
applied
sciences

Article

Development and Experimental Evaluation of
Machine-Learning Techniques for an Intelligent
Hairy Scalp Detection System

Wei-Chien Wang 1, Liang-Bi Chen 2,* ID and Wan-Jung Chang 2,* ID

1 Science and Engineering Faculty, Queensland University of Technology, Brisbane 4000, Australia;
cchain.5@gmail.com

2 Department of Electronic Engineering, Southern Taiwan University of Science and Technology,
Tainan 71005, Taiwan

* Correspondence: liangbi.chen@gmail.com (L.-B.C.); allenchang@stust.edu.tw (W.-J.C.)

Received: 14 May 2018; Accepted: 21 May 2018; Published: 23 May 2018
����������
�������

Featured Application: Deep learning, decision tree, linear discriminant analysis (LDA), support
vector machines (SVMs), k-nearest neighbors algorithm (K-NN), and ensemble learning are
evaluated for detecting hairy scalp problems. To the best of our knowledge, we are the first
case study to apply modern machine learning to the diagnosis and analysis of hairy scalp issues.

Abstract: Deep learning has become the most popular research subject in the fields of artificial
intelligence (AI) and machine learning. In October 2013, MIT Technology Review commented that
deep learning was a breakthrough technology. Deep learning has made progress in voice and
image recognition, image classification, and natural language processing. Prior to deep learning,
decision tree, linear discriminant analysis (LDA), support vector machines (SVM), k-nearest neighbors
algorithm (K-NN), and ensemble learning were popular in solving classification problems. In this
paper, we applied the previously mentioned and deep learning techniques to hairy scalp images.
Hairy scalp problems are usually diagnosed by non-professionals in hair salons, and people with
such problems may be advised by these non-professionals. Additionally, several common scalp
problems are similar; therefore, non-experts may provide incorrect diagnoses. Hence, scalp problems
have worsened. In this work, we implemented and compared the deep-learning method, the
ImageNet-VGG-f model Bag of Words (BOW), with machine-learning classifiers, and histogram of
oriented gradients (HOG)/pyramid histogram of oriented gradients (PHOG) with machine-learning
classifiers. The tools from the classification learner apps were used for hairy scalp image classification.
The results indicated that deep learning can achieve an accuracy of 89.77% when the learning rate is
1 × 10−4, and this accuracy is far higher than those achieved by BOW with SVM (80.50%) and PHOG
with SVM (53.0%).

Keywords: deep learning; machine learning; support vector machine (SVM); images classification;
images recognition; hairy scalp diagnosis and analysis

1. Introduction

In recent years, machine-learning techniques have been widely used in computer vision, image
recognition, stock market analysis, medical diagnosis, natural language processing, voice/speech
recognition, etc. Machine learning is an aspect of artificial intelligence (AI) that represents another
widely used term for AI. Therefore, AI research has shifted from reasoning as the most vital aspect to
knowledge and then learning as the most important aspects, which represents a natural and distinct

Appl. Sci. 2018, 8, 853; doi:10.3390/app8060853 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3181-4480
https://orcid.org/0000-0002-7478-7315
http://www.mdpi.com/2076-3417/8/6/853?type=check_update&version=1
http://dx.doi.org/10.3390/app8060853
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 853 2 of 28

sequence of events. Machine learning has become a methodology of realizing AI, and it also represents
a method of resolving issues associated with AI. Historically, huge quantities of data had to be
analyzed to accomplish many different tasks, and such analyses represented a methodology used for
policy making and modeling; however, machine learning provides a more effective and productive
replacement methodology for acquiring knowledge.

Machine learning can progressively improve forecast modeling functions and capabilities and
utilize relevant data to assist with policy formulation. Therefore, this approach has become an
increasingly important tool in computer science-related research and has played a progressively vital
role in people’s daily lives. Machine learning has provided more advanced forms of junk email filters,
better software for voice/speech recognition, and reliable internet search engines, among other benefits.
Deep learning has attracted increasing attention in academia and industry and represents the most
popular research direction in the fields of AI and machine learning. Even MIT Technology Review
commented in October 2013 that deep learning was a breakthrough technology [1]. Deep learning has
made progress in voice and image recognition, image classification, and natural language processing.
Prior to deep learning, support vector machines (SVM) represented a popular approach to solving
classification problems.

In this paper, we use the diagnosis and analysis of hairy scalps as a case study for machine-learning
techniques. In this case study, we implemented, evaluated, and compared the deep learning method
with the ImageNet-VGG-f model Bag of Words (BOW), with machine learning classifiers, and histogram
of oriented gradients (HOG)/pyramid histogram of oriented gradients (PHOG) with machine-learning
classifiers. We selected scalp state detection as our case study because people have many hairy scalp
lesions caused by work pressure, long working hours, and a lack of scalp care, among other reasons.

In the hair salon industry, dermatology clinics and medical clinics, human methods of hairy
scalp state detection are frequently employed. The professional education and training costs in
these industries are very high. Moreover, the accuracy of hairy scalp state recognition varies among
individuals and does not follow a set of criteria.

In this paper, we test whether machine learning technology can be applied to hairy scalp detection.
A machine learning-based hairy scalp detector can automatically recognize the state of the hairy scalp.
Moreover, machine learning can continue to train learning algorithms to increase the accuracy of scalp
detection. We believe that machine learning-based AI image processing methods should be able to
effectively solve the aforementioned hairy scalp detection problem. By installing machine-learning
technology into a scalp state detector, the use of human-based assessments and the resulting errors can
be reduced. To the best of our knowledge, this is the first study to apply modern machine-learning
techniques to the diagnosis and analysis of hairy scalp problems.

The remainder of this paper is organized as follows. Section 2 introduces the preliminary
assessment of machine-learning techniques. Section 3 contains a review of previous works on the
design and development of image classification and recognition using machine-learning techniques.
Section 4 presents the machine-learning techniques evaluated for diagnosing and analyzing hairy
scalps. Section 5 describes the experimental results and provides a related discussion. Section 6
presents our conclusions and plans for future work.

2. Preliminaries

Figure 1 describes the principles [2] of building a machine-learning system. Machine-learning
technology as a predictive modeling system can be divided into four parts: preprocessing, learning,
evaluation, and prediction. Generally, the raw data and format of images cannot be directly used for
calculations because such data could contain a considerable amount of useless information that may
have a negative impact on the performance of the learning algorithms. Hence, the preprocessing of
raw data plays an import role within every application of machine learning systems. In this work, the
raw data are scalp images, and we try to capture the key features.

Appl. Sci. 2018, 8, 853 3 of 28

Appl. Sci. 2018, 8, x 3 of 27

datasets are usually automatically divided into two parts (training and testing datasets). The training

dataset is for training and optimizing the models, and the testing dataset is for evaluating the

efficiency of the model.

Figure 1. Typical machine-learning system [2].

Each machine-learning algorithm has its own advantages for solving specific problems, and one

learning algorithm cannot manage all problems. Hence, to train and discover the best models,

different learning algorithms could be applied to the same dataset. Comparisons of the training data

results for each learning algorithm can be used to identify the most suitable learning model.

In the 1980s, multilayer perceptron (MLP) was a very popular machine learning technique,

especially for speech recognition and image recognition. However, since the 1990s, MLP has

encountered strong competition from the simpler support vector machines (SVM). Recently, due to

the success of deep learning, MLP has regained attention. As we know, modern deep-learning

techniques were based on the MLP structure.

MLP includes at least one hidden layer (in addition to one input layer and one output layer).

Compared to the single-layer perceptron (SLP), which can only learn linear functions, MLP can learn

non-linear functions. Figure 2 shows a simple structure of an MLP with a hidden layer. Please note that

all connections are weighted, but only three weights (w0, w1, and w2) are marked in Figure 2. A simple

structure of an MLP is introduced as follows.

Figure 2. A simple structure of a multilayer perceptron (MLP) with a hidden layer.

Figure 1. Typical machine-learning system [2].

The key features are usually the color, luminance, and density of hair. Features are selected to
meet particular restrictions so that they perform well when using machine-learning algorithms. A good
machine-learning algorithm predicts good results in both training and new datasets. The datasets
are usually automatically divided into two parts (training and testing datasets). The training dataset
is for training and optimizing the models, and the testing dataset is for evaluating the efficiency of
the model.

Each machine-learning algorithm has its own advantages for solving specific problems, and one
learning algorithm cannot manage all problems. Hence, to train and discover the best models, different
learning algorithms could be applied to the same dataset. Comparisons of the training data results for
each learning algorithm can be used to identify the most suitable learning model.

In the 1980s, multilayer perceptron (MLP) was a very popular machine learning technique,
especially for speech recognition and image recognition. However, since the 1990s, MLP has
encountered strong competition from the simpler support vector machines (SVM). Recently, due
to the success of deep learning, MLP has regained attention. As we know, modern deep-learning
techniques were based on the MLP structure.

MLP includes at least one hidden layer (in addition to one input layer and one output layer).
Compared to the single-layer perceptron (SLP), which can only learn linear functions, MLP can learn
non-linear functions. Figure 2 shows a simple structure of an MLP with a hidden layer. Please note
that all connections are weighted, but only three weights (w0, w1, and w2) are marked in Figure 2.
A simple structure of an MLP is introduced as follows.

Appl. Sci. 2018, 8, x 3 of 27

datasets are usually automatically divided into two parts (training and testing datasets). The training

dataset is for training and optimizing the models, and the testing dataset is for evaluating the

efficiency of the model.

Figure 1. Typical machine-learning system [2].

Each machine-learning algorithm has its own advantages for solving specific problems, and one

learning algorithm cannot manage all problems. Hence, to train and discover the best models,

different learning algorithms could be applied to the same dataset. Comparisons of the training data

results for each learning algorithm can be used to identify the most suitable learning model.

In the 1980s, multilayer perceptron (MLP) was a very popular machine learning technique,

especially for speech recognition and image recognition. However, since the 1990s, MLP has

encountered strong competition from the simpler support vector machines (SVM). Recently, due to

the success of deep learning, MLP has regained attention. As we know, modern deep-learning

techniques were based on the MLP structure.

MLP includes at least one hidden layer (in addition to one input layer and one output layer).

Compared to the single-layer perceptron (SLP), which can only learn linear functions, MLP can learn

non-linear functions. Figure 2 shows a simple structure of an MLP with a hidden layer. Please note that

all connections are weighted, but only three weights (w0, w1, and w2) are marked in Figure 2. A simple

structure of an MLP is introduced as follows.

Figure 2. A simple structure of a multilayer perceptron (MLP) with a hidden layer. Figure 2. A simple structure of a multilayer perceptron (MLP) with a hidden layer.

Appl. Sci. 2018, 8, 853 4 of 28

Input layer: The input layer has three nodes. The offset node value is 1. The other two nodes take
external inputs from X1 and X2 (all are digital values based on the input data set). As discussed above,
no calculation is performed on the input layer; thus, the output of the input layer node is 1, and X1
and X2 are passed to the hidden layer.

Hidden layer: The hidden layer also has three nodes. The offset node output is 1. The output of
the other two nodes of the hidden layer depends on the output of the input layer (1, X1, and X2) and
the weight attached to the connection (boundary). Figure 2 shows the calculation of an output in a
hidden layer (highlighted). The output calculations of the other hidden nodes are the same. Please
note that “f” refers to the activation function. These outputs are passed to the nodes of the output layer.

Output layer: The output layer has two nodes, receives input from the hidden layer, and performs
calculations similar to the highlighted hidden layer. These calculated values (Y1 and Y2), which are
the result of the calculation, are the outputs of the MLP.

As a result, given a set of features X = (x1, x2, . . .) and a goal Y, an MLP can learn the relationship
between features and goals for the purpose of classification or regression.

To assess the effectiveness of a given model, the accuracy of different models is compared. In
this work, we have applied several popular machine-learning algorithms to analyze and diagnose
hairy scalp images. First, we adopt a manual method of classifying hairy scalps and comparing the
classification of the model accuracy to determine the quality of recognition.

Consequently, test datasets can be used to test the proposed models. Then, suitable models can
be selected based on the training dataset. The performance of the test dataset compared with that of
an untested dataset must be determined along with the error rate and performance. Subsequently,
optimal models can be applied to predict new and future data.

3. Related Works

Machine learning-based techniques are widely discussed, studied and applied for image
classification, image recognition, and object detection in many fields [3–21]. The related application
cases of machine learning-based image detection and classification are introduced as follows.

For traffic applications [3–8,19], Lousier and Abdelkrim [3] proposed a bag of features
(Bove)-based machine learning framework for image classification, and this assessed the performance
of training models using different image classification algorithms on the Caltech 101 images [4].
These authors also adopted the proposed BoF-based machine-learning framework to identify stop
sign images for applying the trained classifier in a robotic system. Ahmed et al. [5] presented text
recognition that adopted convolutional neural networks (CNNs) as their deep-learning classifier for
detecting and recognizing Arabic text. The error rate of their proposed recognition methodology was
15% using cursive script scene data.

