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Abstract: In the present publication, the performance of an implicit gradient-enhanced damage-plasticity
model is evaluated with special focus on the prediction of complex failure modes such as shear failure.
Hence, it complements studies on predominant mode I failure frequently found in the literature. To this
end, an implicit gradient-enhanced damage-plasticity rock model is presented and validated by
means of 2D and 3D finite element simulations of both laboratory tests on intact rock specimens as
well as a large-scale structural benchmark related to failure of rock mass. Thereby, a wide range of
loading conditions comprising unconfined and/or confined, tensile and/or compressive stress states
is considered. The capability of the gradient-enhanced rock model for representing the mechanical
response objectively with respect to the finite element discretization and realistically compared
to measurement data is assessed. It is shown that complex failure modes and the respective
load–displacement curves are predicted in a mesh-insensitive manner.

Keywords: screened-Poisson model; gradient-enhanced model; damage-plasticity model; implicit
gradient-enhancement; rock; shear failure

1. Introduction

The appropriate representation of complex failure modes of cohesive-frictional materials in
numerical simulations is of great interest for many engineering applications, which include, among
others, geotechnical applications characterized by material failure playing a dominant role in the
overall structural response [1,2]. A prominent example of material failure under highly confined stress
states is given in the context of tunnel construction: During the construction of deep tunnels, high
geostatic stresses in the surrounding rock mass are redistributed in consequence of the excavation
process [3,4]. Depending on the quality of the surrounding rock mass, the installed supporting
measures, and the type of excavation process, those stress redistributions can lead to damage in
the rock mass, often accompanied by the transition from the rock mass as a continuum to rock blocks
moving towards the tunnel center with localized shear bands indicating the sliding interfaces. It follows
that an adequate representation of such failure phenomena by means of advanced constitutive models
is of great importance and a prerequisite for the risk assessment of potential structural collapse.

Constitutive models based on the combination of the theory of plasticity and continuum damage
mechanics, simply denoted as damage-plasticity models, provide a powerful framework for describing
inelastic deformations, hardening and softening material behavior, as well as stiffness degradation
due to damage. They are well suited for the description of cohesive-frictional materials such as
concrete, rock, and soils, since different types of material failure, e.g., cracking in tension, crushing in
compression, or failure under mixed stress states, can be described in a realistic manner [5]. On the
basis of damage-plasticity models, the material behavior is described in terms of mere continuum
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relations, i.e., constitutive relations describing the behavior of an infinitesimal material point. However,
softening material behavior, described in terms of continuum models, exhibits several theoretical
deficiencies, as reported and summarized in [6]:

• the softening process zone is infinitesimally small;
• at structural level, snapback behavior due to the infinitesimally small softening zone is observed;
• the dissipated energy during the failure process is zero due to the infinitesimal zone in which

energy is dissipated.

In a mathematical sense, those issues are related to the loss of ellipticity of the initial boundary
value problem (IBVP) in static and quasi-static analyses. In finite element analyses, those deficiencies
lead to mesh-dependent results, commonly referred to as a pathological mesh sensitivity. Failure patterns
like cracks tend to localize into the smallest possible bandwidth, i.e., usually a single layer of finite
elements, and upon mesh refinement the localization zone is decreasing to an arbitrarily small domain.
Accordingly, the obtained results are not objective with respect to the finite element mesh, i.e., the results
are sensitive with respect to the numerical discretization scheme. In the past decades, several techniques
to overcome these deficiencies in numerical simulations have been proposed, for instance the crack
band approach based on a mesh-adjusted softening modulus [7], nonlocal approaches of the integral
type [8], models based on the Cosserat continuum [9], viscoplastic formulations [10], phase field
models [11], and explicit and implicit gradient-enhanced formulations [12].

Among these approaches, models based on implicit gradient-enhanced formulations by now
form a well-established branch in the literature due to their computational efficiency and numerical
stability [12]. Numerous implicit gradient-enhanced damage and plasticity models have been proposed
in recent years [13–21], and their performance has been demonstrated based on different examples of
material failure. In particular, many gradient-enhanced models have been developed explicitly for
concrete [13,16,17,21], and special attention has been paid to the proper representation of cracking
under predominantly tensile stress states [17,22]. However, while cracking in tension (cf. Figure 1 left)
is an important failure mode for concrete structures, considerably less attention was paid to shear
failure (cf. Figure 1 right), i.e., pure mode II failure, or mixed failure under confined stress states. In fact,
many of the available models have been validated based on examples of mode I failure, and often it is
tacitly assumed that they perform equally well for more complex failure modes.

Figure 1. Schematic illustration of two characteristic failure modes (according to [23]): tensile failure
(opening mode, left) and shear failure (sliding mode, right).

The apparent gap in the literature on the assessment of gradient-enhanced models for describing
such complex failure modes motivates a systematic investigation of a gradient-enhanced constitutive
model applied to different types of material failure. To this end, in the present contribution,
a gradient-enhanced damage-plasticity model for rock is proposed and evaluated. This model is
considered as a representative for a wide class of gradient-enhanced damage-plasticity models.
The model is based on the damage-plasticity model by Unteregger et al. [24], and its damage
formulation is extended following the implicit gradient-enhanced approach proposed by Poh and
Swaddiwudhipong [17]. Based on numerical examples involving complex failure modes, the capability
of the model to capture different types of material failure in a realistic and objective manner in finite
element simulations will be demonstrated.
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The remainder of the paper is organized as follows: In Section 2, the original damage-plasticity
model for intact rock and rock mass, proposed in [24,25], is briefly summarized. In Section 3, the implicit
gradient-enhancement of the rock model is presented, and the numerical implementation into a finite
element framework is discussed. Section 4 covers numerical simulations of laboratory tests including
wedge splitting tests as well as triaxial compression tests and triaxial extension tests with various levels
of confining pressure. Additionally, a benchmark example of tunnel excavation will be presented,
and the representation of complex failure modes in an objective manner with respect to the employed
finite element mesh will be demonstrated. Finally, in Section 5, the paper is closed with a summary
and a discussion on recommended future research activities.

2. Damage-Plasticity Model for Intact Rock and Rock Mass

The damage-plasticity model for intact rock and rock mass, denoted as RDP model in the
following, was proposed originally for intact rock in [24] and was further extended to rock mass
in [25] by incorporating empirical down-scaling factors to account for the influence of discontinuities
according to [26–28].

