applicable. Meng et al. [10,11] formulated an optimal configuration
in centralized and decentralized types of TDOA localization and further research focused on the

Appl. Sci. 2018, 8, 1001; doi:10.3390/app8061001 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9643-6703
http://dx.doi.org/10.3390/app8061001
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/6/1001?type=check_update&version=2


Appl. Sci. 2018, 8, 1001 2 of 17

heterogeneous sensor network. Francisco et al. [4] applied a multi-objective optimization in sensor
placement. Kim et al. [12] studied the optimal configuration of sensors with the assumption that
the emitter was located far from the sensors, while the sensors were relatively close to each other.
In recent years, more realistic distance-dependent noise for TOA and AOA measurements was also
considered [4,13,14]. In this paper, the CRLB in TDOA localization with distance-dependent noise
is calculated in both static and movable scenarios; the distance rule and angle rule of the optimal
configuration are extracted, which can provide guidance in optimal sensor-emitter geometries.

The application of unmanned aerial vehicle (UAV) swarms can provide unique platforms for
TDOA localization. Their characteristics of flexible movement and cooperation enable them to
rapidly change current geometries to achieve higher location accuracy [15,16]. Therefore, the sensor
management of real-time UAV path optimization has been a heated research issue in recent
years [17]. Frew [18] presented the signal strength measurement to control the UAVs movement.
Soltanizadeh et al. applied the determinant of Fisher information matrix (FIM) as the control objective
function in RSS localization. Wang [19] investigated UAV path planning for tracking a target using
bearing-only sensors. Alomari et al. [20] provided a path planning algorithm based on the dynamic
fuzzy-logic method for a movable anchor node. Kaune [21,22] preliminarily considered the path
optimization method when there was only one sensor moving platform during TDOA localization.
In this paper, UAVs’ trajectories are optimized by generating a sequence of waypoints based on CRLB.
The CRLB of TDOA location is not only taken as a performance estimator but also as the rule of UAV
path optimization. The emitter position is solved by combining the SDP methods and an extended
Kalman filter (EKF) estimator. Meanwhile, the constraints of UAV swarms are considered, such as
motion and communication constraints. Therefore, the real-time path planning of UAVs is converted
to nonlinear optimization with constraints. The interior penalty function method is adopted to convert
the nonlinear optimization to simple unconstrained optimization so as to get the flight path of each
UAV for the next time.

The rest of the paper is structured as follows. Section 2 introduces the TDOA measurement model
and distance-dependent noise model. In Section 3, the optimal configuration is analyzed in both
static and movable emitter scenarios based on the CRLB. Section 4 presents the optimal UAV path
optimization method. Simulations and conclusions are given in Sections 5 and 6, respectively.

2. Problem Formulation

2.1. Measurement Model

Consider that M time-synchronized UAVs are applied to receive the emitted signals and
measure the TOAs with the state vector of each UAV χi(k) = (xi(k), yi(k))

T , i = 1, 2, · · ·M.
Let xt = (xt, yt) ∈ R2 be the location of an unknown emitter. The TDOA measurement can be obtained
by the difference between any two TOA measurements, eliminating the unknown time of emission.
By multiplication of the TDOA measurements by the electromagnetic wave transmission speed,
the measurement function in the range domain is obtained:

zij = ri − rj, i, j ∈ {1, . . . , M} ∧ j 6= i, (1)

with ri =
√
(xt − xi)

2 + (yt − yi)
2 being the distance between the emitter and receiver. Let vi denote

the TOA estimation error, which is assumed to be Gaussian. Then the TDOA measurement equation
can be expressed as

ẑij = zij(xt) + vij, i, j ∈ {1, . . . , M} ∧ i 6= j, vij ∼ N (0, σ2
i + σ2

j ), (2)

where σ2
i is the measurement variance of the i-th receiver of the UAV platform, the measurement noise

vij = vi + vj is composed of the noise at the two associated receivers and has the covariance σ2
i + σ2

j .
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Without loss of generality, let the 1st receiver be the reference receiver and the others be auxiliary
receivers. The variance matrix of measurement matrix ẑ1j consisting of M− 1 measurements can be
represented as:

Σr1 =


σ2

1 + σ2
2 σ2

1 · · · σ2
1

σ2
1 σ2

1 + σ2
3 · · · σ2

1
...