Jagannathan et al. [6] implemented an embedded system-based object detection and classification
mechanism that adopted a commercial SoC solution. The main components of this commercial
SoC solution are fixed/floating-point dual DSP cores, a fully programmable VisionAccelerationPac
(EVE), dual ARM-based Cortex M4 cores, and an image signal processor. In this work, the authors
combined two methodologies, an AdaBoost cascade classifier with 10 HOG features for object detection
and a 7-layer CNN classifier for objects classification. The implemented methodologies can achieve
accuracies of 74.6% for pedestrian object detection, 79.4% for vehicle object detection, 79.6% for traffic
sign object detection, and 89.6% for traffic sign objects classification.

Du et al. [7] proposed an end-to-end deep learning model that adopted the Convolutional
Neural Network-Long Short-Term Memory (CNN-LSTM) architecture to predict real-time vehicular
ego-motion for an autonomous driving system. The error rate of their proposed CNN-LSTM-based
model for multiple ego-motion classification was 0.0417. Pop et al. [8] proposed different cross-modality
CNN-based deep-learning training approaches for pedestrian recognition, and they consisted of a
correlated model, an incremental model, and a particular cross-modality model.

Appl. Sci. 2018, 8, 853 5 of 28

For hyperspectral image classification applications [9–14], Ermushev and Balashov [9] developed
a complex machine-learning technique for target detection from ground radar images called CTDCM
(complex ground radar target detection and classification method), which was based on a three-step
analysis that included a learning procedure, data pre-processing examination, and target-labeling step
coupled with classification. The classification error rate of their proposed CTDCM was 12%.

Zhao and Du [10] proposed a spectral-spatial feature-based classification framework that
integrated deep-learning techniques with dimension reductions for hyperspectral image classification.
This work overcomes the insufficient discovery of objects that present considerable variations of
shape in fixed detection windows. Zhong et al. [11] designed a supervised deep-learning framework
that alleviated the declining accuracy of deep-learning models. The proposed work classified many
agricultural and urban hyperspectral imagery data sets (Indian Pines, Kennedy Space Center, and
University of Pavia).

Qader et al. [12] classified the types of vegetation extracted by satellite-based phonological
characteristics in Iraq and achieved an overall accuracy of 85%. Chen et al. [13] applied exclusive
and hierarchical relationships to enhance the classification accuracy of multiple-label scenes. In this
work, the authors combined these two relationships with a LSTM to form an accurate CNN-based
scene classifier.

For the other applications [15–21], Zhang et al. [15] proposed a covariance descriptor that
combined visual and geometric information. Moreover, this work integrated a classification framework
with dictionary learning for the object recognition of 3D point clouds. Remez et al. [16] presented
a full CNN-based deep learning architecture for image de-noising that uses the splitting scheme to
achieve sub-optimization. Nasr et al. [21] used multi-class SVMs that classified facial images for robotic
applications. This work adopted BoF as a face representation. In their work, scale-invariant feature
transform (SIFT) features were replaced by speeded up robust features (SURF) for rapid and accurate
extractions. Moreover, SURF was also used for selecting interesting points.

Besides, a few hairy scalp issues were also discussed and researched [22–24], Shih and Lin [22]
developed hair segmentation and counting algorithms which were based on an unsupervised
mechanism for diagnosing person’s hair of health condition. Nakajima and Sasaki [23] proposed an
automatic health monitoring system which two subjects had thinning hair due to aging. In their work,
hair whirl was recognized by the close circle. Lee et al. [24] developed and manufactured a carbon
nanotube/adhesive polydimethylsiloxane-based electroencephalograph (EEG) electrode which EEG
signals can be read and recorded from the hairy scalp.

4. Machine-Learning Techniques for Diagnosing and Analyzing Hairy Scalps

Figure 3 shows the system architecture of the intelligent scalp detection system (ISDS) [25]. The
ISDS consists of a scalp detector, an app running on a tablet, machine-leaning techniques [2,26], and
a cloud management platform. The scalp detector will be connected with the tablet through a Wi-Fi
wireless network. Thus, a scalp photo can be captured via the scalp detector. The scalp photo will be
taken by the scalp detector, and the recognized result of the scalp will also be sent and displayed to the
tablet. Then, we can obtain quantitative data on scalps. Furthermore, based on ISDS, we will compare
three state-of-the-art machine-learning methods using scalp image data: deep learning, BOW [27] with
machine-learning classifiers, and PHOG [28] with machine-learning classifiers.

A pre-trained model and transfer learning are included in the deep-learning method as shown
Figure 4. The ImageNet-VGG-f model [29] is a pre-trained model that has been trained using
1,200,000 images. The results of this pre-trained model are used as the initial parameters with our scale
image data set to perform the fine-tuning function, which can reduce the training time compared with
training all images and increases the accuracy compared with choosing random initializations.

Appl. Sci. 2018, 8, 853 6 of 28

Appl. Sci. 2018, 8, x 6 of 27

Figure 3. System architecture of the intelligent scalp detection system (ISDS).

A pre-trained model and transfer learning are included in the deep-learning method as shown

Figure 4. The ImageNet-VGG-f model [29] is a pre-trained model that has been trained using 1,200,000

images. The results of this pre-trained model are used as the initial parameters with our scale image

data set to perform the fine-tuning function, which can reduce the training time compared with training

all images and increases the accuracy compared with choosing random initializations.

Figure 4. Training and testing of the deep-learning structure.

Figure 5 shows the second method, which is the combination of BOW and SVM. For the BOW,

both the training and testing image features are obtained via the SIFT [30] method. Then, we use the

K-means [31] method based on SIFT features to train the images to create a codebook. Histograms

[32] are built according to the codebook produced for each test image.

Wifi

Data
base

Training Process

Scalps Inspection

New predictor4G

Tablet

Cloud Platform

Predictor

Data upload

Update

Bag of Words (BOW)

Pyramid Histogram of
Oriented Gradient

(PHOG/HOF)

Deep Learning –
ImageNet-VGG-f

Result

Machine Learning Techniques Development

Take photographs of scalp

Recognize

Display

This Work (An Evaluation of Machine Learning Tech.)

Train a new predictor with new data

Scalp Detector

Data augmentation
(Crop, Flip)

Input Images

Layer1: Conv, ReLU, LRN, Pooling

Layer2: Conv, ReLU, LRN, Pooling

Layer3: Conv, ReLU

Layer4: Conv, ReLU

Layer5: Conv, ReLU, Pooling

Layer6: FC, ReLU

Layer7: FC, ReLU

Layer8: FC

Softmax

Fine-tune

Input Images

Layer1: Conv, ReLU, LRN, Pooling

Layer2: Conv, ReLU, LRN, Pooling

Layer3: Conv, ReLU

Layer4: Conv, ReLU

Layer5: Conv, ReLU, Pooling

Layer6: FC, ReLU

Layer7: FC, ReLU

Layer8: FC

Softmax

ImageNet-VGG-f model

Train

Fine-tune on
scalp dataset

Use the obtained parameters as
initialization to retrain a new model

Training data set

Category 1(Bacteria_1) : No

Category 2(Bacteria_2) : No

Category 1(Allergy) : No

Category 1(Dandruff) : Yes

A testing image

Figure 3. System architecture of the intelligent scalp detection system (ISDS).

Appl. Sci. 2018, 8, x 6 of 27

Figure 3. System architecture of the intelligent scalp detection system (ISDS).

A pre-trained model and transfer learning are included in the deep-learning method as shown

Figure 4. The ImageNet-VGG-f model [29] is a pre-trained model that has been trained using 1,200,000

images. The results of this pre-trained model are used as the initial parameters with our scale image

data set to perform the fine-tuning function, which can reduce the training time compared with training

all images and increases the accuracy compared with choosing random initializations.

Figure 4. Training and testing of the deep-learning structure.

Figure 5 shows the second method, which is the combination of BOW and SVM. For the BOW,

both the training and testing image features are obtained via the SIFT [30] method. Then, we use the

K-means [31] method based on SIFT features to train the images to create a codebook. Histograms

[32] are built according to the codebook produced for each test image.

Wifi

Data
base

Training Process

Scalps Inspection

New predictor4G

Tablet

Cloud Platform

Predictor

Data upload

Update

Bag of Words (BOW)

Pyramid Histogram of
Oriented Gradient

(PHOG/HOF)

Deep Learning –
ImageNet-VGG-f

Result

Machine Learning Techniques Development

Take photographs of scalp

Recognize

Display

This Work (An Evaluation of Machine Learning Tech.)

Train a new predictor with new data

Scalp Detector

Data augmentation
(Crop, Flip)

Input Images

Layer1: Conv, ReLU, LRN, Pooling

Layer2: Conv, ReLU, LRN, Pooling

Layer3: Conv, ReLU

Layer4: Conv, ReLU

Layer5: Conv, ReLU, Pooling

Layer6: FC, ReLU

Layer7: FC, ReLU

Layer8: FC

Softmax

Fine-tune

Input Images

Layer1: Conv, ReLU, LRN, Pooling

Layer2: Conv, ReLU, LRN, Pooling

Layer3: Conv, ReLU

Layer4: Conv, ReLU

Layer5: Conv, ReLU, Pooling

Layer6: FC, ReLU

Layer7: FC, ReLU

Layer8: FC

Softmax

ImageNet-VGG-f model

Train

Fine-tune on
scalp dataset

Use the obtained parameters as
initialization to retrain a new model

Training data set

Category 1(Bacteria_1) : No

Category 2(Bacteria_2) : No

Category 1(Allergy) : No

Category 1(Dandruff) : Yes

A testing image

Figure 4. Training and testing of the deep-learning structure.

Figure 5 shows the second method, which is the combination of BOW and SVM. For the BOW,
both the training and testing image features are obtained via the SIFT [30] method. Then, we use the
K-means [31] method based on SIFT features to train the images to create a codebook. Histograms [32]
are built according to the codebook produced for each test image.

Finally, those histograms are used to train a SVM classifier, and the SVM classifier is used to
predict the test image. The third method, which is shown in Figure 6, used a HOG algorithm to obtain
the training and testing image features. This method trained a SVM classifier based on the HOG
features of the training images.

Appl. Sci. 2018, 8, 853 7 of 28
Appl. Sci. 2018, 8, x 7 of 27

Figure 5. Bag of Words (BOW) with the support vector machine (SVM) method.

Finally, those histograms are used to train a SVM classifier, and the SVM classifier is used to

predict the test image. The third method, which is shown in Figure 6, used a HOG algorithm to obtain

the training and testing image features. This method trained a SVM classifier based on the HOG

features of the training images.

Figure 6. Pyramid histogram of oriented gradients (PHOG)/histogram of oriented gradients (HOG)

with the SVM method.

4.1. Deep Learning

Deep learning has become a popular method for image processing and enables automatic feature

extraction as a type of feature learning. The process is improved by replacing feature engineering that

requires the analysis of knowledgeable and experienced specialists.

The three general steps performed to complete training on the deep-learning framework include

defining a network structure, defining a learning target and using a numerical method. The first step

is to identify a network structure to choose several possible functions. With a proper network

structure, an efficient deep-learning model can be built through the training process. The second step

is to define a learning target by choosing objective functions, such as the mean square error (MSE)

and cross entropy.

Figure 5. Bag of Words (BOW) with the support vector machine (SVM) method.

Appl. Sci. 2018, 8, x 7 of 27

Figure 5. Bag of Words (BOW) with the support vector machine (SVM) method.

Finally, those histograms are used to train a SVM classifier, and the SVM classifier is used to

predict the test image. The third method, which is shown in Figure 6, used a HOG algorithm to obtain

the training and testing image features. This method trained a SVM classifier based on the HOG

features of the training images.

Figure 6. Pyramid histogram of oriented gradients (PHOG)/histogram of oriented gradients (HOG)

with the SVM method.

4.1. Deep Learning

Deep learning has become a popular method for image processing and enables automatic feature

extraction as a type of feature learning. The process is improved by replacing feature engineering that

requires the analysis of knowledgeable and experienced specialists.

The three general steps performed to complete training on the deep-learning framework include

defining a network structure, defining a learning target and using a numerical method. The first step

is to identify a network structure to choose several possible functions. With a proper network

structure, an efficient deep-learning model can be built through the training process. The second step

is to define a learning target by choosing objective functions, such as the mean square error (MSE)

and cross entropy.

Figure 6. Pyramid histogram of oriented gradients (PHOG)/histogram of oriented gradients (HOG)
with the SVM method.

4.1. Deep Learning

Deep learning has become a popular method for image processing and enables automatic feature
extraction as a type of feature learning. The process is improved by replacing feature engineering that
requires the analysis of knowledgeable and experienced specialists.

The three general steps performed to complete training on the deep-learning framework include
defining a network structure, defining a learning target and using a numerical method. The first
step is to identify a network structure to choose several possible functions. With a proper network
structure, an efficient deep-learning model can be built through the training process. The second step
is to define a learning target by choosing objective functions, such as the mean square error (MSE) and
cross entropy.

Finally, during the training process, we use numerical methods to discover the best combination
of parameters, including weights and bias, to reduce the size of the learning target as much as possible.
Backpropagation (BP) is usually used for minimizing an objective function. Deep learning is composed

Appl. Sci. 2018, 8, 853 8 of 28

of a set of functions that can be used to describe data. If the proper parameters of a function can be
obtained, we can predict the new input data through those functions. In the following section, we
describe how the parameters were updated using BP.