The RDP model is based on the theory of plasticity formulated in the effective stress space
combined with continuum damage mechanics. The stress-strain relation is expressed as

σ = (1−ω)C : (ε− εp) (1)

in which σ describes the nominal Cauchy stress tensor (force per total area), ω the scalar isotropic
damage parameter ranging from 0 (undamaged material) to 1 (fully damaged material), C the fourth
order elastic stiffness tensor, ε the total strain tensor, and εp the plastic strain tensor. The effective stress
tensor σ̄ (force per undamaged area) is linked to the nominal stress tensor by

σ = (1−ω) σ̄ (2)

The elastic domain is bounded by the smooth Hoek–Brown yield criterion [29,30] formulated in
the Haigh–Westergaard coordinates of the effective stress tensor, i.e., the mean stress σ̄m, the deviatoric
radius ρ̄, and the Lode angle in the deviatoric plane θ. In addition, a stress-like hardening variable
qh(αp) is incorporated leading to the definition of the yield function fp as

fp(σ̄, qh(αp)) =

(
1− qh(αp)

f 2
cu

(
σ̄m +

ρ̄√
6

)2
+

√
3
2

ρ̄

fcu

)2

+
q2

h(αp)

fcu

mb

m0
m0

(
σ̄m + r(θ, e)

ρ̄√
6

)
− s q2

h(αp) (3)

Therein, fcu is the uniaxial compressive strength, m0 is the friction parameter, r(θ, e) is the
Willam–Warnke function to describe the shape of the yield surface in deviatoric planes, and parameters
mb/m0 and s are empirical down-scaling factors to account for discontinuities in rock mass, the latter
depending on the geological strength index GSI and the disturbance factor D according to [26].
A default value for the eccentricity e of 0.51 is proposed in [24]. For representing material behavior of
intact rock, mb/m0 and s are equal to 1.

The flow rule for describing the evolution of plastic strains is defined in the effective stress space as

ε̇p = λ̇
∂gp(σ̄, qh(αp))

∂σ̄
(4)

with λ̇ denoting the consistency parameter and gp(σ̄, qh(αp)) the non-associated plastic potential
function expressed as

gp(σ̄, qh(αp)) =

(
1− qh(αp)

f 2
cu

(
σ̄m +

ρ̄√
6

)2
+

√
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2
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+
q2

h(αp)

fcu

(
mg1,rm σ̄m + mg2,rm

ρ̄√
6

)
(5)
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Therein, volumetric plastic flow is controlled by dilatancy parameters mg1,rm and mg2,rm.
In the expression for mg1,rm = (mb/m0)mg1, mg1 is calibrated from experimental results (uniaxial
tension, uniaxial compression, and triaxial compression tests) of intact rock specimens and mg2,rm is
determined from

mg2,rm = 2 mg1,rm − 6 ftu/ fcu (6)

such that the lateral plastic strain rate in uniaxial tension is zero. Uniaxial tensile strength ftu is
calculated from (3) as

ftu = −mb/m0 m0 fcu (e + 1)
6e

+

√(
mb/m0 m0 fcu (e + 1)

6e

)2

+ s f 2
cu (7)

Hardening material behavior is described by means of the stress-like internal variable

qh(αp) =

{
fcy/ fcu + (1− fcy/ fcu) αp (α2

p − 3 αp + 3) if αp < 1

1 if αp ≥ 1
, (8)

which is conjugate to the strain-like hardening variable αp and contains the yield stress in uniaxial
compression fcy. The evolution law for the strain-like hardening variable αp is given as

α̇p = λ̇
Erm

Ei

1
xh(σ̄m)

(
1 + 3

ρ̄2

ρ̄2 + f 2
cu · 10−8 cos2(3 θ/2)

) ∥∥∥∥∂gp(σ̄, qh(αp))

∂σ̄

∥∥∥∥ (9)

in which
∥∥∂gp(σ̄, qh(αp))/∂σ̄

∥∥ is the norm of the gradient of the plastic potential function with respect
to effective stress, Erm/Ei denotes the reduction of the Young’s modulus of rock mass compared to
intact rock [26] ranging from 0 (completely disintegrated) to 1 (intact rock), and xh(σ̄m) is a measure
for describing hardening ductility, defined as

xh(σ̄m) =

(Bh − Dh) exp
(

Rh (Ah−Bh)
Ch (Bh−Dh)

)
+ Dh if Rh < 0

Ah − (Ah − Bh) exp (−Rh/Ch) if Rh ≥ 0
(10)

with Rh = −σ̄m/ fcu − Gh. In (10), model parameters Ah, Bh, Ch, Dh, and Gh control the hardening
behavior. They are calibrated by experimental data from uniaxial tension, uniaxial compression,
and triaxial compression tests. In [24,25], default values of Bh = 10−5, Dh = 10−6 and Gh = 0 are
suggested in absence of respective experimental data.

Damage is provoked when the hardening variable qh(αp) attains its maximum value of 1. At this
stage, the scalar isotropic damage parameter ω starts evolving dependent on the strain-like internal
softening variable αd. This relation is described by means of an exponential softening law as

ω(αd) = 1− exp(−αd/εf) (11)

with the softening modulus εf controlling the slope of the softening curve. The rate of the strain-like
internal softening variable αd is computed from the volumetric part of the plastic strain rate
ε̇p,vol = tr(ε̇p) as

α̇d =

{
0 if αp < 1

ε̇p,vol/xs(ε̇p,vol) if αp ≥ 1
(12)

Therein, the softening ductility measure

xs(ε̇
p,vol) = 1 + As

(
ε̇

p,vol
� /ε̇p,vol

)Bs
(13)
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accounts for the influence of multi-axial stress states on the softening behavior, with ε̇
p,vol
� = tr(〈−ε̇p〉)

describing the compressive part of the volumetric plastic strain rate. Model parameters As and Bs

are calibrated from experimental data of uniaxial compression and triaxial compression tests. Again,
in absence of respective experimental data for parameters As and Bs, default values of As = 15 and
Bs = 2 are proposed in [24].