...
. . .

...
σ2

1 σ2
1 · · · σ2

1 + σ2
M

. (3)

Therefore, the measurement vector is given by

ẑ = z(xt) + w, w ∼ N (0, Σr1). (4)

2.2. Measurement Variance Model with Distance-Dependent Noise

Considering the influence of signal frequency, bandwidth, response time, and SNR, the CRLB of
the TOA measurement error variance σ2

i can be represented as [23]:

σ2
i =

c
τ · SNRi · F( f0, B)

, (5)

where, τ is the observation time, f0 is the center frequency, B is the bandwidth of the received
signal, and c is some constant. High accuracy can be achieved by utilizing high-precision time of
arrival measurement techniques at reasonable SNR levels. With constant emitter power and constant
frequency, the variance of time-delay measurement is inversely proportional to the SNR, and the SNR
is inversely proportional to r2. Therefore, the relationship of the i-th receiver error and distance can be
expressed as [24]:

σ2
i (r) =

 a
SNR0

· r2
i

r2
0

ri > r0
a

SNR0
ri ≤ r0

, (6)

where r0 is the lower bound of the distance corresponding to the minimum of TOA error variance and
SNR0 is the corresponding optimal SNR at the shortest distance.

The parameter-dependent standard deviation is more complex compared with the constant
deviation, so the CRLB and field of view is changing in TDOA localization. Hence,
the parameter-dependent standard deviation must be taken into account for accuracy analysis.

The problem of emitter localization is to estimate the location more precisely. In this paper, we
mainly study the optimal sensor configuration, which can provide two basic rules to understand the
rules to improve the localization performance. Then the online sensor management problem of optimal
UAVs trajectories is explored.

3. Optimal Configuration Analysis

In this section, a theoretical analysis of optimal sensor-emitter geometry in TDOA localization
is given without considering any constraints. Analytic solutions are derived in both the static and
movable emitter scenarios.

3.1. Static Emitter Scenario

The relative sensor-emitter geometry is closely related to the location accuracy, which
can be reflected by CRLB, and the configuration corresponding to the minimum CRLB is the
optimal configuration.

For unbiased estimator x̂ of x, its Cramer–Rao bound can be expressed as:

E
[
(x− x̂)(x− x̂)T

]
≥ J−1 , CRLB(x), (7)
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where J is the Fisher information matrix (FIM).
Then the FIM for TDOA localization with distance-dependent noise is given by [25]

Ji,j =

[
∂

∂xi
ln( fẑ(ẑ; x))

∂

∂xj
ln( fẑ(ẑ; x))

]
, (8)

where i, j ∈ {1, 2}. This FIM can be divided into two parts; as for the first part,

J1,(i,j) =
∂z(x)

∂xi
Σr1
−1(x)

(
∂z(x)

∂xj

)T

. (9)

The Jacobian matrix of the measurement set with receiver 1 as the reference receiver is

∂z(x)
∂x1

=
[

∂z12(x)
∂x1

, ∂z13(x)
∂x1

, · · · , ∂z1M(x)
∂x1

]T

= [cos(θ2)− cos(θ1), cos(θ3)− cos(θ1), · · · , cos(θM)− cos(θ1)]
T

(10)

∂z(x)
∂x2

= [sin(θ2)− sin(θ1), sin(θ3)− sin(θ1), · · · , sin(θM)− sin(θ1)]
T , (11)

with θi is the angle of arrival measurement of the i-th sensor and the emitter.
For the second part, when ri > r0,

J2,(i,j) =
1
2

Tr

(
Σr1
−1(x)

∂Σr1(x)
∂xi

Σr1
−1(x)

∂Σr1(x)
∂xj

)
, (12)

where the Jacobian matrix for computing the distance dependent FIM is expressed by

∂Σr1(x)
∂x1

= 2β


r1 cos θ1 + r2 cos θ2 r1 cos θ1 · · · r1 cos θ1

r1 cos θ1 r1 cos θ1 + r3 cos θ3 · · · r1 cos θ1
...

...
. . .

...
r1 cos θ1 r1 cos θ1 · · · r1 cos θ1 + r(M−1) cos θ(M−1)

 (13)

∂Σr1(x)
∂x2

= 2β


r1 sin θ1 + r2 sin θ2 r1 sin θ1 · · · r1 sin θ1

r1 sin θ1 r1 sin θ1 + r3 sin θ3 · · · r1 sin θ1
...