4.1.1. Backpropagation (BP)

BP is utilized to identify the suitable parameters for the deep network. We use the partial
derivatives (∂J/∂w and ∂J/∂b) of the objective function J regarding every weight w and bias b in the
deep neural network. Equation (1) shows the objective function.

J = ∑
1
2
(target− output)2 = ∑

1
2
(t− o)2 (1)

where t represents the real class of the images and o represents the output of the deep-learning model.
The purpose of BP is to minimize J as much as possible by finding the w. Therefore, BP lessens the
difference between the real value and the output of the model. To minimize J and obtain all proper
weights, we calculate the partial derivatives of J on w in each layer. We use two layers (as shown in
Figure 7) to describe the BP process. First, we calculate the partial derivatives of J from Equation (1)
with respect to the weight w(2) of the output layer (as given in Equation (2)). This partial derivative is
shown in Equation (3).

w(2) =

 w(2)
11

w(2)
21

w(2)
31

 (2)

∂J
∂w(2)

=


∂J

w(2)
11

∂J
w(2)

21
∂J

w(2)
31

 (3)

Appl. Sci. 2018, 8, x 8 of 27

Finally, during the training process, we use numerical methods to discover the best combination

of parameters, including weights and bias, to reduce the size of the learning target as much as

possible. Backpropagation (BP) is usually used for minimizing an objective function. Deep learning

is composed of a set of functions that can be used to describe data. If the proper parameters of a

function can be obtained, we can predict the new input data through those functions. In the following

section, we describe how the parameters were updated using BP.

4.1.1. Backpropagation (BP)

BP is utilized to identify the suitable parameters for the deep network. We use the partial

derivatives (∂J/∂w and ∂J/∂b) of the objective function J regarding every weight w and bias b in the

deep neural network. Equation (1) shows the objective function.

J= ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2 = ∑

1

2
(𝑡 − 𝑜)2 (1)

where t represents the real class of the images and o represents the output of the deep-learning model.

The purpose of BP is to minimize J as much as possible by finding the w. Therefore, BP lessens the

difference between the real value and the output of the model. To minimize J and obtain all proper

weights, we calculate the partial derivatives of J on w in each layer. We use two layers (as shown in

Figure 7) to describe the BP process. First, we calculate the partial derivatives of J from Equation (1)

with respect to the weight 𝑤(2) of the output layer (as given in Equation (2)). This partial derivative

is shown in Equation (3).

𝑤(2) = [

𝑤11
(2)

𝑤21
(2)

𝑤31
(2)

] (2)

∂𝐽

∂𝑤(2)
=

[

∂𝐽

𝑤11
(2)

∂𝐽

𝑤21
(2)

∂𝐽

𝑤31
(2)

]

 (3)

Figure 7. Two-layer neural network.

Target t consists of constants, and the results obtained after performing partial derivatives are

shown in Equation (4).

∂𝐽

∂𝑤(2)
=

∂∑
1
2

(𝑡 − 𝑜)2

∂𝑤(2)
= ∑

∂
1
2

(𝑡 − 𝑜)2

∂𝑤(2)
= −(𝑡 − 𝑜)

∂𝑜

∂𝑤(2)
 (4)

The chain rule is utilized in Equation (5).

Input x

Output o

Figure 7. Two-layer neural network.

Target t consists of constants, and the results obtained after performing partial derivatives are
shown in Equation (4).

∂J
∂w(2)

=
∂ ∑ 1

2 (t− o)2

∂w(2)
= ∑

∂ 1
2 (t− o)2

∂w(2)
= −(t− o)

∂o
∂w(2)

(4)

Appl. Sci. 2018, 8, 853 9 of 28

The chain rule is utilized in Equation (5).

∂J
∂w(2)

= −(t− o)
∂o

∂z(3)
∂z(3)

∂w(2)
(5)

Because o = f (z(3)), the partial derivatives of o with respect to z(3) are equal to f ′(z(3)) such that
∂o

∂z(3)
= f ′(z(3)). Hence, the replacement of ∂o

∂z(3)
by f ′(z(3)) is shown in Equation (6).

∂J
∂w(2)

= −(t− o) f ′(z(3))
∂z(3)

∂w(2)
(6)

According to the neural network rule, z(3) (Figure 7) is the result of the multiple a(2) and w(2) such
that z(3) = a(2)w(2). Hence, the partial derivative of z(3) regarding the weight w(2) is a(2) as shown in
Equation (7).

∂z(3)

∂w(2)
= a(2) (7)

For mathematical convenience, replace −(t− o) f ′(z(3)) with δ(3) as shown in Equation (8).

δ(3) = −(t− o) f ′(z(3)) (8)

Therefore, according to Equations (7) and (8), ∂J
∂w(2) can be represented by Equation (9).

∂J
∂w(2)

= (a(2))
T
δ(3) (9)

Second, the partial derivatives of J regarding the weight w(1) Equation (10) of the layer before the
output layer are represented by Equations (11) and (12). The chain rule is used in Equation (13).

w(1) =

[
w(1)

11 w(1)
12 w(1)

13

w(2)
21 w(2)

22 w(3)
23

]
(10)

∂J
∂w(1)

=


∂J

w(1)
11

∂J
w(1)

12

∂J
w(1)

13

∂J
w(1)

21

∂J
w(1)

22

∂J
w(1)

23

 (11)

∂J
∂w(1)

=
∂ ∑ 1

2 (t− o)2

∂w(1)
= ∑

∂ 1
2 (t− o)2

∂w(1)
(12)

∂J
∂w(1)

= −(t− o)
∂o

∂w(1)
= −(t− o)

∂o
∂z(3)

∂z(3)

∂w(1)
(13)

Based on ∂o
∂z(3)

= f ′(z(3)) and Equation (8), ∂J
∂w(1) can simply be represented by Equation (14).

∂J
∂w(1)

= −(t− o) f ′(z(3))
∂z(3)

∂w(1)
= δ(3)

∂z(3)

∂w(1)
(14)

Because ∂z(3)

∂a(2)
is equal to w(2), the results of the replacement after performing the chain rule in

Equation (14) are shown in Equation (15).

∂J
∂w(1)

= δ(3)
∂z(3)

∂a(2)
∂a(2)

∂w(1)
= δ(3)(w(2))

T ∂a(2)

∂w(1)
(15)

Appl. Sci. 2018, 8, 853 10 of 28

∂a(2)

∂w(1) = ∂a(2)

∂z(2)
∂z(2)

∂w(1) and ∂a(2)

∂z(2)
= f ′(z(2)), and Equation (16) displays the result of those substitutions.

∂J
∂w(1)

= δ(3)(w(2))
T ∂a(2)

∂z(2)
∂z(2)

∂w(1)
= δ(3)(w(2))

T
f ′(z(2))

∂z(2)

∂w(1)
(16)

Also, ∂z(2)

∂w(1) = x, and Equation (17) is the result of substituting x for ∂z(2)

∂w(1) .

∂J
∂w(1)

= xTδ(3)(w(2))
T

f ′(z(2)) (17)

Equation (18) shows the short representation after setting δ(2)=δ(3)(w(2))
T

f ′(z(2)).

∂J
∂w(1)

= xTδ(2) (18)

For the partial derivatives of J, the biases b(1) and b(2) are shown in Equation (19).
∂J

∂b(1)
= δ(2)

∂J
∂b(2)

= δ(3)
(19)

Finally, we use Equations (20) and (21) to update the parameters, including the weights and bias.

w(l)
ij = w(l)

ij −−α
∂J(w, b)

∂w(l)
ij

(20)

b(l)i = b(l)i − α
∂J(w, b)

∂b(l)i

(21)

where ij represents the location of the neuron on the l layer and α is the learning rate.

4.1.2. Convolution

Convolution layers are usually composed of a wide range of filters as shown in Figure 8.
Those filters can enhance the features of images. For example, the top of Figure 8 shows the pixel
representation of a line filter. After convoluting input images with this line filter, a vertical line feature
map can be obtained. Through a vertical line feature map, we can extract the line features included in
those images. After several layers, the CNN can learn to grab more complex features, such as objects.

Appl. Sci. 2018, 8, x 10 of 27

∂𝐽

∂𝑤(1)
= 𝑥𝑇δ(3)(𝑤(2))𝑇𝑓′(𝑧(2)) (17)

Equation (18) shows the short representation after setting δ(2)=δ(3)(𝑤(2))𝑇𝑓′(𝑧(2)).

∂𝐽

∂𝑤(1)
= 𝑥𝑇δ(2) (18)

For the partial derivatives of J, the biases 𝑏(1) and 𝑏(2) are shown in Equation (19).

{

∂𝐽

∂𝑏(1)
= δ(2)

∂𝐽

∂𝑏(2)
= δ(3)

 (19)

Finally, we use Equations (20) and (21) to update the parameters, including the weights and bias.

𝑤𝑖𝑗
(𝑙)

= 𝑤𝑖𝑗
(𝑙)

− −α
∂𝐽(𝑤, 𝑏)

∂𝑤𝑖𝑗
(𝑙)

 (20)

𝑏𝑖
(𝑙)

= 𝑏𝑖
(𝑙)

− α
∂𝐽(𝑤, 𝑏)

∂𝑏𝑖
(𝑙)

 (21)

where ij represents the location of the neuron on the 𝑙 layer and α is the learning rate.

4.1.2. Convolution

Convolution layers are usually composed of a wide range of filters as shown in Figure 8. Those

filters can enhance the features of images. For example, the top of Figure 8 shows the pixel

representation of a line filter. After convoluting input images with this line filter, a vertical line feature

map can be obtained. Through a vertical line feature map, we can extract the line features included in

those images. After several layers, the CNN can learn to grab more complex features, such as objects.

Figure 8. Pixel representation and visualization of filters.

The purpose of training in a CNN is to discover the optimization filters. Through their

calculations, testing images can be well represented so that the accuracy of classification can be

enhanced. Shared weights and sparse connectivity are two advantages of CNNs that can reduce the

number of training parameters.

For shared weights, all neurons in the same hidden layers use the same filter to detect the same

feature within an image, such as the line or edge feature. Therefore, different parts of an image use

the same filter that includes weights and bias. Sparse connectivity is related to a neuron on the layer

being connected to several (not all) neurons of the previous layer.

Figure 8. Pixel representation and visualization of filters.

Appl. Sci. 2018, 8, 853 11 of 28

The purpose of training in a CNN is to discover the optimization filters. Through their calculations,
testing images can be well represented so that the accuracy of classification can be enhanced.
Shared weights and sparse connectivity are two advantages of CNNs that can reduce the number of
training parameters.

For shared weights, all neurons in the same hidden layers use the same filter to detect the same
feature within an image, such as the line or edge feature. Therefore, different parts of an image use the
same filter that includes weights and bias. Sparse connectivity is related to a neuron on the layer being
connected to several (not all) neurons of the previous layer.

4.1.3. Rectified Linear Unit (ReLU)

ReLU is a linear activation function and shown in Equation (22). If the input of ReLU, x, is less
than 0, then the value of ReLU is zero. If the input of ReLU, x, is larger than 0, then the value of ReLU
is still x. Compared with non-linear activation functions, sigmoid and tanh can perform astronomical
calculations because both are exponential functions. Most importantly, sigmoid and tanh functions
have gradient vanishing problems when implementing BP, which causes missing information.

ReLU = max(0, x) (22)

4.1.4. Max-Pooling

After performing convolution, the number of parameters is too high to train a classifier, such as a
Softmax. Thousands of parameters create an overfitting problem and cause astronomical calculations.
As shown in Figure 9, the highest value is obtained from a small area in the previous layer. Hence,
Max-pooling is proposed to reduce the number of parameters and prevent overfitting.

Appl. Sci. 2018, 8, x 11 of 27

4.1.3. Rectified Linear Unit (ReLU)

ReLU is a linear activation function and shown in Equation (22). If the input of ReLU, x, is less

than 0, then the value of ReLU is zero. If the input of ReLU, x, is larger than 0, then the value of ReLU

is still x. Compared with non-linear activation functions, sigmoid and tanh can perform astronomical

calculations because both are exponential functions. Most importantly, sigmoid and tanh functions

have gradient vanishing problems when implementing BP, which causes missing information.

𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥 (0, 𝑥) (22)

4.1.4. Max-Pooling

After performing convolution, the number of parameters is too high to train a classifier, such as

a Softmax. Thousands of parameters create an overfitting problem and cause astronomical

calculations. As shown in Figure 9, the highest value is obtained from a small area in the previous

layer. Hence, Max-pooling is proposed to reduce the number of parameters and prevent overfitting.

Figure 9. Max-pooling.

4.1.5. Fully Connected Layers (FC)

For the ImageNet-VGG-f model, layers 6 to 8 are fully connected layers (FC). Each neuron of the

FC connects to every neuron of the previous layer. Hence, the number of parameters of the FC is

large. Layers six and seven include activate functions. High-level features can be calculated from

layer five, the convolutional layer, the ReLU and the pooling layer.

The main concept of FC is to transform high-level features into one dimension for classification

purposes. Therefore, by using matrix multiplication, FC condenses all dimensions into one vector for

Softmax to train a classifier.