3. Implicit Gradient-Enhancement of the Damage-Plasticity Model for Intact Rock and Rock Mass

Softening material behavior leads to an ill-posed initial boundary value problem and consequently
to pathological mesh-sensitivity in finite element simulations. As a remedy, in [24], the crack band
approach was employed for the RDP model. While the crack band approach is a rather simple
regularization technique, it is also characterized by a number of shortcomings, which are addressed
in [31]. Motivated by those deficiencies, in the following, a more sophisticated regularization technique
based on the implicit gradient-enhanced formulation [32] is presented. To this end, the approach by
Poh and Swaddiwudhipong [17] proposed for a damage-plasticity model for concrete and based on
the gradient of the internal softening variable, is adopted. By incorporating the gradient of an internal
variable into the constitutive relations, nonlocality is introduced. Thus, the mechanical response of
a material point does not exclusively depend on its local state, but is also influenced by the state in
its neighborhood.

Nonlocality is incorporated by replacing the local softening variable αd by a weighted softening
variable α̂d in the exponential damage law (11), which is expressed as

ω(α̂d) = 1− exp(−α̂d/εf) (14)

Therein, the softening modulus εf is a material parameter. The weighted softening variable α̂d is
calculated from a combination of the local softening variable αd and its nonlocal counterpart ᾱd as

α̂d = m ᾱd + (1−m) αd (15)

in which m denotes a weighting parameter. Choosing m larger than 1 yields the over-nonlocal
formulation [33] to achieve full regularization of the problem, as proven in [34]. Furthermore,
by ensuring that α̂d can only increase, damage is considered as an irreversible process [35].

According to the implicit approach, the field of the nonlocal softening variable ᾱd, henceforth
simply denoted as the nonlocal field, is defined implicitly as the solution of a higher-order partial
differential equation. Adopting the formulation by Poh and Swaddiwudhipong [17], for the description
of the nonlocal field a second order partial differential equation is employed as

ᾱd − l2 ∆ᾱd = αd in Ω (16)

in which l denotes a length scale parameter defining the radius of nonlocal interaction, ∆ is the Laplace
operator and αd represents the local softening variable of (12), and Ω is the spatial domain occupied by
the body under consideration. Equation (16) is a screened-Poisson equation, commonly denoted as the
Helmholtz equation in the context of implicit gradient-enhanced formulations [12,36]. It is apparent
that nonlocality affects only the damage part of the model and the plasticity part of the RDP model
remains local.

As suggested in [32,37], homogeneous Neumann boundary conditions are assumed as∇ᾱd ·n = 0
on the entire boundary Γ of the domain with the normal vector to the boundary n. This boundary
condition was interpreted in [38] in the context of phase-field models enforcing cracks to occur
perpendicular to the boundary.

The set of governing equations is completed by the equilibrium equation

∇ · σ + f̄ = 0 in Ω (17)
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in which f̄ is the vector of body forces. For the boundary conditions, the surface traction vector t̄ = σ · n
on Γt and prescribed displacements u = ū on Γu are assumed.

Partial differential Equations (16) and (17) form a fully coupled system with the unknown
displacement vector u and the nonlocal field ᾱd, which is solved by means of the finite element
method. To this end, the weak form is formulated, which is subsequently discretized in space and in
time. To obtain the weak form, the set of partial differential equations is multiplied by test functions
δu for the displacement field and δᾱd for the nonlocal field. Integration over the domain, application
of the divergence theorem, incorporation of the infinitesimal strain ε, and consideration of δu = 0 on
Γu yields the weak form of the IBVP expressed in Voigt notation as∫

Ω
δεᵀσ dΩ−

∫
Γt

δuᵀ t̄ dΓ−
∫

Ω
δuᵀ f̄ dΩ = 0 , (18)∫

Ω
δᾱd ᾱd dΩ +

∫
Ω

l2 (∇δᾱd)
ᵀ ∇ᾱd dΩ−

∫
Ω

δᾱd αd dΩ = 0 . (19)

The displacement field u and the nonlocal field ᾱd are approximated over the domain using a
Bubnov-Galerkin approach as

u = Nu qu (20)

ᾱd = Nᾱd qᾱd (21)

in which N(•) contains the shape functions and q(•) are column vectors of the nodal unknown
parameters, both expressed in the global form employing the standard assembly procedure, with (•)
standing for the displacement field u and the nonlocal field ᾱd, respectively. The infinitesimal strain ε

and the gradient of the nonlocal field ∇ᾱd are discretized as

ε = Bu qu (22)

∇ᾱd = Bᾱd qᾱd (23)

with the strain-displacement matrix Bu and the row vector of the spatial derivatives of the shape
functions for the field of the nonlocal softening variable Bᾱd , again both expressed in the global form
employing the standard assembly procedure. It follows that the shape functions for both fields must
meet the requirement of C0-continuity.

Due to the nonlinear and path-dependent character of the IBVP, an incremental solution procedure
is employed. For the incremental solution procedure, a discrete (pseudo-)time interval [t(n−1), t(n)] is
considered such that the body under consideration is in equilibrium at time t(n−1). At this time,
the nodal values q(n−1)

u and q(n−1)
ᾱd

, the stress σ(n−1) and the internal variables α(n−1)
p and α(n−1)

d are known.
An incremental load is applied such that the traction vector and the vector of body forces at time t(n)

are prescribed as t̄(n) = t̄(n−1) + ∆t̄(n) and f̄(n) = f̄(n−1) + ∆f̄(n). The updated variables of the constitutive
relations at time t(n), i.e., σ(n), α(n)

p , α(n)
d , are evaluated by means of a stress-update algorithm, employing

an implicit integration scheme following the return-mapping approach [39] for the plastic regime and
a subsequent explicit evaluation of the damage part. Finally, the incremental discretized weak form is
obtained as ∫

Ω

(
δq(n)

u

)ᵀ
Bᵀ

u σ(n) dΩ︸ ︷︷ ︸
(δq(n)

u )
ᵀ

fu
int(q

(n)
u ,q(n)

ᾱd
)

−
∫

Γt

(
δq(n)

u

)ᵀ
Nᵀ

u t̄(n) dΓ−
∫

Ω

(
δq(n)

u

)ᵀ
Nᵀ

u f̄(n) dΩ︸ ︷︷ ︸
(δq(n)

u )
ᵀ

fu,(n)
ext

= 0 , (24)

∫
Ω

(
δq(n)

ᾱd

)ᵀ
Nᵀ

ᾱd
Nᾱd q(n)

ᾱd
dΩ +

∫
Ω

l2
(

δq(n)
ᾱd

)ᵀ
Bᵀ

ᾱd
Bᾱd q(n)