...
. . .

...
r1 sin θ1 r1 sin θ1 · · · r1 sin θ1 + r(M−1) sin θ(M−1)

, (14)

where β = a
SNR0r2

0
.

Based on the characteristics of the FIM, the optimal configuration is analyzed via distance rule
and angle rule.

(1) Distance rule

As pointed out in [26], arbitrarily selecting a reference sensor does not change the CRLB
for TDOA-based source localization with distance-independent noises. Here, we extend it to the
distance-dependent noise model.

Theorem 1. Given the positions of the receivers and emitter, i.e., given distance ri and angle θi the election of
reference receiver has no impact on the CRLB with distance-dependent noise.



Appl. Sci. 2018, 8, 1001 5 of 17

Proof. Without loss of generality, receivers 1 and 2 are taken as the reference receivers. Then the TDOA
measurement with different reference receivers can be represented by

ẑr1 =
[

ẑ21 ẑ31 · · · ẑM1

]T
= T1

[
ẑ1 ẑ2 · · · ẑM

]T
(15)

ẑr2 =
[

ẑ12 ẑ32 · · · ẑM2

]T
= T2

[
ẑ1 ẑ2 · · · ẑM

]T
, (16)

where T1 and T2 are transformation matrices and are all of dimension (M− 1)×M. T1 and T2 can be
represented by

T1 =


−1 1 0 · · · 0

−1 0
. . . . . .

...
...

...
. . . . . . 0

−1 0 · · · 0 1

T2 =


1 −1 0 · · · 0

0 −1 1 0
...

...
... 0

. . . 0
0 −1 0 0 1

.

It can be seen that through an element transformation matrix, T2 can be transformed to T1, i.e.,

T2 = U21T1, (17)

where U21 is a (M− 1)× (M− 1) elementary transformation matrix. It is easy to obtain

∂zr2(x)
∂xi

=
∂zr1(x)

∂xi
UT

21 (18)

Σr2 = U21Σr1UT
21. (19)

Then Jr2
1,(i,j)

can be written as

Jr2
1,(i,j)

= ∂zr2(x)
∂xi

Σr2
−1(x)

(
∂zr2(x)

∂xj

)T

= ∂zr1(x)
∂xi

UT
21
(
U21Σr1(x)UT

21
)−1
(

∂zr1(x)
∂xi

UT
21

)T

= ∂zr1(x)
∂xi

(
UT

21
(
UT

21
)−1
)

Σr1
−1(x)

((
UT

21
)−1UT

21

)
∂zr1(x)

∂xi

= ∂zr1(x)
∂xi

Σr1
−1(x) ∂zr1(x)

∂xi

= Jr1
1,(i,j)

. (20)

Similarly, we can get Jr2
2,(i,j)

= Jr1
2,(i,j)

. This completes the proof. �

Therefore, the selection of a reference receiver does not influence the CRLB with
distance-dependent noise.

Theorem 2. Given the angle θi, i = 1, 2, · · ·M, the smaller the distance between receiver and the source,
the less the localization error is.

Proof. Due to the meaning of J and the fact that the receiver measurement noise becomes larger as the
range increases, J−1 increases. A similar proof can be found in [27], but is omitted here. This distance
rule can guide UAVs to fly as close to the emitter as possible. �

(2) Angle rule

Assuming the distance between the emitter and each receiver is identical, i.e., r1 = r2 = · · · = r,
which means the receivers have equal noise variances, we get [6,9]

J1 = GΣ−1(x)GT , (21)
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with
G = [gij, · · · ]{i,j}∈I0

(22)

gij = gi − gj (23)

gi =


xt−xi√

(xt−xi)
2+(yt−yi)

2

yt−yi√
(xt−xi)

2+(yt−yi)
2

 =

[
cos(θi)

sin(θi)

]
. (24)

Take 1st receiver as the reference receiver and I0 = [{21}, {31}, · · · , {M1}] is as corresponding
subset of sensor pairs, then we get

G = [g21, g31, · · · , gM1] (25)

Σr1(x) = 2
a

SNR0
· r2

r2
0


1 1/2 · · · 1/2

1/2
. . . . . .