4.1.6. Softmax

The Softmax layer is based on a logical regression to manage multiclass problems. Therefore,

this layer is also called a multinomial logistic regression. In this research, four classes are used:

bacteria type 1, bacteria type 2, allergy and dandruff. The output of Softmax presents four

probabilities of belonging to a class, and the sum of the four probabilities is equal to 1.

4.1.7. Data Augmentation

Before performing fine tuning through the ImageNet-VGG-f pre-trained model, four categories

are included with a different number of images in each. Hence, the data augmentation method is

applied to equalize the number of images in those four classifications. Flip and Crop are two data

augmentation methods.

We use the fliplr function of MATLAB to exchange the columns in order in the horizontal

direction. For example, the first column of the image is exchanged with the last a column of the image.

Figure 10a shows the original image, and Figure 10b shows the result of flipping the original image.

Figure 9. Max-pooling.

4.1.5. Fully Connected Layers (FC)

For the ImageNet-VGG-f model, layers 6 to 8 are fully connected layers (FC). Each neuron of the
FC connects to every neuron of the previous layer. Hence, the number of parameters of the FC is large.
Layers six and seven include activate functions. High-level features can be calculated from layer five,
the convolutional layer, the ReLU and the pooling layer.

The main concept of FC is to transform high-level features into one dimension for classification
purposes. Therefore, by using matrix multiplication, FC condenses all dimensions into one vector for
Softmax to train a classifier.

4.1.6. Softmax

The Softmax layer is based on a logical regression to manage multiclass problems. Therefore, this
layer is also called a multinomial logistic regression. In this research, four classes are used: bacteria
type 1, bacteria type 2, allergy and dandruff. The output of Softmax presents four probabilities of
belonging to a class, and the sum of the four probabilities is equal to 1.

Appl. Sci. 2018, 8, 853 12 of 28

4.1.7. Data Augmentation

Before performing fine tuning through the ImageNet-VGG-f pre-trained model, four categories
are included with a different number of images in each. Hence, the data augmentation method is
applied to equalize the number of images in those four classifications. Flip and Crop are two data
augmentation methods.

We use the fliplr function of MATLAB to exchange the columns in order in the horizontal direction.
For example, the first column of the image is exchanged with the last a column of the image. Figure 10a
shows the original image, and Figure 10b shows the result of flipping the original image. The Crop
method crops part of the original images. The data augmentation method can help to reduce the effect
of overfitting.

Appl. Sci. 2018, 8, x 12 of 27

The Crop method crops part of the original images. The data augmentation method can help to

reduce the effect of overfitting.

(a) (b)

Figure 10. (a) Scalp before flipping; (b) scalp after flipping.

4.2. Bag of Words (BOW)

BOW was originally used to detect words. The general purpose of this method is to obtain visual

words from all documents and then calculate the number of occurrences of those visual words based

on each document. Subsequently, the occurrences are presented by a feature vector in each document.

The flow chart in Figure 11 shows the four key parts of the BOW method: (1) feature detection; (2)

feature description; (3) cluster; and (4) histogram.

Figure 11. BOW structure.

4.2.1. Feature Detection

Feature detection detects the interesting points of images and can be divided into two categories:

global features and local features. For global features, the information contained in an entire image

is used, and the most popular global feature is GIST [33].

For local features, the images are divided into many sub-images or segmented according to

objects within the images. The feature detection of BOW uses local features to detect the critical points

of images. Many methods are used to detect key points, such as Harris–Affine, Hessian–Affine [34],

maximally stable extremal regions (MSER) [35], Lowe’s difference-of-Gaussian (DOG), edge-based

regions (EBRs), intensity-based regions (IBRs) [36], and salient regions [37]. Tuytelaars and

Mikolajczyk [38] surveyed many local feature detectors.

Figure 10. (a) Scalp before flipping; (b) scalp after flipping.

4.2. Bag of Words (BOW)

BOW was originally used to detect words. The general purpose of this method is to obtain visual
words from all documents and then calculate the number of occurrences of those visual words based on
each document. Subsequently, the occurrences are presented by a feature vector in each document. The
flow chart in Figure 11 shows the four key parts of the BOW method: (1) feature detection; (2) feature
description; (3) cluster; and (4) histogram.

Appl. Sci. 2018, 8, x 12 of 27

The Crop method crops part of the original images. The data augmentation method can help to

reduce the effect of overfitting.

(a) (b)

Figure 10. (a) Scalp before flipping; (b) scalp after flipping.

4.2. Bag of Words (BOW)

BOW was originally used to detect words. The general purpose of this method is to obtain visual

words from all documents and then calculate the number of occurrences of those visual words based

on each document. Subsequently, the occurrences are presented by a feature vector in each document.

The flow chart in Figure 11 shows the four key parts of the BOW method: (1) feature detection; (2)

feature description; (3) cluster; and (4) histogram.

Figure 11. BOW structure.

4.2.1. Feature Detection

Feature detection detects the interesting points of images and can be divided into two categories:

global features and local features. For global features, the information contained in an entire image

is used, and the most popular global feature is GIST [33].

For local features, the images are divided into many sub-images or segmented according to

objects within the images. The feature detection of BOW uses local features to detect the critical points

of images. Many methods are used to detect key points, such as Harris–Affine, Hessian–Affine [34],

maximally stable extremal regions (MSER) [35], Lowe’s difference-of-Gaussian (DOG), edge-based

regions (EBRs), intensity-based regions (IBRs) [36], and salient regions [37]. Tuytelaars and

Mikolajczyk [38] surveyed many local feature detectors.

Figure 11. BOW structure.

4.2.1. Feature Detection

Feature detection detects the interesting points of images and can be divided into two categories:
global features and local features. For global features, the information contained in an entire image is
used, and the most popular global feature is GIST [33].

Appl. Sci. 2018, 8, 853 13 of 28

For local features, the images are divided into many sub-images or segmented according
to objects within the images. The feature detection of BOW uses local features to detect the
critical points of images. Many methods are used to detect key points, such as Harris–Affine,
Hessian–Affine [34], maximally stable extremal regions (MSER) [35], Lowe’s difference-of-Gaussian
(DOG), edge-based regions (EBRs), intensity-based regions (IBRs) [36], and salient regions [37].
Tuytelaars and Mikolajczyk [38] surveyed many local feature detectors.

4.2.2. Feature Description

After detecting the key points of images, we must accurately describe those key points. In this
work, we use VLFeat [39], which combines Lowes DOG and SIFT. By exploiting the features of SIFT,
such as its invariance to image scale and rotation, suitable information can be obtained.

Thus, the same SIFT features can be obtained regardless of the rotation and scale of the image.
Through SIFT, we can finally obtain a 128-dimension feature vector from each key point. Four steps
are performed to obtain the SIFT features: (a) scale-space peak selection; (b) key point localization;
(c) orientation assignment; and (d) key point description.

(a) Scale-space Peak Selection

The SIFT algorithm identifies the interesting points in different scale spaces. By multiplying the
Gaussian kernel with input images, we can obtain different scale spaces. Equation (23) shows the
two-dimensional variable scale space’s Gaussian function and Equation (24) shows the scale-space.

G(x, y, σ) =
1

2πσ2 e−(x2+y2)/2σ2
(23)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (24)

where L(x,y,σ) is the result of the convolution operation with an input image I(x,y) and the
two-dimensional space’s Gaussian function and σ is the standard deviation. If the value of σ increases,
then the image will be blurred, and vice versa. Multiple Gaussian scale spaces can be obtained by
using the convolution operation on an original image and varying σ.

Figure 12 shows that the Gaussian pyramid is constructed by different octaves. Figure 13 shows
the four octaves of a dandruff image and five standard deviations in each octave. The images in the
same octave are the same size but have different standard deviations.

Appl. Sci. 2018, 8, x 13 of 27

4.2.2. Feature Description

After detecting the key points of images, we must accurately describe those key points. In this

work, we use VLFeat [39], which combines Lowes DOG and SIFT. By exploiting the features of SIFT,

such as its invariance to image scale and rotation, suitable information can be obtained.

Thus, the same SIFT features can be obtained regardless of the rotation and scale of the image.

Through SIFT, we can finally obtain a 128-dimension feature vector from each key point. Four steps

are performed to obtain the SIFT features: (a) scale-space peak selection; (b) key point localization; (c)

orientation assignment; and (d) key point description.

(a) Scale-space Peak Selection

The SIFT algorithm identifies the interesting points in different scale spaces. By multiplying the

Gaussian kernel with input images, we can obtain different scale spaces. Equation (23) shows the

two-dimensional variable scale space’s Gaussian function and Equation (24) shows the scale-space.

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
𝑒−(𝑥2+𝑦2)/2𝜎2

 (23)

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) (24)

where L(x,y,𝜎) is the result of the convolution operation with an input image I(x,y) and the two-

dimensional space’s Gaussian function and σ is the standard deviation. If the value of σ increases,

then the image will be blurred, and vice versa. Multiple Gaussian scale spaces can be obtained by

using the convolution operation on an original image and varying 𝜎.

Figure 12 shows that the Gaussian pyramid is constructed by different octaves. Figure 13 shows

the four octaves of a dandruff image and five standard deviations in each octave. The images in the

same octave are the same size but have different standard deviations.

For example, at the bottom of octave1, the σ value is the lowest and the upper layer is k times σ.

As σ increases, a variety of scale spaces can be obtained. For different octaves, the next octave is

obtained by down-sampling the previous octave. Based on the Gaussian pyramid, the DOG can be

generated by subtracting two adjacent images in the same octave.

Figure 12. Difference-of-Gaussian (DOG). Figure 12. Difference-of-Gaussian (DOG).

Appl. Sci. 2018, 8, 853 14 of 28
Appl. Sci. 2018, 8, x 14 of 27

Figure 13. Dandruff image is displayed at four octaves with five standard deviations.

Comparing 26 neighbor pixels of the candidate pixel (as shown in the right side of Figure 10)

can obtain a feature point as the local maxima and minima in the DOG space. The 26 neighbor pixels

include the 18 pixels of the up and down layer of DOG and the 8 pixels at the current layer of DOG.

To identify stable key points within the scale space, the DOG scale-space is obtained by convoluting

different DOG kernels and original images as shown in Equation (25).

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘 𝜎) − 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦)) = 𝐿(𝑥, 𝑦, 𝑘 𝜎) − 𝐿(𝑥, 𝑦, 𝜎) (25)

(b) Key Point Localization

Because all local maxima and minima in the DOG space are not feature points, many redundant

points must be removed. Brown and Lowe [40] proposed using the Taylor expansion of the scale-

space function (as shown in Equation (26)) to increase the accuracy of identifying feature points by

removing candidate points that have low contrast.

𝐷(𝑥, 𝑦, 𝜎) = 𝐷(𝑥, 𝑦, 𝜎) +
∂𝐷𝑇

∂𝑥
𝑥 +

1

2
𝑥𝑇

∂2𝐷

∂𝑥2
𝑋 (26)

where x = (𝑥, 𝑦, σ) 𝑇 is the offset from the local maxima or minima sampled. Then, the derivative of

Equation (26) is applied and set to zero. The accurate location of the local maxima or minima sampled

can be obtained as 𝑥̂ as shown in Equation (27).

𝑥̂ = −
∂2𝐷−1

∂𝑥2

∂𝐷

∂𝑥
 (27)

Then, we place Equation (27) into Equation (26), and the result of the first two items is shown in

Equation (28).

𝐷(𝑥̂) = 𝐷(𝑥, 𝑦, 𝜎) +
1

2

∂𝐷𝑇

∂𝑥
𝑥̂ (28)

Finally, the value of D(𝑥̂) at the minima or maxima must be larger than the threshold as shown

in Equation (29).

|𝐷(𝑥̂)| > threshold (29)

If the value of |D(𝑥̂)| is less than the threshold, then those points are unstable and can be

removed. Removing the interesting points with low contrast is insufficient because of the strong

response at the image edges within the difference of the Gaussian function. Two situations were

observed: when the principle curvature is large across the edge and when the principle curvature is

small on the perpendicular edge. Therefore, Lowe used the 2 × 2 Hessian matrix to create the principle

curvatures. The Hessian matrix is shown in Equation (30).

H = [
𝐷𝑥𝑥(𝑥, 𝑦) 𝐷𝑥𝑦(𝑥, 𝑦)

𝐷𝑥𝑦(𝑥, 𝑦) 𝐷𝑦𝑦(𝑥, 𝑦)
] (30)

Figure 13. Dandruff image is displayed at four octaves with five standard deviations.

For example, at the bottom of octave1, the σ value is the lowest and the upper layer is k times
σ. As σ increases, a variety of scale spaces can be obtained. For different octaves, the next octave is
obtained by down-sampling the previous octave. Based on the Gaussian pyramid, the DOG can be
generated by subtracting two adjacent images in the same octave.

Comparing 26 neighbor pixels of the candidate pixel (as shown in the right side of Figure 10)
can obtain a feature point as the local maxima and minima in the DOG space. The 26 neighbor pixels
include the 18 pixels of the up and down layer of DOG and the 8 pixels at the current layer of DOG.
To identify stable key points within the scale space, the DOG scale-space is obtained by convoluting
different DOG kernels and original images as shown in Equation (25).