ᾱd
dΩ−

∫
Ω

(
δq(n)

ᾱd

)ᵀ
Nᵀ

ᾱd
α(n)

d dΩ︸ ︷︷ ︸
(δq(n)

ᾱd
)
ᵀ

Rᾱd(q(n)
u ,q(n)

ᾱd
)

= 0 . (25)
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Since Equations (24) and (25) must hold for arbitrary kinematically admissible test functions δq(n)
u

and δq(n)
ᾱd

, they can be recast into the residual format as

Ru

(
q(n)

u , q(n)
ᾱd

)
= fu

int

(
q(n)

u , q(n)
ᾱd

)
− fu,(n)

ext = 0 (26)

Rᾱd

(
q(n)

u , q(n)
ᾱd

)
= 0 (27)

with fu
int and fu,(n)

ext denoting internal and external force vectors related to the displacement field, and
Rᾱd is the residual vector for the nonlocal field. Due to the nonlinear dependence of the system of
Equations (26) and (27) on the unknown nodal solution vector

q(n) =
[
q(n)

u q(n)
ᾱd

]ᵀ
, (28)

an iterative Newton–Raphson solution procedure is employed. The nodal unknowns at time t(n)

in the i-th iteration step are composed of q(n,i) = q(n−1) + ∆q(n,i), where ∆q(n,i) has to be determined.
Linearization of Equations (26) and (27) at the state q(n,i−1) with the initial guess of the nodal unknowns
q(n,0) = q(n−1) yields the iterative procedure for the correction of the nodal unknowns ∆∆q(n,i) for time
t(n) after the i-th iteration step[

K(n,i−1)
uu K(n,i−1)

uᾱd

K(n,i−1)
ᾱdu K(n,i−1)

ᾱdᾱd

] [
∆∆q(n,i)

u
∆∆q(n,i)

ᾱd

]
=

−Ru

(
q(n,i−1)

u , q(n,i−1)
ᾱd

)
−Rᾱd

(
q(n,i−1)

u , q(n,i−1)
ᾱd

) , (29)

with the submatrices of the system matrix given as

K(n,i−1)
uu =

∂Ru

∂q(n)
u

∣∣∣∣∣
q(n,i−1)

u

=
∫

Ω
Bᵀ

u
∂σ(n)

∂ε(n)

∣∣∣∣
ε(n,i−1)

Bu dΩ (30)

K(n,i−1)
uᾱd

=
∂Ru

∂q(n)
ᾱd

∣∣∣∣∣
q(n,i−1)

ᾱd

=
∫

Ω
Bᵀ

u
∂σ(n)

∂ᾱ(n)
d

∣∣∣∣∣
ᾱ(n,i−1)

d

Nᾱd dΩ (31)

K(n,i−1)
ᾱdu =

∂Rᾱd

∂q(n)
u

∣∣∣∣∣
q(n,i−1)

u

= −
∫

Ω
Nᵀ

ᾱd

∂α(n)
d

∂ε(n)

∣∣∣∣∣
ε(n,i−1)

Bu dΩ (32)

K(n,i−1)
ᾱdᾱd

=
∂Rᾱd

∂q(n)
ᾱd

∣∣∣∣∣
q(n,i−1)

ᾱd

=
∫

Ω
l2 Bᵀ

ᾱd
Bᾱd dΩ +

∫
Ω

Nᵀ
ᾱd

Nᾱd dΩ (33)

in which ∂σ(n)/∂ε(n), ∂σ(n)/∂ᾱ(n)
d , and ∂α(n)

d /∂ε(n) are the consistent tangent stiffness submatrices.
They represent the derivatives of the constitutive relations consistent with the numerical algorithm
for integrating the path-dependent rate constitutive equations, which is essential for the full
Newton–Raphson scheme in order to preserve a quadratic rate of convergence. Due to the
non-associated plastic flow rule of the RDP model and the coupling of the displacement field and the
nonlocal field, the system matrix is unsymmetric. From the computed correction of the nodal unknowns
∆∆q(n,i), the updated solutions of the incremental nodal unknowns, ∆q(n,i) = ∆q(n,i−1) + ∆∆q(n,i) and
the total nodal unknowns q(n,i) = q(n−1) + ∆q(n,i) are obtained.

4. Numerical Study

The aim of the present numerical study is to evaluate the performance of the implicit
gradient-enhanced RDP model for predicting the mechanical response of structures, involving the
softening behavior of rock in a realistic and mesh-insensitive manner for a wide range of loading
conditions. To this end, a numerical study is presented, related to both laboratory tests and practical
applications. It consists of the following parts:
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1. 2D modeling of mode I failure in wedge splitting tests on Indiana limestone performed by
Brühwiler and Saouma [40],

2. 3D modeling of shear failure in triaxial compression tests performed by Blümel [41] on specimens
of Innsbruck quartz phyllite, considering the influence of confined stress states attaining the
compressive meridian of the yield surface,

3. 3D numerical simulations of triaxial extension tests performed on the same type of specimens,
investigating the influence of confined stress states attaining the tensile meridian of the
yield surface, and

4. 2D numerical simulations of the excavation of a deep tunnel in Innsbruck quartz phyllite rock
mass leading to the formation of shear bands in the vicinity of the tunnel for demonstrating the
capability of the gradient-enhanced RDP model to predict failure of a complex structure.

4.1. Modeling of Mode I Failure, Demonstrated by Analyzing Wedge Splitting Tests on Indiana Limestone

In a first step, the capability of the gradient-enhanced RDP model for predicting mode I failure is
assessed. To this end, the experimental study of wedge splitting tests on Indiana limestone performed
by Brühwiler and Saouma [40] is considered. The investigated specimen is illustrated in Figure 2.

300 mm

thickness 100 mm

40 mm

110 mm

150 mm

psp

notch 2 mm

125 mm 40 mm 125 mm

10 mm

(a) (b)

Figure 2. Geometry and boundary conditions of the numerical model of the specimen for the wedge
splitting test.

During the experimental test, the splitting force was applied by a vertically driven wedge, exerting
a pressure against roller bearings that were mounted on both sides of the groove in the specimen.
The vertical (machine) force and the crack mouth opening displacement (CMOD) were recorded,
and the latter was controlled during the experimental test. The energy conjugate force to the CMOD,
the splitting force Fsp, was calculated from the vertical force considering the geometry of the wedge and
neglecting any frictional effects. In total, 5 tests were performed, but in [40] detailed load–displacement
curves were presented only for Test 3. To investigate the degradation of the stiffness of the specimen
during crack propagation, several loading/unloading cycles were performed.