...
...

. . . . . . 1/2
1/2 · · · 1/2 1

. (26)

Substitute it into Equation (23), with J1 given by

J1 = r2

β


M
∑

i=1
cos2(θi)− 1

M

(
M
∑

i=1
cos(θi)

)2

M
∑

i=1
cos(θi) sin(θi)− 1

M

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)

M
∑

i=1
cos(θi) sin(θi)− 1

M

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)

M
∑

i=1
sin2(θi)− 1

M

(
M
∑

i=1
sin(θi)

)2

. (27)

For the second part, after the algebraic simplification in Equation (12), J2 can be simplified as

J2 =


2(M−1)2−4

M2

M
∑

i=1
cos2(θi) +

4
M2

M
∑

i=1

M
∑

j=1
cos(θi) cos(θj)

(M−1)2

M2

M
∑

i=1
sin(2θi) +

2
M2

M
∑

i=1

M
∑
j>i

sin(θi + θj)

(M−1)2

M2

M
∑

i=1
sin(2θi) +

2
M2

M
∑

i=1

M
∑
j>i

sin(θi + θj)

2(M−1)2−4
M2

M
∑

i=1
sin2(θi) +

4
M2

M
∑

i=1

M
∑

j=1
sin(θi) sin(θj)

. (28)

Combine J1 and J2, the FIM can be expressed as

J =

 η1
M
∑

i=1
cos2(θi)− η2

(
M
∑

i=1
cos(θi)

)2

η1
M
∑

i=1
cos(θi) sin(θi)− η2

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)

η1
M
∑

i=1
cos(θi) sin(θi)− η2

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)

η1
M
∑

i=1
sin2(θi)− η2

(
M
∑

i=1
sin(θi)

)2

, (29)

where η1 =

(
2(M−1)2−2

M2 + r2

β

)
, η2 =

(
r2

Mβ −
2

M2

)
.

Theorem 3. Given the ranges ri = rj, ∀i, j ∈ {1, 2, · · ·N} from each receiver to the emitter, we have

Tr(J−1) ≥ η1

4
; (30)

the equality holds if and only if

M
∑

i=1
cos(θi) = 0 ,

M
∑

i=1
sin(θi) = 0

M
∑

i=1
cos(2θi) = 0 ,

M
∑

i=1
sin(2θi) = 0

. (31)
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Proof. Let λi, i = 1, 2 be the eigenvalues of J, which is a positive definite. Then the eigenvalues of J−1

are 1/λi, It is obvious that

2 ≤
√
(1/λ1 + 1/λ2)(λ1 + λ2) =

(
Tr(J)Tr(J−1)

)1/2
, (32)

implying that
Tr(J−1) ≥ 4/Tr(J). (33)

The equality holds if and only if λ1 = λ2 = λ. Since J is a two-dimensional symmetric positive
definite matrix, according to the Courant–Fischer–Weyl principle, the equation holds when J is diagonal
and has equal eigenvalues. Hence it implies that

J = λI. (34)

As for the Tr(J), we can obtain

Tr(J) = η1 − η2

( M

∑
i=1

cos(θi)

)2

+

(
M

∑
i=1

sin(θi)

)2
 ≤ η1. (35)

Combining Equations (34) and (35), we get

M
∑

i=1
cos(θi) = 0 ,

M
∑

i=1
sin(θi) = 0

M
∑

i=1
cos(2θi) = 0 ,

M
∑

i=1
sin(2θi) = 0

. (36)

As is known from the formulas above, when the distance between each receiver is identical,
the measurement accuracy depends on the included angle θi between each receiver and the emitter.
Therefore, it can be called the angle rule for the optimal configuration. �

Figure 1 shows Tr(J) when M = 3 and η1 = 7, where A = θ2 − θ1, B = θ3 − θ1 and A + B ≤ 2π.
At this time, when A = 2π/3 and B = 2π/3, Tr(J) has the only maximum value.
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Figure 1. 3D plot of the information function Tr(J) for three sensors. (a) The value of Tr(J); (b) The
contour plot of Tr(J).
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When M ≥ 3, it is proven that the receiver distribution with uniform angular arrays (UAAs) can
meet the above conditions [9]:

θi = θ0 +
2π

M
(i− 1), i = 1, 2, . . . , M, (37)

where θi is any constant given on [0, 2πM/(M− 1)). Figure 2 shows the optimal receiver geometries
for M = 3, M = 4, and M = 5. When M = 4, 5, UAAs distribution method is the unique solution
of Equation (38). For M ≥ 6, even though the optimal deployment is still given by partitions of
appropriate angle each with UAA distribution, the UAAs distribution method is an optimal solution.
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Figure 2. Optimal receiver geometries for (a) M = 3 , (b) M = 3, (c) M = 5.