D(x, y, σ) = (G(x, y, k σ)− G(x, y, σ) ∗ I(x, y)) = L(x, y, k σ)− L(x, y, σ) (25)

(b) Key Point Localization

Because all local maxima and minima in the DOG space are not feature points, many redundant
points must be removed. Brown and Lowe [40] proposed using the Taylor expansion of the scale-space
function (as shown in Equation (26)) to increase the accuracy of identifying feature points by removing
candidate points that have low contrast.

D(x, y, σ) = D(x, y, σ) +
∂DT

∂x
x +

1
2

xT ∂2D
∂x2 X (26)

where x = (x, y, σ)T is the offset from the local maxima or minima sampled. Then, the derivative of
Equation (26) is applied and set to zero. The accurate location of the local maxima or minima sampled
can be obtained as x̂ as shown in Equation (27).

x̂ = −∂2D−1

∂x2
∂D
∂x

(27)

Then, we place Equation (27) into Equation (26), and the result of the first two items is shown in
Equation (28).

D(x̂) = D(x, y, σ) +
1
2

∂DT

∂x
x̂ (28)

Finally, the value of D(x̂) at the minima or maxima must be larger than the threshold as shown in
Equation (29).

|D(x̂)| > threshold (29)

Appl. Sci. 2018, 8, 853 15 of 28

If the value of |D(x̂)| is less than the threshold, then those points are unstable and can be removed.
Removing the interesting points with low contrast is insufficient because of the strong response at
the image edges within the difference of the Gaussian function. Two situations were observed: when
the principle curvature is large across the edge and when the principle curvature is small on the
perpendicular edge. Therefore, Lowe used the 2*2 Hessian matrix to create the principle curvatures.
The Hessian matrix is shown in Equation (30).

H =

[
Dxx(x, y) Dxy(x, y)
Dxy(x, y) Dyy(x, y)

]
(30)

where Dxx(x, y) is the second-order partial derivative of D(x,y,σ) in the x direction at a sample point in
DOG. Then, Lowe calculated the individual eigenvalues and only considered the ratio in Equation (31).
The numerator of this ratio is the square of the sum of the eigenvalues from the value of the diagonal
of H as shown in Equation (32). The denominator of this ratio is the product from the determinant as
shown in Equation (33).

Tr(H)2

Det(H)
=

(α + β)2

αβ
(31)

Tr(H)2 = Dxx(x, y) + Dyy(x, y) = α + β (32)

Det(H) = Dxx(x, y) ∗ Dyy(x, y)− (Dxy(x, y)2) = αβ (33)

where α is the largest of the eigenvalues and β is the smallest of the eigenvalues. After setting α to γβ,
the ratio is as shown in Equation (34).

Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(γβ + β)2

γβ2 =
(γ + 1)2

γ
(34)

The smallest value of (γ+1)2

γ is obtained when α and β are the same, and the ratio increases when
γ increases. Hence, we check (35) instead of comparing the ratio of principle curvatures that are less
than the threshold γ.

Figure 14a,b show the Bacteria_1 image before and after the threshold method. The numbers of
the points before and after the threshold are counted in Figure 14a,b as 1198 and 610, respectively.

Tr(H)2

Det(H)
<

(γ + 1)2

γ
(35)

(c) Orientation Assignment

After finding the locations of key points, we assign an orientation to those key points to obtain
the benefits of orientation invariance. By calculating Equations (36) and (37) on adjacent pixels around
the key points, we then obtain their gradient magnitudes Msi f t and orientation θsi f t. An orientation
histogram with 10 degrees for each bin is built according to this statistic. The main directions of
the local gradients are high bins. Except for the highest bin in this orientation histogram, the other
key points can also be generated when their bins are more than 80% of the highest bin. Figure 15a
shows the gradient magnitude and orientation of a key point. Similarly, Figure 15b shows the gradient
magnitude and orientation for all key points of an image.

Msi f t =
√
(Lx+1,y − Lx−1,y)

2 + (Lx,y+1 − Lx,y−1)
2 (36)

θsi f t = tan−1((Lx,y+1 − Lx,y−1)/(Lx+1,y − Lx−1,y)) (37)

Appl. Sci. 2018, 8, 853 16 of 28

Appl. Sci. 2018, 8, x 15 of 27

where 𝐷𝑥𝑥(𝑥, 𝑦) is the second-order partial derivative of D(x,y, 𝜎) in the x direction at a sample point

in DOG. Then, Lowe calculated the individual eigenvalues and only considered the ratio in Equation

(31). The numerator of this ratio is the square of the sum of the eigenvalues from the value of the

diagonal of H as shown in Equation (32). The denominator of this ratio is the product from the

determinant as shown in Equation (33).

Tr(H)2

Det(H)
=

(𝛼 + 𝛽)2

𝛼𝛽
 (31)

Tr(H)2 = 𝐷𝑥𝑥(𝑥, 𝑦) + 𝐷𝑦𝑦(𝑥, 𝑦) = 𝛼 + 𝛽 (32)

Det(H) = 𝐷𝑥𝑥(𝑥, 𝑦) ∗ 𝐷𝑦𝑦(𝑥, 𝑦) − (𝐷𝑥𝑦(𝑥, 𝑦)2) = 𝛼𝛽 (33)

where α is the largest of the eigenvalues and β is the smallest of the eigenvalues. After setting 𝛼 to

𝛾𝛽, the ratio is as shown in Equation (34).

Tr(H)2

Det(H)
=

(𝛼 + 𝛽)2

𝛼𝛽
=

(𝛾𝛽 + 𝛽)2

𝛾𝛽2
=

(𝛾 + 1)2

𝛾
 (34)

The smallest value of
(𝛾+1)2

𝛾
 is obtained when α and β are the same, and the ratio increases when

𝛾 increases. Hence, we check (35) instead of comparing the ratio of principle curvatures that are less

than the threshold 𝛾.

Figure 14a,b show the Bacteria_1 image before and after the threshold method. The numbers of

the points before and after the threshold are counted in Figure 14a,b as 1198 and 610, respectively.

Tr(H)2

Det(H)
<

(𝛾 + 1)2

𝛾
 (35)

(c) Orientation Assignment

After finding the locations of key points, we assign an orientation to those key points to obtain

the benefits of orientation invariance. By calculating Equations (36) and (37) on adjacent pixels around

the key points, we then obtain their gradient magnitudes 𝑀𝑠𝑖𝑓𝑡 and orientation θ𝑠𝑖𝑓𝑡. An orientation

histogram with 10 degrees for each bin is built according to this statistic. The main directions of the

local gradients are high bins. Except for the highest bin in this orientation histogram, the other key

points can also be generated when their bins are more than 80% of the highest bin. Figure 15a shows

the gradient magnitude and orientation of a key point. Similarly, Figure 15b shows the gradient

magnitude and orientation for all key points of an image.

𝑀𝑠𝑖𝑓𝑡 = √(𝐿𝑥+1,𝑦 − 𝐿𝑥−1,𝑦)2 + (𝐿𝑥,𝑦+1 − 𝐿𝑥,𝑦−1)
2 (36)

θ𝑠𝑖𝑓𝑡 = 𝑡𝑎𝑛−1((𝐿𝑥,𝑦+1 − 𝐿𝑥,𝑦−1)/(𝐿𝑥+1,𝑦 − 𝐿𝑥−1,𝑦)) (37)

(a) (b)

Figure 14. (a) Before the operating threshold method; (b) after the operating threshold method. Figure 14. (a) Before the operating threshold method; (b) after the operating threshold method.
Appl. Sci. 2018, 8, x 16 of 27

(a) (b)

Figure 15. (a) Gradient magnitude and orientation of a key point; (b) gradient magnitude and

orientation of all key points found.

(d) Key Point Description

The key point descriptor primarily describes each key point through a 128-dimension vector.

After rotating the main direction of a key point, Lowe calculated the gradient magnitude and

orientation of 16*16 adjacent pixels of a key point. The key point as shown in Figure 16a is at the

center of the square. The length of each arrowhead represents the gradient magnitude, and the

direction of each arrowhead is the orientation.

(a) (b)

Figure 16. (a) Image gradient; (b) key point descriptor.

Then, Lowe divided those 16*16 grids into 4 × 4 subregions as shown in Figure 16b. Each sub-

region presents eight directions, such as 45°, 90°, 135°, 180°, 225°, 270°, 315°, and 360°. Finally, we can

obtain a 4*4*8-dimension vector to describe each key point.

4.2.3. Cluster (K-Means)

K-means clustering is an unsupervised learning method performed to gather similar objects into

same groups. Therefore, the minimum of Equation (38) finds the shortest distance for each datum

from 𝑥1 …… . 𝑥𝑗 that belongs to centroid 𝐶𝑖.

SSE = ∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2

𝑥𝑗 ∈𝐶𝑖

𝑘

𝑖=1

 (38)

where SSE represents the sum of squares error.

Figure 15. (a) Gradient magnitude and orientation of a key point; (b) gradient magnitude and
orientation of all key points found.

(d) Key Point Description

The key point descriptor primarily describes each key point through a 128-dimension vector. After
rotating the main direction of a key point, Lowe calculated the gradient magnitude and orientation of
16*16 adjacent pixels of a key point. The key point as shown in Figure 16a is at the center of the square.
The length of each arrowhead represents the gradient magnitude, and the direction of each arrowhead
is the orientation.

Then, Lowe divided those 16*16 grids into 4*4 subregions as shown in Figure 16b. Each sub-region
presents eight directions, such as 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦, and 360◦. Finally, we can obtain
a 4*4*8-dimension vector to describe each key point.

Appl. Sci. 2018, 8, 853 17 of 28

Appl. Sci. 2018, 8, x 16 of 27

(a) (b)

Figure 15. (a) Gradient magnitude and orientation of a key point; (b) gradient magnitude and

orientation of all key points found.

(d) Key Point Description

The key point descriptor primarily describes each key point through a 128-dimension vector.

After rotating the main direction of a key point, Lowe calculated the gradient magnitude and

orientation of 16*16 adjacent pixels of a key point. The key point as shown in Figure 16a is at the

center of the square. The length of each arrowhead represents the gradient magnitude, and the

direction of each arrowhead is the orientation.

(a) (b)

Figure 16. (a) Image gradient; (b) key point descriptor.

Then, Lowe divided those 16*16 grids into 4 × 4 subregions as shown in Figure 16b. Each sub-

region presents eight directions, such as 45°, 90°, 135°, 180°, 225°, 270°, 315°, and 360°. Finally, we can

obtain a 4*4*8-dimension vector to describe each key point.

4.2.3. Cluster (K-Means)

K-means clustering is an unsupervised learning method performed to gather similar objects into

same groups. Therefore, the minimum of Equation (38) finds the shortest distance for each datum

from 𝑥1 …… . 𝑥𝑗 that belongs to centroid 𝐶𝑖.

SSE = ∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2

𝑥𝑗 ∈𝐶𝑖

𝑘

𝑖=1

 (38)

where SSE represents the sum of squares error.

Figure 16. (a) Image gradient; (b) key point descriptor.

4.2.3. Cluster (K-Means)

K-means clustering is an unsupervised learning method performed to gather similar objects into
same groups. Therefore, the minimum of Equation (38) finds the shortest distance for each datum
from x1xj that belongs to centroid Ci.

SSE =
k

∑
i=1

∑
xj ∈Ci

‖xj − µi‖2 (38)

where SSE represents the sum of squares error.
Five steps are performed to achieve K-means clustering:

Step 1: Randomly pick k number of cluster centroids, µ1 ∼ µk.
Step 2: Calculate the closest distance between the remaining data and those k centroids. Then, assign

each datum to the nearest cluster centroid.
Step 3: Recalculate each cluster centroid using the meaning of each cluster.
Step 4: Regroup all data according to the new cluster centroids.
Step 5: Repeat Step 4 until certain conditions are met, including a lack of change in centroids, a small

change of SSE and no data movement.

4.2.4. Histogram

A histogram calculates the number of occurrences of training images based on the codebook
obtained via K-means. Then, we normalize the histograms for the training SVM. For the testing image
data set, we calculate the normalized histograms based on the same codebook.

4.3. Histogram of Oriented Gradient (HOG)

Compared with SIFT feature extraction, we also use the global feature extraction method HOG
and its extension PHOG. In this research, the VLFeat [39] function vl_hog is used. The essential
purpose of HOG is to divide an image into many blocks, and each block contains cells. For each cell,
Dalal built a histogram based on the gradient direction and orientation of each pixel.

The combination of histograms of 2*2 cells can represent the descriptor of the image. Then,
to improve the performance of HOG, Dalal normalized all cells inside each block according to the
intensity of each block, which is called contrast normalization. This contrast normalization process can
reduce the effects of shadowing and light changes. The general scheme of HOG is described as follows
and shown in Figure 17.

Appl. Sci. 2018, 8, 853 18 of 28

Stage A: Centered gradients of the horizontal and vertical directions are calculated. Through
Equations (39) and (40), we can obtain the center horizontal and vertical gradients, respectively,
where [−1 0 1] is the 1D centered-point discrete derivative mask of the horizontal direction and 1

0
−1

 is the same mask in the vertical direction.