The experimental test is simulated by means of a two-dimensional finite element model assuming
plane stress conditions. According to Figure 2, the specimen is supported in the vertical direction at the
bottom center over a width of 10 mm and in the horizontal direction at midpoint. The splitting force
Fsp, transmitted by the wedge, is approximated by the pressure psp acting on the lateral groove faces.
The simulation is performed in a displacement-driven manner by controlling the CMOD (i.e., the
relative horizontal displacement between points (a) and (b) in Figure 2) during the loading and
unloading cycles. The material parameters for representing the Indiana limestone were determined
by a best fit with the recorded experimental results. In the present example of mode I failure, only
few parameters have a significant influence on the results: E = 22000 MPa, ν = 0.15, fcu = 20 MPa,
fcy = 2/3 fcu = 13.33 MPa, m0 = 6.5, mg1 = 5, Ah = 5× 10−3, Ch = 20, εf = 8× 10−4, m = 1.05,
and l = 4 mm. For the weighting parameter m, any value larger than 1 is sufficient to ensure full
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regularization of the problem by avoiding spurious localization of plastic strain [33]. A discussion
on the influence of the weighting parameter m may be found in [42] for an integral-type nonlocal
model, where, however, for parameter m = 2, an overestimation of the energy dissipation close to a
notch was demonstrated. This non-physical effect was also observed by the authors with increasing
influence for larger values of m. Thus, parameter m is chosen just slightly larger than 1, in accordance
with proposed values from the literature [17,43]. For the remaining model parameters e, Bh, Dh, Gh,
As, and Bs, the default values summarized in Section 2 are employed. From Equation (7), the uniaxial
tensile strength is calculated as ftu = 3 MPa.

To investigate the influence of the finite element discretization on the predicted results,
different meshes are employed: Three structured meshes with fully integrated 4-node quadrilateral
elements and element sizes of 5 mm, 1 mm, and 0.5 mm in the vicinity of the expected crack path,
as well as one unstructured mesh with the same element type and an element size of 1 mm along
the crack path. Accordingly, the element size of 5 mm is slightly larger compared to the assumed
length scale l of 4 mm for the coarse mesh and considerably smaller for the medium and fine mesh.
The purpose of the unstructured mesh is to investigate a potential bias of the crack pattern by following
the grid lines of the finite element mesh, since mesh-biased crack paths have been observed for smeared
crack models based on the crack band approach [44].

In Figure 3, the resulting load–displacement curves, i.e., splitting force Fsp versus CMOD,
are shown for the considered experimental test and the numerical simulations. It can be concluded
that the qualitative shape of the experimentally obtained curve is approximated quite well in the
numerical simulations.
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Figure 3. Splitting force vs. crack mouth opening displacement (CMOD) for the wedge splitting test:
experimental results (data taken from [40]) and numerical results.

Regarding the influence of the finite element mesh on the computed load–displacement curves,
a slight difference between the predicted response based on the structured coarse mesh and the one
based on the structured medium mesh is visible. This is explained by the rough approximation of
the gradient of the nonlocal field by the coarse mesh. In contrast, almost identical load–displacement
curves are obtained for the structured medium and the structured fine mesh, confirming that the
gradient of the nonlocal field can be resolved sufficiently by those meshes. The unstructured mesh
results in a similar load–displacement curve, demonstrating that the gradient-enhanced approach is
not biased by the orientation of the finite element mesh.

The computed deformation of the specimen is depicted in Figure 4 for the three structured meshes.
By increasing the splitting force during the numerical simulations, the tensile strength of the material is
attained at first in the elements directly below the notch; consequently, damage is initiated. This leads
to large, localized deformations in this region. Upon further loading, the increase of these deformations
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reflects the opening of a crack, propagating towards the bottom of the specimen. This is represented
by the gradient-enhanced damage-plasticity approach in a smeared manner. The width of the damage
zone is related to the length scale parameter l (cf. (16)). Furthermore, it can be seen that an identical
symmetrical response with respect to the vertical axis of symmetry is obtained for all three structured
meshes.

Figure 4. Deformed specimen at CMOD = 0.3 mm with a displacement scale factor of 100 for the three
structured finite element meshes: coarse—3580 elements (left), medium—6940 elements (center), and
fine—15430 elements (right).

In Figure 5, the distribution of the damage variable ω computed for the three structured meshes is
plotted at a CMOD = 0.3 mm. It is visible that damage is also accumulated slightly above the notch tip.
This is a consequence of the diffusive character of the gradient-enhanced formulation. Furthermore,
the present gradient-enhanced RDP model with the constant length scale l predicts a rather broad zone
of complete damage (red region in Figure 5). In fact, this behavior does not represent damage localizing
into a discrete macrocrack, and has been addressed in [45,46]. However, comparison of the predicted
damage distributions for the different meshes demonstrates mesh-insensitivity of the obtained failure
patterns. Figures 3 and 6 show an identical load–displacement curve and identical deformation
pattern and damage distribution computed by means of the unstructured mesh, which underlines the
capability of the gradient approach to produce mesh-insensitive results.

0.0
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0.60

0.99ω

0.80

0.40

Figure 5. Distribution of the damage variable ω at CMOD = 0.3 mm for the three structured finite
element meshes: coarse (left), medium (center), and fine (right).
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Figure 6. Deformed specimen with a displacement scale factor of 100 (left) and distribution of the
damage variable ω (right) for the unstructured mesh (9504 elements) at a CMOD of 0.3 mm.

4.2. Modeling of Shear Failure, Demonstrated by Analyzing Triaxial Compression Tests on Innsbruck
Quartz Phyllite

In a second step, the performance of the gradient-enhanced RDP model for predicting shear
failure under confined stress states attaining the compressive meridian of the yield surface is assessed.
To this end, numerical simulations of triaxial compression tests on specimens of Innsbruck quartz
phyllite performed by Blümel [41] are conducted.

For the experimental program, intact rock specimens with a diameter of 35 mm and a height
of 70 mm were taken from drill cores sampled at the construction site of the Brenner Base Tunnel.
A series of triaxial compression tests with different levels of confining pressures p(0) = 0 MPa (uniaxial
compression), 12.5 MPa, 25.0 MPa, and 37.5 MPa was conducted. The experiments were performed
in a sequential manner: Firstly, the confining pressure was applied, resulting in an initial hydrostatic
stress state in the specimen, and subsequently, an axial pressure was applied displacement-driven up
to failure. The mechanical response in the post-peak regime was also recorded.