Remark 1. The Cramer–Rao bound J−1 under different distribution methods is a function of the receiver–emitter
distance and angle. The optimal distribution method is to approach the distance lower bound r0, according to the
distance rule and select a good angular separation according to the angle rule.

For the case of arbitrary distances and angles, getting an analytic solution for the receiver–emitter
geometry problem may be impossible. Some optimization algorithms can be applied to acquire a
local solution.

3.2. Movable Emitter Scenario

Semidefinite programming methods [6] are applied in this paper to estimate the emitter location.
Then the estimator value, calculated by SDP methods each time, can further improve the result
estimated by the EKF estimator [28]. In actual applications, the SDP methods can provide initialization
information for EKF. The process of the EKF filter is given by:

(1) Predict:

x̂k+1|k = fk(x̂k|k) (38)

Pk+1|k = f x
k Pk|k( f x

k )
T + f w

k Qk|k( f w
k )T . (39)

(2) Update:

Kk+1|k = Pk+1|k[Pk+1|k + J−1
k+1]

−1
(40)

Pk+1|k+1 = (I−Kk+1|k)Pk+1|k (41)

x̂k+1|k+1 = x̂k+1|k + Kk+1|k

[
zk+1 − hk+1(x̂k+1|k)

]
, (42)
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where the Jacobian matrix of the emitter movement model and the measurement model is:

f x
k =

∂ fk(xk, wk)

∂xk

∣∣∣∣ xk = x̂k|k
wk = 0

, f w
k =

∂ fk(xk, wk)

∂wk

∣∣∣∣ xk = x̂k|k
wk = 0

.

Here, we mainly focus on analyzing the optimal receiver–emitter geometry, which will enable
optimal localization in terms of the posterior error covariance matrix pk+1|k. In order to establish a
relationship between J−1 and the predicted value, Equation (43) can be expressed as follows [29]:

pk+1|k+1 =
(
(pk+1|k)

−1 + Jk+1

)−1
. (43)

Define pk+1|k =

[
p11 p12

p12 p22

]
, S = (pk+1|k)

−1 + Jk+1 which is positive definite. Then S is

given by

S =

 J(1,1) +
p22

p11 p22−p2
12

J(1,2) −
p12

p11 p22−p2
12

J(1,2) −
p12

p11 p22−p2
12

J(2,2) +
p11

p11 p22−p2
12

. (44)

For the moveable emitter scenario, the objective is to minimize the mean square error (MSE), i.e.,
Tr(pk+1|k+1), then the following results can be obtained.

Theorem 4. ForM ≥ 3, we have

Tr(pk+1|k+1) ≥
4

J(1,1) + J(2,2) +
p11+p22

p11 p22−p2
12

. (45)

The equality holds if and only if J(1,1) − J(2,2) =
(p11−p22)

p11 p22−p2
12

J(1,1) =
2p12

p11 p22−p2
12

.
(46)

Proof. The proof is similar to that of Corollary 3 and is omitted here. �
The explicit solutions of the optimal configuration can be acquired when the ranges are identical.

Given ri = rj, ∀i, j ∈ {1, · · · , M}, S can be written as follows [10,11]:

S =

 η1
M
∑

i=1
cos2(θi)− η2

(
M
∑

i=1
cos(θi)

)2

+ p22
p11 p22−p2

12

η1
M
∑

i=1
cos(θi) sin(θi)− η2

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)−

p12
p11 p22−p2

12

η1
M
∑

i=1
cos(θi) sin(θi)− η2

M
∑

i=1
cos(θi)

M
∑

i=1
sin(θi)−

p12
p11 p22−p2

12

η1
M
∑

i=1
sin2(θi)− η2

(
M
∑

i=1
sin(θi)

)2

+ p11
p11 p22−p2

12

. (47)

Then the optimal configuration can be acquired if and only if

M
∑

i=1
cos(θi) = 0 ,

M
∑

i=1
sin(θi) = 0

M
∑

i=1
cos(2θi) =

p11−p22
η1(p11 p22−p2

12)
,

M
∑

i=1
sin(2θi) =

p12
η1(p11 p22−p2

12)
.