Ix = I ∗ [−1 0 1] (39)

Iy = I ∗

 1
0
−1

 (40)

Stage B: The distribution of the intensity gradient and the orientation of an image can well represent
the local object appearance and shape. Equation (41) is used to obtain the gradient magnitude,
and Equation (42) is utilized to obtain the orientation.∣∣∣Mhog

∣∣∣ = √I2
x + I2

y (41)

θhog= tan−1 Ix

Iy
(42)

Stage C: A 64*128 image is split into blocks. Dalal considered 2*2 close cells (as shown in Figure 15) to
represent a block. Each cell consists of four 8*8 pixels. Hence, a total of 105 blocks are within a
64*128 image and a 50% overlap occurs between two blocks.

Stage D: Histograms are built. For this stage, 180 degrees are divided into nine bins of 20 degrees/each.
Then, the calculation of the orientation of each bin within a cell produces a histogram. The
combination of four histograms of four adjacent cells is a histogram of the block.

Stage E: All histograms are combined. Finally, for an image, 3780 (105(blocks)*4(cells)*9(bins)) features
can be obtained.

Appl. Sci. 2018, 8, x 18 of 27

Figure 17. General scheme of HOG.

Stage C: A 64*128 image is split into blocks. Dalal considered 2*2 close cells (as shown in Figure 15)

to represent a block. Each cell consists of four 8*8 pixels. Hence, a total of 105 blocks are within

a 64*128 image and a 50% overlap occurs between two blocks.

Stage D: Histograms are built. For this stage, 180 degrees are divided into nine bins of 20 degrees/each.

Then, the calculation of the orientation of each bin within a cell produces a histogram. The

combination of four histograms of four adjacent cells is a histogram of the block.

Stage E: All histograms are combined. Finally, for an image, 3780 (105(blocks)*4(cells)*9(bins))

features can be obtained.

4.4. Pyramid Histogram of Oriented Gradient (PHOG)

PHOG [41] is an extension of HOG. First, we calculate the different scales of an image. Then, on

the same scale, we divide the image into several patches, such as 2*2, 4*4, etc. Subsequently, we

calculate the HOF features of those different patches and place all HOF feature results into a one-

dimensional array. Finally, we perform the same approach for all other scales of this image and

combine the results into the same array. Compared with the HOG method, PHOG can detect features

at a variety of scales of an image and can more actively represent the image.

4.5. Machine-Learning Classifiers

In this work, we apply Classification Learner Apps [42], which is a tool included in Matlab.

Classification Learner Apps includes a variety of machine-learning classifiers such as SVM, decision

tree, linear discriminant analysis (LDA), KNN, and ensemble learning.

4.5.1. Support Vector Machine (SVM)

SVM is a classification algorithm proposed by Vapnik [27], and it is based on statistical learning

theory. Classification plays a significant role in data mining. The main purpose of the SVM method is

to train a classifier via supervised learning. Then, the data can be classified using this model. The

purpose of SVM is to calculate the optimum separation hyperplane whose margin is the largest distance

from the closest data as shown in Figure 18a. As we may obtain many hyperplanes, the optimum

separation hyperplane Equation (43) can reduce the effect of noise and decrease the possibility of

overfitting. The largest margin separates the pluses from the minuses as much as possible.

𝑤⃗⃗ ∙ 𝑥 + 𝑏 = 0 (43)

Stage A

Stage B

Stage C

Stage D

Stage E

Centered: Ix = I x -1 0 1

Iy = I x -1

0

1

Gradient

Magnitude:

Orientation:

2 2

x y
S S S 

arctan
y

x

S
S


 

  
 
 

θ

Block 1 Block 2 Block 7
8x8
cell

8x8
cell

8x8
cell

8x8
cell

Total (105 Blocks)
1 Block

Figure 17. General scheme of HOG.

Appl. Sci. 2018, 8, 853 19 of 28

4.4. Pyramid Histogram of Oriented Gradient (PHOG)

PHOG [41] is an extension of HOG. First, we calculate the different scales of an image. Then,
on the same scale, we divide the image into several patches, such as 2*2, 4*4, etc. Subsequently,
we calculate the HOF features of those different patches and place all HOF feature results into a
one-dimensional array. Finally, we perform the same approach for all other scales of this image and
combine the results into the same array. Compared with the HOG method, PHOG can detect features
at a variety of scales of an image and can more actively represent the image.

4.5. Machine-Learning Classifiers

In this work, we apply Classification Learner Apps [42], which is a tool included in Matlab.
Classification Learner Apps includes a variety of machine-learning classifiers such as SVM, decision
tree, linear discriminant analysis (LDA), KNN, and ensemble learning.

4.5.1. Support Vector Machine (SVM)

SVM is a classification algorithm proposed by Vapnik [27], and it is based on statistical learning
theory. Classification plays a significant role in data mining. The main purpose of the SVM method is to
train a classifier via supervised learning. Then, the data can be classified using this model. The purpose
of SVM is to calculate the optimum separation hyperplane whose margin is the largest distance from
the closest data as shown in Figure 18a. As we may obtain many hyperplanes, the optimum separation
hyperplane Equation (43) can reduce the effect of noise and decrease the possibility of overfitting. The
largest margin separates the pluses from the minuses as much as possible.

→
w·→x + b = 0 (43)

where
→
w is the perpendicular to the optimum separation hyperplane and is the inner product.

A number of
→
w are perpendicular to the optimum separation hyperplane because

→
w can be any

length and insufficient constraints are available to fix a particular b or a particular
→
w. Hence, additional

constraints are required to calculate b and
→
w. The super hyperplanes with + labeled data and the super

hyperplanes with − labeled data are presented in Equations (44) and (45), respectively.

→
w·→x+ + b = 1 (44)

→
w·→x− + b = −1 (45)

Appl. Sci. 2018, 8, x 19 of 27

where 𝑤⃗⃗ is the perpendicular to the optimum separation hyperplane and is the inner product. A

number of 𝑤⃗⃗ are perpendicular to the optimum separation hyperplane because 𝑤⃗⃗⃗⃗ can be any length

and insufficient constraints are available to fix a particular b or a particular 𝑤⃗⃗⃗⃗ . Hence, additional

constraints are required to calculate b and 𝑤⃗⃗ . The super hyperplanes with + labeled data and the super

hyperplanes with − labeled data are presented in Equations (44) and (45), respectively.

𝑤⃗⃗ ∙ 𝑥+⃗⃗ ⃗⃗ + 𝑏 = 1 (44)

𝑤⃗⃗ ∙ 𝑥−⃗⃗ ⃗⃗ + 𝑏 = −1 (45)

-

-

-
-

-

-

- +

+

+

+

+

+
+

Support
Vector

Margin

optim
al separating hyperplane

Support Hyper-plans

(a) (b)

Figure 18. (a) Margin between two support hyperplanes; (b) margin is the projection of the different

vector on the normal unit.

Hence, if the data belong to the 𝑦𝑖 = 1 class, then 𝑥+ data can be described by Equation (46).

Similarly, if the data are located in the 𝑦𝑖 = −1 class, then 𝑥− data can be described by Equation (47).

𝑤⃗⃗ ∙ 𝑥+⃗⃗ ⃗⃗ + 𝑏 ≥ 1, & if 𝑦𝑖 = 1 (46)

𝑤⃗⃗ ∙ 𝑥−⃗⃗ ⃗⃗ + 𝑏 ≤ −1 , & if 𝑦𝑖 = −1 (47)

Then, multiply 𝑦𝑖 = 1 by Equation (46) and multiply 𝑦 𝑖 = −1 by Equation (47) to obtain the

result shown in Equation (48).

{
𝑦𝑖(𝑤⃗⃗ ∙ 𝑥+⃗⃗ ⃗⃗ + 𝑏) ≥ 1, 𝑦𝑖 = 1 For + samples

𝑦𝑖(𝑤⃗⃗ ∙ 𝑥−⃗⃗ ⃗⃗ + 𝑏) ≥ 1 , 𝑦 𝑖 = −1 For – samples
=> 𝑦𝑖(𝑤⃗⃗ ∙ 𝑥𝑖⃗⃗⃗ + b) − 1 ≥ 0 (48)

where 𝑦𝑖(𝑤⃗⃗ ∙ 𝑥𝑖⃗⃗⃗ + b) − 1 = 0 for 𝑥𝑖 in the support hyperplanes. The margin is the projection of the

different vector 𝑥+⃗⃗ ⃗⃗ − 𝑥−⃗⃗ ⃗⃗ on the normal unit
𝑤⃗⃗

‖𝑊‖
, which is normal to the optimum separation

hyperplane as shown in Figure 18b.

Therefore, the dot product of this different vector with the normal unit is the distance between

those two support hyperplanes as shown in Equation (49), where 𝑥− ⃗⃗ ⃗⃗ ⃗ in Figure 18b is a vector

originating from Equation (45) and 𝑥+⃗⃗ ⃗⃗ is a vector originating from Equation (44). According to

Equations (44) and (45), 𝑤𝑥+⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 1 − 𝑏 and (𝑤⃗⃗ 𝑥−⃗⃗ ⃗⃗) = −1 − 𝑏 are obtained. Finally, by inserting the right

side of those two equalities into Equation (49), the margin is
2

‖𝑊‖
.

Margin = (𝑥+⃗⃗ ⃗⃗ − 𝑥−⃗⃗ ⃗⃗) ∙
𝑤⃗⃗

‖𝑊‖
=

𝑥+⃗⃗ ⃗⃗ 𝑤⃗⃗ − (𝑥−⃗⃗ ⃗⃗ 𝑤⃗⃗)

‖𝑊‖
=

1 − 𝑏 − (−1 − 𝑏)

‖𝑊‖
=

2

‖𝑊‖
 (49)

For the sake of mathematical convenience, maximizing the margin
2

 ‖𝑊‖
 is equivalent to

maximizing
1

‖𝑊‖
. Also, minimizing ‖𝑊‖ is equivalent to minimizing

1

2
‖𝑊‖2 as shown in Equation (50).

Max
2

‖𝑊‖
≈ Max

1

‖𝑊‖
≈ Min ‖𝑊‖ ≈ Min

1

2
 ‖𝑊‖2 (50)

Figure 18. (a) Margin between two support hyperplanes; (b) margin is the projection of the different
vector on the normal unit.

Appl. Sci. 2018, 8, 853 20 of 28

Hence, if the data belong to the yi = 1 class, then x+ data can be described by Equation (46).
Similarly, if the data are located in the yi = −1 class, then x− data can be described by Equation (47).

→
w·→x+ + b ≥ 1, & if yi = 1 (46)

→
w·→x− + b ≤ −1, & if yi = −1 (47)

Then, multiply yi = 1 by Equation (46) and multiply yi = −1 by Equation (47) to obtain the result
shown in Equation (48).{

yi(
→
w·→x+ + b) ≥ 1, yi = 1 For + samples

yi(
→
w·→x− + b) ≥ 1, yi = −1 For− samples

=> yi(
→
w·→xi + b)− 1 ≥ 0 (48)

where yi(
→
w·→xi + b) − 1 = 0 for xi in the support hyperplanes. The margin is the projection of

the different vector
→
x+ −

→
x− on the normal unit

→
w
‖W‖ , which is normal to the optimum separation

hyperplane as shown in Figure 18b.
Therefore, the dot product of this different vector with the normal unit is the distance between

those two support hyperplanes as shown in Equation (49), where
→
x− in Figure 18b is a vector

originating from Equation (45) and
→
x+ is a vector originating from Equation (44). According to

Equations (44) and (45),
→

w
→
x+ = 1− b and (

→
w
→
x−) = −1− b are obtained. Finally, by inserting the right

side of those two equalities into Equation (49), the margin is 2
‖W‖ .

Margin = (
→
x+ −

→
x−)·

→
w
‖W‖ =

→
x+
→
w − (

→
x−
→
w)

‖W‖ =
1− b− (−1− b)

‖W‖ =
2
‖W‖ (49)

For the sake of mathematical convenience, maximizing the margin 2
‖W‖ is equivalent to

maximizing 1
‖W‖ . Also, minimizing ‖W‖ is equivalent to minimizing 1

2‖W‖
2 as shown in Equation (50).

Max
2
‖W‖ ≈ Max

1
‖W‖ ≈ Min ‖W‖ ≈ Min

1
2
‖W‖2 (50)

Hence, the solution that identifies the optimum separation hyperplane can solve Equation (51).{
Minimize : 1

2 ‖W‖
2,

Subject to yi(
→
w·→xi + b)− 1 ≥ 0

(51)

The solution for the extremum of a function with constraints can use Lagrange multipliers. The
benefit of using Lagrange multipliers is to maximize or minimize the equation without considering
the constraints. Using the Lagrange multiplier method, Equation (51) can be transformed into the
quadratic equation shown in Equation (52).

L =
1
2
‖W‖2 −∑ αi

[
yi(
→
w·→xi + b)− 1

]
(52)

where αi is the Lagrange multiplier.
By calculating the derivatives of L and setting the results to zero, the extremum of equation L are

identified. Equations (53) and (54) show the derivative of L with respect to w and b, respectively. The
result of Equation (53) shows that vector w is the linear sum of all or certain samples.