Finite element simulations of triaxial compression tests are often performed in an approximate
manner. Commonly, such tests are simplified as single element tests in which the non-homogeneous
deformation of the specimen observed in the experiments cannot be captured, or by two-dimensional
models in which three-dimensional effects are neglected, e.g., [24,47–49]. By contrast, in the present
study, a three-dimensional finite element model is employed in order to capture the three-dimensional
deformations in a realistic manner. The numerical model with the prescribed boundary conditions and
loads is illustrated in Figure 7. Since the failure mode is expected to be symmetric with respect to a
vertical plane through the center axis of the specimen, symmetry is exploited by considering only one
half of the specimen. By analogy to the experimental tests, the numerical simulations are performed in
two sequential steps: firstly, the specimen is supported vertically at the bottom face and the confining
pressure is applied; secondly, the axial loading is applied by imposing a uniform vertical displacement
at the top of the specimen.

The specimens are discretized with 20-node hexahedral elements employing reduced numerical
integration. For both the displacement field and the nonlocal field, quadratic shape functions are
used. To analyze potential mesh-sensitivity of the gradient-enhanced RDP model, three different
structured finite element meshes are examined. A coarse mesh with 828 elements (an element size
of 4 mm), a medium mesh with 5950 elements (an element size of 2 mm), and a fine mesh with
13,160 elements (element size of 1.5 mm) are employed. To trigger localized failure, at the center of the
specimen, a small zone of slightly weakened elements is introduced, as indicated in Figure 7. In the
numerical simulations, snapback behavior may occur, i.e., a simultaneous decrease of the load and
the displacement after attaining the peak load. At this stage, displacement-controlled experiments
become unstable. To overcome potential snapback behavior in the numerical simulations, the indirect
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displacement control technique [50,51] is employed. For the present example, this technique can be
applied by enforcing a monotonic decrease of the vertical distance between two nodes, with each node
located at one boundary of the expected shear band.

p(0)

x

y
zH

=
70

m
m utop

weakened zone

D = 35 mm

Figure 7. Geometry and boundary conditions of the specimen for the triaxial compression test.

The material parameters required for the elastic-plastic part of the RDP model were identified
from single element simulations, as discussed in [52]. The additional parameters for the softening
regime As, εf, l, and m are calibrated from the present numerical simulations for a best fit with the
experimental results for the confining pressure of p(0) = 37.5 MPa. The employed parameters for
Innsbruck quartz phyllite are E = 56670 MPa, ν = 0.2, fcu = 42 MPa, fcy = 29.5 MPa, m0 = 12.0,
mg1 = 9.9, Ah = 0.0045, Ch = 8.8, As = 4, εf = 4× 10−4, m = 1.05, l = 2 mm. For the remaining
model parameters e, Bh, Dh, Gh, and Bs, the default values summarized in Section 2 are employed.
The experimental results for confining pressures of p(0) = 0 MPa, 12.5 MPa, and 25 MPa, which have
not been used for calibration, serve for validation of the numerical model.

Figure 8 shows the load–displacement curves obtained from the experiments and the numerical
simulations for the different confining pressures. Note that the non-zero axial force at the beginning is
the consequence of the initial hydrostatic stress state due to the applied confining pressure. Expectedly,
for p(0) = 37.5 MPa and for the uniaxial compression test (p(0) = 0 MPa), the experimentally obtained
peak load is represented very well since the test results were used for calibration. For p(0) = 12.5 MPa
and 25 MPa, the peak loads are predicted satisfactorily, slightly underestimating the experimental
results. The qualitative shape of the softening branch is also represented quite well. For the uniaxial
compression test, no meaningful experimental results after the peak stress were recorded during the
experiments. This unstable behavior is also manifested in the numerical simulations, for which strong
snapback behavior is observed. The numerical results computed on the basis of the different finite
element meshes reveal the capability of the gradient-enhanced RDP model to regularize the underlying
IBVP: Once the mesh is sufficiently fine, mesh-insensitive load–displacement curves are obtained.

Figure 9a shows the deformed specimen with the confining pressure p(0) = 37.5 MPa in the final
stage of the triaxial compression tests, computed by means of the three different meshes. While the
displacements in the lower and the upper part of the specimen are almost uniform, the displacements
localize into a single inclined shear band in the center part of the specimen. In the experiments,
localization into a shear band was found to be the dominant failure mode, as shown in Figure 9b
for a specimen tested with p(0) = 37.5 MPa. The formation of the shear band is also reflected by
the distribution of the damage variable ω shown in Figure 10. Comparing the predicted damage
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distributions for the medium and the fine mesh confirms this distribution as insensitive with respect to
the discretization.
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Figure 8. Load–displacement curves (axial force versus axial displacement) for triaxial compression
tests: experimental and numerical results for different levels of confining pressures p(0).
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Figure 9. (a) Distribution of the vertical displacement uz (scale factor 5) in the final stage of the triaxial
compression test with p(0) = 37.5 MPa for the three finite element meshes: coarse (left), medium
(center), and fine (right). (b) Corresponding deformed rock specimen after a triaxial compression test
with p(0) = 37.5 MPa, reproduced with permission from M. Bluemel taken from the report [41].
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Figure 10. Distribution of the damage variable ω in the final stage of the triaxial compression test with
p(0) = 37.5 MPa for the three finite element meshes: coarse (left), medium (center), and fine (right).

The influence of the level of confining pressure on the inclination of the shearing zone is
demonstrated in Figure 11 based on the predicted distribution of the vertical displacement for
p(0) = 0 MPa, 12.5 MPa, 25 MPa, and 37.5 MPa, respectively. For the uniaxial compression test
(p(0) = 0 MPa), the zone of localized displacements is strongly inclined. With increasing confining
pressure, the inclination angle of the shear band is decreasing, which is best visible by comparing
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the results for p(0) = 0 MPa and p(0) = 12.5 MPa. Upon further increase of the confining pressure,
the inclination of the shear band becomes slightly smaller. The represented dependence of the
inclination angle on the level of confining pressure is explained by the curvature of the compressive
meridian of the yield surface and of the employed plastic potential function of the RDP model.
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Figure 11. Triaxial compression tests: distribution of the vertical displacement uz in the symmetry
plane for the four different levels of confining pressure.