(48)

If
∣∣∣∣ p11−p22

η1(p11 p22−p2
12)

∣∣∣∣ > M,
∣∣∣∣ p12

η1(p11 p22−p2
12)

∣∣∣∣ > M, or ri is an arbitrary value, it is hard to find the explicit

solution for optimal configuration. What can be done is to apply the results in Theorem 4 for the
expression of the determinant of the CRLB, and then solve an optimization problem.



Appl. Sci. 2018, 8, 1001 10 of 17

4. UAV Path Optimization

Section 3 provides the optimal configuration, without considering receiver constraints. However,
in general, the UAV receiving platform is affected by its movement constraints and cannot achieve
the conditions for optimal configuration within a short time [30]. Usually, the UAVs are far from the
emitter; also, they are affected by the communication constraint and collision avoidance constraint.
Therefore, it takes some time before reaching the optimal localization configuration.

The UAV path planning problem is a constrained optimization problem [31] that involves the
calculation of UAVs waypoints at discrete time instants. The optimal trajectory is generated by
minimizing the trace of the CRLB, which is analyzed in Section 3. The receiver measurements are
assumed to be synchronized with waypoint updates. In addition, UAVs are assumed to be equipped
with a Global Positioning System (GPS) and robust line-of-sight (LOS) datalinks [32].

Assuming the systematic UAV discrete dynamic model is [15,33]:

Xk+1 = f (Xk, uk), k = 1, 2, · · · , M, (49)

where Xk is the system status value Xk = [χ1(k), · · · , χM(k)]T at the time k, and uk is the control vector
uk = [u1(k), u2(k), · · · uM(k)] of UAV at each moment. Without loss of generality, UAV1 is assigned as
the reference node, and the proposed waypoint update equation of the UAV is:

xi(k + 1) =

[
xi(k)
yi(k)

]
+ v0T

[
cos ui(k)
sin ui(k)

]
, (50)

where v0 is the UAV flight speed and T is the time interval between waypoint updates. The UAVs
path can be optimized by taking the CRLB as the optimization rule. Within each time interval, SDP
methods and EKF are used to update emitter localization and tracking estimations.

Therefore, the objective function can be expressed as:{
argmin f (uk+1) = Tr(J−1

k+1(ri, θi)), k ≤ 3
argmin f (uk+1) = Tr(Pk+1|k+1(ri, θi)), k > 3

(51)

s.t.‖ui(k + 1)− ui(k)‖ ≤ umax (52)

g1ij(uk) = Rh − ‖xi(k + 1)− x̂t(k)‖ ≥ 0 (53)

g2ij(uk) = ‖xi(k + 1)− x̂t(k)‖ − Rl ≥ 0 (54)

g3ij(uk) = ch − ‖xi(k + 1)− xj(k + 1)‖ ≥ 0 (55)

g4ij(uk) = ‖xi(k + 1)− xj(k + 1)‖ − cl ≥ 0, (56)

where Equation (52) is the turn rate constraint of the UAV. Equations (53) and (54) represent the
distance constraint from the UAV to the emitter. Equations (55) and (56) are the UAV communication
constraint and collision avoidance constraint, respectively.

Therefore, the path optimization can be converted to non-linear optimization [34]. This problem is
solved by directly configuring the non-linear programming method (DCNLP) or sequential quadratic
programming (SQP) [35]. Considering that only the inequality constraint is included in this constraint,
the interior penalty function is adopted in this paper to convert this non-linear constraint to an
unconstrained problem of minimization auxiliary function. A small calculation amount guarantees the
real-time performance of the calculation. The calculation steps are as follows:

Step 1: Give the system status Xk = [χ1(k), · · · , χM(k)]T of each UAV at the time k, TDOA
measurement ẑ and Equations (52)–(56).