∂L
∂w

= 0 =>
→
w −∑ αiyi

→
xi = 0 =>

→
w = ∑ αiyi

→
xi (53)

Appl. Sci. 2018, 8, 853 21 of 28

∂L
∂b

= 0 => −∑ αiyi = 0 => ∑ αiyi = 0 (54)

Equation (55) shows the results of plugging the w expression Equation (53) into L in Equation (52).

L =
1
2
(∑ αiyi

→
xi)·(∑ αjyj

→
xj)− (∑ αiyi

→
xi)·(∑ αjyj

→
xj) − ∑ αiyi ·b + ∑ αi (55)

L can be expressed in Equation (56) because ∑ αiyi = 0.

L = ∑ αi −
1
2 ∑

i
∑

j
αiαjyi yj

→
xi·
→
xj (56)

The objective is to identify the maxima of expression L, and this maximization process depends
on x sample vectors. The optimization depends on only the dot product of pairs of samples

→
xi·
→
xj.

4.5.2. Decision Tree

A decision tree is a supervised machine-learning model with simple process intuition and
high execution efficiency. It is suitable for the prediction of classification and regression data types.
Compared with other machine-learning models, the execution speed is a major advantage.

In addition, one feature of the decision tree is that each decision stage is fairly clear (YES or NO).
In contrast, logistic regression and SVMs are similar to black boxes. It is difficult for us to predict or
understand their internal complexities and operational details. Additionally, the decision tree has
provided instructions for us to actually simulate and draw a decision-making process from the root, to
each leaf, and to the final node.

4.5.3. Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a classification approach in which the data of different
classes can be generated based on different Gaussian distributions. The LDA-based classification
approach attempts to find a linear combination of the characteristics of two types of objects
or events to be able to characterize or distinguish the characteristics or events. The resulting
combination can be used as a linear classifier or, more commonly, for dimensionality reduction
for subsequent classifications.

4.5.4. k-Nearest Neighbor Algorithm (K-NN)

The k-Nearest Neighbor algorithm (K-NN) is a statistical method for classification and regression.
In both cases, the input contains the k closest training samples in the feature space as follows. In the
K-NN classification, the output is a classification group. The classification of an object is determined
by a “majority vote” of its neighbors, and the most common categories in the k nearest neighbors (k is
a positive integer, typically small) determine the category assigned to the object. If k = 1, the object’s
category is directly given by the nearest node. In K-NN regression, the output is the attribute value of
the object. This value is the average of the values of its k nearest neighbors.

Therefore, the K-NN algorithm uses the vector space model to classify the concepts into similar
class cases. The similarity between the cases is high, and it is possible to evaluate the possible
classifications of the unknown class cases by calculating the similarity to the known class cases.

Appl. Sci. 2018, 8, 853 22 of 28

4.5.5. Ensemble Learning

A simple understanding of ensemble learning refers to the use of multiple classifiers to predict
data sets, thereby improving the generalization capabilities of the overall classifier. We use the
classification problem as an explanation. The classification problem refers to the use of some sort of
rule for classification. The problem is in finding a certain function. The idea of ensemble learning
can generally be understood in this manner: when classifying new data instances, a plurality of
classifiers are trained and the classification results of these classifiers are combined (for example,
voting) to determine the classification results to obtain better results and to improve the generalization
capabilities of the classifier using multiple decision makers together to determine the classification of
an instance.

5. Measurements and Experimental Results

In this work, we use a 200× magnification camera to take scalp images as shown in Figure 19.
The scalp examples are sorted into four groups: bacteria type 1, bacteria type 2, allergy, and dandruff
groups as shown in Figure 20a–d, respectively.

Appl. Sci. 2018, 8, x 21 of 27

is determined by a “majority vote” of its neighbors, and the most common categories in the k nearest

neighbors (k is a positive integer, typically small) determine the category assigned to the object. If k =

1, the object's category is directly given by the nearest node. In K-NN regression, the output is the

attribute value of the object. This value is the average of the values of its k nearest neighbors.

Therefore, the K-NN algorithm uses the vector space model to classify the concepts into similar

class cases. The similarity between the cases is high, and it is possible to evaluate the possible

classifications of the unknown class cases by calculating the similarity to the known class cases.

4.5.5. Ensemble Learning

A simple understanding of ensemble learning refers to the use of multiple classifiers to predict

data sets, thereby improving the generalization capabilities of the overall classifier. We use the

classification problem as an explanation. The classification problem refers to the use of some sort of

rule for classification. The problem is in finding a certain function. The idea of ensemble learning can

generally be understood in this manner: when classifying new data instances, a plurality of classifiers

are trained and the classification results of these classifiers are combined (for example, voting) to

determine the classification results to obtain better results and to improve the generalization

capabilities of the classifier using multiple decision makers together to determine the classification of

an instance.

5. Measurements and Experimental Results

In this work, we use a 200× magnification camera to take scalp images as shown in Figure 19.

The scalp examples are sorted into four groups: bacteria type 1, bacteria type 2, allergy, and dandruff

groups as shown in Figure 20a–d, respectively.

Figure 19. Taking scalp images using a 200× magnification camera.

Bacteria_1 is the condition in which the skin on the scalp presents blisters or boils. Bacteria type

2 is the condition in which the skin on the scalp has many red spots. An allergy scalp problem usually

has a considerable number of red patches where the hair root attaches. Dandruff is caused by the

shedding of dead scalp skin cells.

Figure 19. Taking scalp images using a 200×magnification camera.

Bacteria_1 is the condition in which the skin on the scalp presents blisters or boils. Bacteria type 2
is the condition in which the skin on the scalp has many red spots. An allergy scalp problem usually
has a considerable number of red patches where the hair root attaches. Dandruff is caused by the
shedding of dead scalp skin cells.

For each group, we use an 8:2 rate to divide them into training data and testing data. Thus,
44 images are used for testing and 176 images are used for training. A variety of sizes is observed
within those images. The largest image is 2000*15,000, whereas the smallest one is 186*63. Each group
contains 220 test images and 880 training images.

Appl. Sci. 2018, 8, 853 23 of 28

Appl. Sci. 2018, 8, x 22 of 27

(a) (b)

(c) (d)

Figure 20. (a) Bacteria type 1 image; (b) bacteria type 2 image; (c) allergy image; (d) dandruff image.

For each group, we use an 8:2 rate to divide them into training data and testing data. Thus, 44

images are used for testing and 176 images are used for training. A variety of sizes is observed within

those images. The largest image is 2000*15,000, whereas the smallest one is 186*63. Each group

contains 220 test images and 880 training images.

5.1. Experimental Results of Deep Learning

As shown in Table 1, the accuracy increases as the learning rate decreases. The three learning

rates set in this research are 10−4, 10−5 and 10−6.

Table 1. Time for deep learning of training and testing data (seconds).

Learning Rate
Spending on

Training Time (S)

Spending on

Testing Time (S)
Accuracy

1 × 10−4 52,798.313 19.36 89.77%

1 × 10−5 56,821.985 20.826 88.06%

1 × 10−6 55,571.778 19.451 78.40%

The accuracy assesses the number of correctly predicted images from the deep-learning model

with respect to the total number of images. The validation (Val) shown in Figure 21 represents the

validation error based on the validation data set. The validation set has been used to estimate the

predictive error of the selected model. Similarly, training in Figure 21 represents the training errors

created from the training data sets. When the correct label of a testing image is not within the five

highest possible labels that the model predicts for this testing image, the top5 err will be high.

Similarly, the top1 err indicates that the correct label of a testing image is not the label that the model

Figure 20. (a) Bacteria type 1 image; (b) bacteria type 2 image; (c) allergy image; (d) dandruff image.

5.1. Experimental Results of Deep Learning

As shown in Table 1, the accuracy increases as the learning rate decreases. The three learning
rates set in this research are 10−4, 10−5 and 10−6.

Table 1. Time for deep learning of training and testing data (seconds).

Learning Rate Spending on Training
Time (s)

Spending on Testing
Time (s) Accuracy

1 × 10−4 52,798.313 19.36 89.77%
1 × 10−5 56,821.985 20.826 88.06%
1 × 10−6 55,571.778 19.451 78.40%

The accuracy assesses the number of correctly predicted images from the deep-learning model
with respect to the total number of images. The validation (Val) shown in Figure 21 represents the
validation error based on the validation data set. The validation set has been used to estimate the
predictive error of the selected model. Similarly, training in Figure 21 represents the training errors
created from the training data sets. When the correct label of a testing image is not within the five
highest possible labels that the model predicts for this testing image, the top 5 err will be high. Similarly,
the top 1 err indicates that the correct label of a testing image is not the label that the model predicts
for this testing image. A smaller top 1 err and top 5 err indicates better results. As shown in Table 1,
the accuracy increases when the learning rate decreases from 10−6 to 10−4.

Appl. Sci. 2018, 8, 853 24 of 28

Appl. Sci. 2018, 8, x 23 of 27

predicts for this testing image. A smaller top1 err and top5 err indicates better results. As shown in

Table 1, the accuracy increases when the learning rate decreases from 10−6 to 10−4.

(a) (b) (c)

Figure 21. (a) Learning rate is 1 × 10−4; (b) learning rate is 1 × 10−5; (c) learning rate is 1 × 10−6.

5.2. Experimental Results of BOW with Machine-Learning Classifiers

Table 2 shows the time spent on obtaining the SIFT features, calculating K-means and generating

histograms for the training data and obtaining the SIFT features and calculating the histograms for

the testing data. This discrepancy is because the training data used the K-means results for the

training data to create its own histogram.

Table 2. Time for BOW with the training and testing data (in seconds).

Different

Centers (Using

K-Means

Method)

Time to Obtain

SIFT Features for

Training Data

Time to Obtain

SIFT Features

for Training

Data

Time to Calculate

Histograms for

Training Data

Time to Calculate

Histograms for

Training Data

10 centers 472,358.918 2157.486 4253.557 834.538

50 centers 440,101.268 2415.997 4533.5 908.185

100 centers 526,735.405 2854.442 4851.46 963.334

300 centers 481,344.417 3307.601 4791.243 917.323

500 centers 444,823.379 4040.969 4748.997 874.902

The experimental results show that the time spent obtaining the SIFT features from the training

data does not increase as the number of centers chosen for the K-means method increases. However,

the time spent on the other operations increases as the number of centers increases.

Table 3 shows the accuracies based on different numbers of centers, including 10, 50, 100, 300

and 500. As shown in Table 3, the best accuracy of all scenarios was 80.5% and was achieved with

SVM. In Table 3, five machine-learning methods, decision tree, LDA, SVM, K-NN and ensemble

learning, are implemented using the features resulting from BOW based on different types of centers

selected when using K-means. In Table 3, for those five machine-learning methods, the accuracies

increased when selecting 10 centers, 50 centers and 100 centers when using the K-means method. The

highest accuracy was achieved when using SVM.

Table 3. Accuracy of BOW based on different machine-learning classifiers.

Classification Learners 10 Centers 50 Centers 100 Centers 300 Centers 500 Centers

Decision Tree 53.8% 59.7% 62.1% 60.7% 60.9%

Linear Discriminant Analysis

(LDA)
55.0% 64.2% 67.0% 59.7% 33.9%

Support vector machine (SVM) 68.9% 75.9% 77.4% 80.5% 80.0%

K-Nearest Neighbor (K-NN) 67.9% 74.9% 76.3% 74.7% 76.4%

Ensemble Learning 67.9% 75.4% 78.1% 75.9% 77.3%

Figure 21. (a) Learning rate is 1 × 10−4; (b) learning rate is 1 × 10−5; (c) learning rate is 1 × 10−6.

5.2. Experimental Results of BOW with Machine-Learning Classifiers

Table 2 shows the time spent on obtaining the SIFT features, calculating K-means and generating
histograms for the training data and obtaining the SIFT features and calculating the histograms for the
testing data. This discrepancy is because the training data used the K-means results for the training
data to create its own histogram.

Table 2. Time for BOW with the training and testing data (in seconds).

Different Centers
(Using K-Means

Method)

Time to Obtain
SIFT Features for

Training Data

Time to Obtain
SIFT Features for

Training Data

Time to Calculate
Histograms for
Training Data

Time to Calculate
Histograms for
Training Data

10 centers 472,358.918 2157.486 4253.557 834.538
50 centers 440,101.268 2415.997 4533.5 908.185
100 centers 526,735.405 2854.442 4851.46 963.334
300 centers 481,344.417 3307.601 4791.243 917.323
500 centers 444,823.379 4040.969 4748.997 874.902

The experimental results show that the time spent obtaining the SIFT features from the training
data does not increase as the number of centers chosen for the K-means method increases. However,
the time spent on the other operations increases as the number of centers increases.

Table 3 shows the accuracies based on different numbers of centers, including 10, 50, 100, 300 and
500. As shown in Table 3, the best accuracy of all scenarios was 80.5% and was achieved with SVM.
In Table 3, five machine-learning methods, decision tree, LDA, SVM, K-NN and ensemble learning, are
implemented using the features resulting from BOW based on different types of centers selected when
using K-means. In Table 3, for those five machine-learning methods, the accuracies increased when
selecting 10 centers, 50 centers and 100 centers when using the K-means method. The highest accuracy
was achieved when using SVM.

Table 3. Accuracy of BOW based on different machine-learning classifiers.