4.3. Modeling of Shear Failure, Demonstrated by Analyzing Triaxial Extension Tests on Innsbruck
Quartz Phyllite

In a third step, the ability of the model for predicting shear failure under confined stress states
attaining the tensile meridian of the yield surface is demonstrated. To this end, numerical simulations
of triaxial extension tests on specimens with geometric and material properties identical to those of the
previously presented triaxial compression tests are performed. Similar to the triaxial compression tests,
confining pressures p(0) of 0 MPa, 12.5 MPa, 25 MPa, and 37.5 MPa are investigated. The same finite
element meshes are employed for investigating the influence of the discretization. In contrast to the
triaxial compression tests, subsequent to the application of the initial hydrostatic stress state, generated
by the confining pressure, a displacement in positive vertical direction is applied at the top surface
of the specimens. Since for triaxial extension tests experimental results are not available, the present
study focuses on the assessment of the influence of the finite element mesh on the obtained results and
serves as further verification of the gradient-enhanced RDP model.

The predicted load–displacement curves are shown in Figure 12. While nearly identical results
are obtained for the medium mesh and the fine mesh, the load–displacement curves for the coarse
mesh are somewhat more ductile. This discrepancy indicates the coarse mesh as insufficiently fine
for the accurate resolution of the gradient of the nonlocal field. Compared to the results from the
triaxial compression tests, a more brittle structural response is predicted, resulting in strong snapback
behavior in the post-peak regime for all three confining pressures and, in particular, for the uniaxial
tension test. In contrast to the triaxial compression tests, the structural response becomes increasingly
brittle as confining pressure increases, and the peak load decreases gradually. This phenomenon
was also observed in experiments on Berea sandstone in [53], and it is characteristic of brittle and
quasi-brittle materials.

Figure 13 shows the computed deformation of the specimen for an applied axial displacement
of 0.1 mm and a confining pressure of 37.5 MPa. Compared to the triaxial compression tests,
a smaller inclination angle of the shear band is predicted for the medium mesh and the fine mesh,
whereas for the coarse mesh a considerably steeper inclination angle of the shear band is obtained.
Again, this discrepancy indicates the insufficient representation of the gradient of the nonlocal field by
the coarse mesh.
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Figure 12. Computed load–displacement curves for triaxial extension tests for different levels of
confining pressure p(0).
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Figure 13. Distribution of the vertical displacement uz (deformation scale factor 10) at an applied top
displacement of 0.1 mm in the triaxial extension test with p(0) = 37.5 MPa for the three finite element
meshes: coarse (left), medium (center), and fine (right).

4.4. Numerical Simulation of Localizing Deformations in Deep Tunnel Excavation

Finally, the performance of the gradient-enhanced RDP model for predicting the formation of
multiple shear bands during the excavation of a deep tunnel is assessed. This benchmark is derived
from a stretch of the Brenner Base Tunnel constructed by the drill, blast, and secure procedure,
which has already been the subject of investigations in previous publications [52,54]. An analogy to
the present problem can be found in the context of petrol engineering, where the formation of shear
bands has been observed and reported for borehole breakout [47,55,56].

Since in this contribution the major focus is on the assessment of the gradient-enhanced
rock model, the tunnel excavation is approximated by means of a simplified two-dimensional model.
Supporting measures like a shotcrete shell or rock anchors are neglected. Potential time-dependent
effects of the mechanical behavior of rock mass due to the excavation procedure are not considered.
For the excavation of the tunnel profile by means of drill and blast, either a full-face or a sequential
excavation procedure can be employed. The chosen excavation sequence may have a considerable
impact on the stability of the tunnel. In this numerical model, the worst case scenario is considered
by assuming full-face excavation of the circular tunnel profile without any supporting measures,
which results in the maximum loading of the rock mass in the vicinity of the tunnel.

The IBVP of tunnel excavation with its geometry, initial conditions, and boundary conditions
is illustrated in Figure 14. Within the discretized domain of rock mass, a hydrostatic geostatic stress
state characterized by a pressure of p(0)

i = 25.7 MPa is assumed, corresponding to the overburden at
the tunnel axis of 950 m. In the numerical simulations, initial equilibrium is established by applying
the geostatic stress state together with the internal pressure p(0)

i acting on the excavation boundary.
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The excavation procedure is simulated by gradually decreasing the internal pressure p(0)
i to zero.

Since the analyzed tunnel section is located in Innsbruck quartz phyllite rock mass, most of the
material parameters of Section 4.2 are adopted. The material behavior of rock mass in contrast to intact
rock is considered by empirical down-scaling factors based on the geological strength index GSI and
the disturbance factor D proposed by Hoek and Brown [27] accounting for the influence of distributed
discontinuities. They are taken from the geological survey, reported in [52]. The additional material
parameters for Innsbruck quartz phyllite rock mass are GSI = 40, D = 0, As = 15, εf = 7× 10−4,
and l = 50 mm. To trigger the formation of shear bands in spite of the axisymmetric problem,
non-uniformly distributed rock mass properties are employed by introducing zones in which the
strength of the rock mass is slightly weakened (indicated in Figure 14). It was verified that these
weakened zones do not affect the predicted mechanical response before the onset of strain softening.
For investigating the influence of the finite element mesh on the predicted results, three structured
meshes with fully integrated and reduced integrated 8-node quadrilateral elements with element sizes
of 300 mm (8078 elements), 140 mm (21,414 elements), and 70 mm (55828 elements) in the close vicinity
of the tunnel are employed. Both the displacement field and the nonlocal field are approximated by
quadratic shape functions.

-950 m

200 m

20
0

m

p(0)
i = 25.7 MPa

-950 m
pi

weakened zones

8.5 m

Figure 14. 2D initial boundary value problem of deep tunnel excavation: full model (left) and the
detail center view (right).

Upon decreasing the internal pressure, initially the rock mass behavior remains in the linear elastic
regime, followed by the formation of plastic zones emerging from the excavation boundary. Once the
strength of the rock mass is attained, strain softening is initiated. From the onset of strain softening,
the strains are localizing into narrow zones of the rock mass, and, eventually, large displacements
accumulate. Finally, at a certain release level of the internal pressure, equilibrium is lost.