Step 2: Use the SDP methods to calculate the emitter location value x̂t(k) and the estimated value
xt(k|k ) by using EKF estimator.
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Step 3: The feasible region of non-linear Equations (53)–(56) in the constraints can be defined as:

S =
{

uk
∣∣g1ij(uk) ≥ 0, g2ij(uk) ≥ 0, g3ij(uk) ≥ 0, g4ij(uk) ≥ 0

}
. (57)

The logarithmic barrier function can be obtained as:

G(uk, γ) = f (uk) + γB(uk), γ > 0, (58)

where γ is a logarithmic barrier function, γ→ 0 ,

B(uk) = −
M

∑
i=1

ln(g1ij(uk))−
M

∑
i=1

ln(g2ij(uk))−
M−1

∑
i=1

M

∑
j=i+1

ln(g3ij(uk))−
M−1

∑
i=1

M

∑
j=i+1

ln(g4ij(uk)). (59)

Therefore, the non-linear constraint is converted to an unconstrained problem. The minimum
value of G(uk, γ) can be solved by setting the initial internal point.

Step 4: As for linear Equation (52), for the convenience of calculation, the uk solved in Step 3 can
be substituted into the constrained inequality. When the constraint conditions are satisfied, it is the
final output result; otherwise, the boundary value umax is selected.

Step 5: The control amount uk of the UAV for the next waypoint.
Figure 3 demonstrates the steps of the algorithm for UAV path planning based on CRLB. In this

figure, uk is the output of the algorithm at time step k. When UAVs arrive at new waypoints, new
measurements are collected and new estimations are acquired.
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Figure 3. UAV path planning for localization based on CRLB (TDOA: time-difference-of-arrival; SDP:
semidefinite programming; EKF: extended Kalman filter).

5. Simulation Results

In this section, four UAVs are considered to locate the static and movable emitter to verify the
sensor-emitter geometries, respectively. MATLAB simulations are implemented with a 2.7 GHz Intel
core processor with 8 GB of memory. The initial UAVs state vectors are χ1(1) = [−9600,−5000]T ,
χ2(1) = [−10000, −5000]T , χ3(1) = [−10000, −5400]T and χ4(1) = [−9600, −5400]T . The headings
for UAVs are all equal to π/2(north) at the initial moment and other key parameters are listed in
Table 1.
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Table 1. Parameters used in simulations.

Parameters Symbols Values

Initial emitter position xt [0, 0]T

Fixed flight velocity v0 150 m/s
Sampling time interval T 1 s

Signal to noise ratio SNR0 30 dB
Control vector umax 15◦

Maximum distance from the UAV platform to the emitter Rh 30 km
Minimum distance from the UAV platform to the emitter Rl 1000 m

Safe distance between the UAV platform cl 200 m
Communication maximum distance ch 15 km

Barrier parameter for interior point optimization γ 10−8

5.1. Angle Rule

Firstly, the UAVs path optimization with only a turn rate constraint is investigated to verify the
angle rule. The true emitter location is xt = [0, 0]T . Here we assume that σ2

i is irrelevant to distance ri.
Figure 4a,c show the optimal UAV path, taking CRLB as the rule and the straight-line UAV trajectories,
respectively. The red triangle in the figure denotes the true emitter location; the small blue circles
denote the estimated value of the emitter position with SDP methods and EKF estimator within each
time step.
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Figure 4. (a) Optimal paths without constraints. (b) Evolution of angle changes. (c) Straight-line paths.
(d) Comparison of localization performance: optimal deployment and fixed deployment.
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From Figure 4a,b, it can be seen that the UAVs try to fly away from each other and obtain
the evolution of angle θi. Meanwhile, it is noted that each UAV does not obtain effective emitter
information due to the initial deployment, and the localization errors is high. After the 10th time step,
the localization error drops sharply with changes in the θi, emitter, as is shown in Figure 4d. Figure 4c
shows the straight-line UAV trajectories, whereby each UAV is steered directly towards the estimated
emitter position.

To demonstrate the effectiveness of the proposed path planning algorithm, Figure 4d shows the
RMSE of optimal trajectories compared with straight-line trajectories after 50 Monte Carlo simulations.
This shows that the application of the angle rule is capable of reducing the location error, while the
location error with straight-line trajectories is large and apparently uncertain. However, even after
all constraints are considered, it can be seen that minimizing the localization could result in baseline
expansion. UAVs fly away from each other only within the constrained scope, which is not desirable in
actual situations. Hence, it is impractical to reach the optimal location by relying only on the angle rule.

5.2. Combination of Angle Rule and Distance Rule

The optimal paths considering the noise variance change with distance and all constraints are
included in the optimization problem. The simulation results are shown in Figure 5.
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Figure 5. (a) Optimal paths with constraints. (b) Evolution of angle changes. (c) Comparison of
localization performance: optimal deployment and fixed deployment.

According to Figure 5a,b, the distance between each UAV and the emitter in the initial stage
is nearly the same in the initial time step, so it is similar to the angle rule case: Each UAV tends to
expand the detection angles to have a better view of the emitter. The initial flight direction of UAV3
is basically the same as the path in Section 5.1. After about the 10th time step, UAV3 begins to make
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a turn and fly toward the emitter, which is mainly caused by the distance rule. The flight path of
UAV2 and UAV4 is mainly affected by the angle rule during the first several steps and they fly away
from the UAV1. When large angles are obtained, they start to be affected by the distance rule and fly
towards the emitter so that a balance between the angle rule and distance rule is eventually reached.
UAV1 flies towards the emitter and starts to rotate around the emitter since it is affected by a lower
limit Rl of distance at about t = 63 s. Figure 5c shows a comparison of the optimal UAV paths and
straight-line paths. The RMSE of UAVs flying with straight-line trajectories generally tends to decrease,
mainly because of the distance rule. However, its location accuracy is still unstable as the relative
deployment of UAVs and the emitter at certain moments are rather inappropriate for the emitter
localization. Similar to the angle rule case, the localization performance using path optimization is
much better than the straight-line paths. If there is a requirement to the lower RMSE, UAVs will rotate
around the estimated emitter location in a fixed distance according to the angle rule.

5.3. Effect of the Number of UAVs on TDOA Localization Performance

The purpose of this simulation is to compare the localization performance with different numbers
of UAVs (i.e., M = 3, 4, 5).

Figure 6 shows the evolution of RMSE corresponding to varying values of M. As can be expected,
as M becomes larger, a lower and more stable RMSE is obtained.

We also notice that the objective function has a growing number of local parameters causing
sensitivities to initialization with M increases. This may lead to suboptimal solutions if not initialized
properly. Hence, the initialization of the target plays an important role in SDP methods. The results in
Section 3 can be helpful for a proper choice of the initial measurements.

Figure 6. Evolution of RMSE with different numbers of UAVs.

5.4. Dynamic Emitter

As for dynamic emitter, it is assumed that the emitter is uniform linear motion and the dynamic
behavior of the state is described by:

xt(k) = Fxt(k− 1) + v(k). (60)
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The initial state is xt(1) =
[
0, 50/

√
2, 0, 50/

√
2
]T

, with the state transition matrix given by:

F =


1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1

, (61)

where ∆T = 1s. In order to simplify the calculation, it is assumed that the emitter flies at a speed of
50 m/s along the straight line and other constraints are the same as in the static emitter situation.

Figure 7a shows the results of location and tracking for a dynamic emitter. Different from static
emitters, each UAV starts to fly towards the estimated emitter position after obtaining a certain
angle. Since the distance between the emitter and the UAV changes significantly at each moment,
the distance rule exerts more influence on the UAV path at this time as compared with the static emitter
localization. According to Figure 7b, the location accuracy after path optimization is still high and
stable as compared with a location with straight-line paths.
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6. Conclusions

In this paper, we have provided an algorithm for UAV path planning based on TDOA localization.
The receiver measurement model and distance-dependent noise were presented, and optimal geometry
based on CRLB was investigated in both static and movable scenarios. A hybrid SDP method and EKF
estimator were applied to locate the emitter and the online sensor management presented here was
particularly useful for TDOA measurements. The knowledge of optimal sensor-emitter geometries
provided useful tactical information and revealed important insights into the impact of sensor-emitter
geometries on the performance of emitter localization and tracking. Simulation results showed that
the UAV complied with distance and angle rules when looking for an optimal path. The optimized
path was able to provide accurate and stable localization.

For future work, we will consider the long-term optimization, i.e., multi-step optimization, which
may bring burdens for the reference receiver. Future work will also include obstacle avoidance in real
applications, which may affect the localization accuracy.
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