Figure 15 shows the deformed rock mass at the level of 12% of the internal pressure for the three
meshes with fully integrated elements. For the medium and the fine mesh, the localization of
displacements into narrow zones has already reached a very progressed stage close to failure, and the
formation of shear bands is clearly visible. The non-axisymmetric displacement field indicates the
transition from an initially quasi-continuous rock mass to quasi-discontinuous rock mass. The latter
is characterized by blocks of rock mass moving towards the tunnel center, so potential failure of the
tunnel is imminent. Concerning the influence of the finite element discretization, for the medium and
the fine mesh, an almost identical displacement field is obtained. Slight differences between those two
solutions can be observed only for the upper right quadrant.
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Figure 15. Distribution of the magnitude of the displacement vector in the vicinity of the tunnel surface
at the level of 12 % of the initial internal pressure with a displacement scale factor of 10 for the three
finite element meshes with full numerical integration: coarse (left), medium (center), and fine (right).

Figure 16 shows the load–displacement curves, i.e., the normalized internal pressure versus
the mean displacement magnitude along the excavation boundary computed for each mesh.
The load–displacement curves predicted by the three meshes are very close to each other, and,
in particular, the results for the medium and the fine mesh are almost identical. The results for
the coarse mesh are slightly different due to the already discussed required mesh size for a sufficient
resolution of the gradient of the nonlocal field.

0 50 100 150 200 250
0

20

40

60

80

100

mean displacement magnitude umag (mm)

no
rm

al
iz

ed
in

te
rn

al
pr

es
su

re
p i

/
p(0

)
i

Simulation, reduced numerical integration
Simulation, full numerical integration

Coarse mesh
Medium mesh

Fine mesh

10 20 30 40 50

10

20

30

40

5

mean displacement magnitude umag (mm)

Figure 16. Load–displacement curves: normalized internal pressure versus the mean displacement
magnitude at the tunnel surface for the three finite element meshes with full and reduced numerical
integration: total view (left), detailed view (right).

Figure 17 depicts the damaged zones in the rock mass at the level of 12% of the initial internal
pressure for the three meshes employing full numerical integration. The highly damaged zones
correspond to large shear deformations, which were shown previously in Figure 15. A similar shape of
failure zones was obtained by Addis et al. [57] in laboratory tests on a bore hole in weak sandstone.
Hence, the potential of the gradient-enhanced approach to predict the onset of failure of a structure
was demonstrated in spite of the rather complex failure mode.
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Figure 17. Distribution of the damage variable ω in the rock mass in the vicinity of the tunnel surface
at the level of 12 % of the internal pressure for the three finite element meshes employing full numerical
integration: coarse (left), medium (center), and fine (right).

5. Conclusions

The present contribution addressed the prediction of complex failure modes in numerical
simulations by means of a new implicit gradient-enhanced damage-plasticity model for intact rock and
rock mass. It was derived from the damage-plasticity rock model presented by Unteregger et al. [24,25]
and extended by adopting the implicit gradient-enhancement proposed in [17]. For the assessment
of the model, a comprehensive numerical study was presented. In particular, numerical simulations
of wedge splitting tests for evaluating the representation of mode I failure, simulations of triaxial
compression and extension tests for evaluating the representation of shear failure under confined stress
states, and finally simulations of deep tunneling for examining the prediction of failure mechanisms of
a complex structure were performed. From the obtained results of the numerical study, the following
conclusions can be drawn:

• In numerical simulations of wedge splitting tests, the formation of a crack propagating from the
notch is modeled by the implicit gradient-enhancement in a smeared manner over a width related
to the assumed length scale parameter. The capability of the gradient-enhanced damage-plasticity
rock model of representing the experimentally observed material behavior was realistically
demonstrated.

• Finite element analyses with both structured and unstructured meshes confirmed the regularizing
effect of the implicit gradient-enhancement in mode I failure and thus revealed mesh-insensitive
results. In particular, it was demonstrated that the crack direction is not biased by the orientation
of the finite element mesh.

• Regarding the simulations of triaxial compression tests, a proper representation of shear failure
under confined stress states, attaining the compressive meridian of the yield surface, was shown.
After attaining peak strength upon initiation of damage, localization into a distinct shear band
was observed. Furthermore, reasonable agreement with experimental results, and in particular
the experimentally observed increasingly ductile material behavior with increasing confining
pressure was obtained.

• The simulations of triaxial extension tests demonstrated that failure under confined stress states
attaining the tensile meridian of the yield surface is represented reasonably well, i.e., the
localization of damage into a distinct shear band is predicted. In contrast to the triaxial
compression tests, a more brittle structural response was observed.

• For both the triaxial compression and extension tests, a mesh study confirmed mesh-insensitive
results for shear failure under confined stress states.

• In the numerical simulations of deep tunnel excavation, the rock mass was subjected to softening
material behavior due to the excavation procedure, which leads to localization of strains into
multiple distinct shear bands. In spite of the complex structural failure mechanism involving the
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formation of multiple shear bands, mesh insensitive load–displacement curves were obtained.
By analyzing the convergence of the damage patterns upon mesh refinement, only slight
differences were recognized.

• For the adopted formulation of the implicit gradient-enhanced rock model, the length scale l is
assumed as a constant parameter. Thus, a rather broad zone of completely damaged material is
predicted by the model. Possible remedies were proposed in the literature, for instance, based on
variable length scale parameters [58,59] or the so-called concept of decreasing interactions [45],
which is motivated by a physically based micromechanical homogenization theory [60], cf. [46]
for a discussion of these approaches. For a more realistic representation of sharp cracks within the
present gradient-enhanced rock model, further investigations of these concepts are recommended.

• Regarding the identification of the parameters controlling the gradient-enhanced softening part of
the model, i.e., softening modulus εf, length scale parameter l, and weighting parameter m, an ad
hoc approach was employed: While the length scale parameter l was treated as a model parameter
conforming to the size of the employed finite element mesh to ensure a sufficient resolution of the
nonlocal gradient, εf was identified by a best fit with experimental results for a chosen l and m.
A more systematic approach for identifying these parameters based on experimental results is an
open issue. In particular, a scheme to compute εf based on a prescribed value of l and a typical
material parameter, such as the specific mode I fracture energy, is desirable.

Summarizing, it can be concluded that the presented damage-plasticity model is capable
of representing a wide range of failure mechanisms in numerical simulations in a realistic and
objective manner.
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