Classification Learners 10 Centers 50 Centers 100 Centers 300 Centers 500 Centers

Decision Tree 53.8% 59.7% 62.1% 60.7% 60.9%
Linear Discriminant Analysis (LDA) 55.0% 64.2% 67.0% 59.7% 33.9%

Support vector machine (SVM) 68.9% 75.9% 77.4% 80.5% 80.0%
K-Nearest Neighbor (K-NN) 67.9% 74.9% 76.3% 74.7% 76.4%

Ensemble Learning 67.9% 75.4% 78.1% 75.9% 77.3%

Appl. Sci. 2018, 8, 853 25 of 28

5.3. Experimental Results of PHOG/HOG with SVM

Compared with the deep learning and BOW methods, the accuracies of PHOG and HOG are far
lower (less than 45%) as shown in Table 4.

Table 4. Training time, testing time and accuracy for PHOG and HOG.

Training Time Testing Time Accuracy without
Normalization

Accuracy with
Normalization

PHOG 6715.337 1517.237 39.77% (70/176) 44.31% (78/176)
HOG 106,267.868 6294.642 34.65% (61/176) 37.5% (66/176)

Although PHOG is an extension of HOG, the time required to generate PHOG results is far less
than that of HOG. Also, the accuracy of applying PHOG is better than HOG, including for the results
with and without normalization.

The accuracy of PHOG without normalization is approximately 39.77%, which is 5% higher than
that of HOG. Furthermore, after normalization, the accuracy of PHOG is approximately 44%, which is
approximately 7% higher than that of HOG. In addition, the time spent on PHOG is 15 times higher
than that of HOG. As seen in Table 5, the greatest accuracy was achieved using SVM based on the
PHOG features. Compared to the BOG features, when using the same five machine-learning methods,
the accuracy of the PHOG features is lower.

Table 5. Accuracy of PHOG based on different machine-learning classifiers.

Classification Learners PHOG

Decision Tree 39.3%
LDA 33.2%
SVM 53.0%

K-NN 41.3%
Ensemble 50.3%

5.4. Summary

As shown in Table 6, deep learning has the highest accuracy at 89.77%, and the lowest algorithm
(PHOG) is at 53.4%. In terms of the time spent on the training and testing data, the PHOG is the quickest
algorithm and the BOW is the slowest algorithm, which require 8232.574 and 447,958.95 s, respectively.

Table 6. Running time and accuracy comparisons among the four methods.

Methods Time Spent Accuracy

Deep Learning (Second Fastest) (Best)
52,817.67 89.77%

BOW
(Slowest) (Worst)

447,959 80.50%

PHOG
(Faster) (Second Best)
8232.574 53.30%

6. Conclusions and Future Works

6.1. Conclusions

In this paper, we analyzed scalp images using machine-learning algorithms, including deep
learning, BOW with machine-learning classifiers and HOG/PHOG with machine-learning classifiers.
The results show the good performance of deep learning, which presented an accuracy rate of 89.77%.

Appl. Sci. 2018, 8, 853 26 of 28

This value is far higher than that achieved by the other two combination methods and higher than the
human inspection accuracy of 70.2% of human inspection.

6.2. Future Works

In the future, we hope to use machine-learning algorithms in scalp detectors to automatically
detect scalp problems. We will continue collecting additional scalp images to help train the
deep-learning model and increase the training accuracy. In addition, we will consider evaluating
some possible hybrid deep-learning/non-deep learning methodologies [43,44] for suitable application
evaluations to continuously optimize the performance of scalp image recognition. Moreover, other
image classification applications will also be trained and evaluated.

Author Contributions: W.-C.W., L.-B.C., and W.-J.C. conceived and designed the experiments; L.-B.C. and W.-J.C.
surveyed the related works; W.-C.W. performed the experiments; L.-B.C. and W.-J.C. analyzed the data; W.-J.C.
contributed materials and tools; W.-C.W. and L.-B.C. wrote the paper.

Acknowledgments: This work was partially supported by the Ministry of Science and Technology (MOST),
Taiwan, under grants MOST-106-2632-E-218-002 and MOST 106-2218-E-218-004.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. The 10 Breakthrough Technologies of 2013. MIT Technology Review. 2013. Available online: https://
www.technologyreview.com/s/513981/the-10-breakthrough-technologies-of-2013/#comments (accessed
on 10 May 2017).

2. Raschka, S. Python Machine Learning, 1st ed.; Packet Publishing: Birmingham, UK, 2015.
3. Loussaief, S.; Abdelkrim, A. Machine learning framework for image classification. In Proceedings of the 7th

International Conference on Sciences of Electronics, Technologies of Information and Telecommunications,
Zilina, Slovakia, 5–7 July 2017; pp. 58–61.

4. Caltech 101-Pictures of Objects Belonging to 101 Categories, Computational Vision at Clatech. Available
online: http://www.vision.caltech.edu/Image_Datasets/Caltech101/ (accessed on 5 June 2017).

5. Ahmed, S.B.; Naz, S.; Razzak, M.I.; Yousaf, R. Deep learning based isolated Arabic scene character recognition.
In Proceedings of the 2017 IEEE International Workshop on Arabic Script Analysis and Recognition, Nancy,
France, 3–5 April 2017; pp. 46–51.

6. Jagannathan, S.; Desappan, K.; Swami, P.; Mathew, M.; Nagori, S.; Chitnis, K.; Marathe, Y.; Poddar, D.;
Narayanan, S.; Jain, A. Efficient object detection and classification on low power embedded systems.
In Proceedings of the 2017 IEEE International Conference Consumer Electronics, Las Vegas, NV, USA,
8–10 January 2017; pp. 233–234.

7. Du, L.; Jiang, W.; Zhao, Z.; Su, F. Ego-motion classification for driving vehicle. In Proceedings of the 2017
IEEE Third International Conference on Multimedia Big Data, Laguna Hills, CA, USA, 19–21 April 2017;
pp. 276–279.

8. Pop, D.O.; Rogozan, A.; Nashashibi, F.; Bensrhair, A. Pedestrian recognition through different cross-modality
deep learning methods. In Proceedings of the 2017 IEEE International Conference on Vehicular Electronics
and Safety, Vienna, Austria, 27–28 June 2017; pp. 133–138.

9. Ermushev, S.A.; Balashov, A.G. A complex machine learning technique for ground target detection and
classification. Int. J. Appl. Eng. Res. 2016, 11, 158–161.

10. Zhao, W.; Du, S. Spectral-spatial feature extraction for hyperspectral image classification: A dimension
reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [CrossRef]

11. Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral-spatial residual network for hyperspectral image
classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [CrossRef]

12. Qader, S.H.; Dash, J.; Atkinson, P.M.; Rodriguez-Galiano, V. Classification of vegetation type in Iraq using
satellite-based phrenological parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 414–424.
[CrossRef]

https://www.technologyreview.com/s/513981/the-10-breakthrough-technologies-of-2013/#comments
https://www.technologyreview.com/s/513981/the-10-breakthrough-technologies-of-2013/#comments
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://dx.doi.org/10.1109/TGRS.2016.2543748
http://dx.doi.org/10.1109/TGRS.2017.2755542
http://dx.doi.org/10.1109/JSTARS.2015.2508639

Appl. Sci. 2018, 8, 853 27 of 28

13. Chen, P.-J.; Ding, J.-J.; Hsu, H.-W.; Wang, C.-Y.; Wang, J.-C. Improved convolutional neural network
based scene classification using long short-term memory and label relations. In Proceedings of the
IEEE International Conference on Multimedia and Expo Workshops, Hong Kong, China, 10–14 July 2017;
pp. 429–434.

14. Singhal, V.; Aggarwal, H.K.; Tariyal, S.; Majumdar, A. Discriminative robust deep dictionary learning for
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5274–5283. [CrossRef]

15. Zhang, H.; Zhuang, B.; Liu, Y. Object classification based on 3D points clouds covariance descriptor.
In Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering and
IEEE International Conference on Embedded and Ubiquitous Computing, Guangzhou, China, 21–24 July
2017; pp. 234–237.

16. Remez, T.; Litany, O.; Giryes, R.; Bronstein, A.M. Deep class-aware image denosing. In Proceedings of the
International Conference on Sampling Theory and Applications (SampTA’17), Allin, Estonia, 3–7 July 2017;
pp. 138–142.

17. Yang, B.; Wang, Y.; Li, J. A spiking-timing-based model for classification. In Proceedings of the 2016 13th
International Computer Conference on Wavelet Active Media Technology and Information Processing
(ICCWAMTIP’16), Chengdu, China, 16–18 December 2016; pp. 99–102.

18. Zhou, W.; Wu, C.; Du, W. Automatic optic disc detection in retinal images via group sparse regularization
extreme learning machine. In Proceedings of the 36th Chinese Control Conference, Dalian, China, 26–28 July
2017; pp. 11053–11058.

19. Chen, T.; Lu, S.; Fan, J. S-CNN: Subcategory-aware convolutional networks for object detection. IEEE Trans.
Pattern Anal. Mach. Intell. 2017. [CrossRef] [PubMed]

20. Wang, X.; Chen, C.; Cheng, Y.; Wang, Z.J. Zero-shot image classification based on deep feature extraction.
IEEE Trans. Cogn. Dev. Syst. 2017. [CrossRef]

21. Nasr, S.; Bouallegue, K.; Shoaib, M.; Mekki, H. Face recognition system using bag of features and multi-class
SVM for robot applications. In Proceedings of the 2017 International Conference on Control, Automation
and Diagnosis (ICCAD’17), Hammamet, Tunisia, 19–21 January 2017; pp. 263–268.

22. Shih, H.-C.; Lin, B.-S. Hair segmentation and counting algorithms in microscopy image. In Proceedings of the
2015 IEEE International Conference on Consumer Electronics (ICCE’15), Las Vegas, NV, USA, 9–12 January
2015; pp. 612–613.

23. Nakajima, K.; Sasaki, K. Personal recognition using head-top image for health-monitoring system in the
home. In Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA,
USA, 1–5 September 2004; pp. 3147–3150.

24. Lee, S.M.; Kim, J.H.; Park, C.; Hwang, J.-Y.; Hong, J.S.; Lee, K.H.; Lee, S.H. Self-adhesive and capacitive
carbon nanotube-based electrode to record electroencephalograph signals from the hairy scalp. IEEE Trans.
Biomed. Eng. 2016, 63, 138–147. [CrossRef] [PubMed]

25. Chen, L.-B.; Hsu, C.-H.; Su, J.-P.; Chang, W.-J.; Hu, W.-W.; Lee, D.-H. A portable wireless scalp inspector and
its automatic diagnosis system based on deep learning techniques. In Proceedings of the 16th International
Symposium on Advanced Technology, Tokyo, Japan, 1–2 November 2017.

26. Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
27. Sivic, J.; Zisserman, A. Video Google: A text retrieval approach to object matching in videos. In Proceedings

of the IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; pp. 1470–1477.
28. Bosch, A.; Zisserman, A.; Munoz, X. Representing shape with a spatial pyramid kernel. In Proceedings of the

6th ACM International Conference on Image and Video Retrieval (CIVR’07), Amsterdam, The Netherlands,
9–11 July 2007; pp. 401–408.

29. Chatfield, K.; Somonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into
convolutional nets. In Proceedings of the British Machine Vision Conference (BMVC), Nottingham, UK,
1–5 September 2014.

30. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

31. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
32. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA,
20–25 June 2005.

http://dx.doi.org/10.1109/TGRS.2017.2704590
http://dx.doi.org/10.1109/TPAMI.2017.2756936
http://www.ncbi.nlm.nih.gov/pubmed/28961103
http://dx.doi.org/10.1109/TCDS.2016.2632178
http://dx.doi.org/10.1109/TBME.2015.2478406
http://www.ncbi.nlm.nih.gov/pubmed/26390442
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/TIT.1982.1056489

Appl. Sci. 2018, 8, 853 28 of 28

33. Oliva, A.; Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope.
Int. J. Comput. Vis. 2001, 42, 145–175. [CrossRef]

34. Mikolajczyk, K.; Schmid, C. Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 2004, 60,
63–86. [CrossRef]

35. Matas, J.; Chum, O.; Urban, M.; Pajdla, T. Robust wide baseline stereo from maximally stable extremal
regions. In Proceedings of the British Machine Vision Conference (BMVC), Cardiff, UK, 2–5 September 2002;
pp. 384–393.

36. Tuytelaars, T.; Van Gool, L. Matching widely separated views based on affine invariant regions. Int. J.
Comput. Vis. 2004, 59, 61–85. [CrossRef]

37. Kadir, T.; Zisserman, A.; Brady, M. An affine invariant salient region detector. In Proceedings of the European
Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004; pp. 404–416.

38. Tuytelaars, T.; Mikolajczyk, K. Local invariant feature detectors: A survey. Comput. Graph. Vis. 2008, 3,
177–280. [CrossRef]

39. Vedaldi, A.; Fulkerson, B. VLFeat. An Open and Portable Library of Computer Vision Algorithms. 2008.
Available online: http://www.vlfeat.org (accessed on 5 June 2017).

40. Brown, M.; Lowe, D.G. Recognising panoramas. In Proceedings of the IEEE International Conference on
Computer Vision, Nice, France, 13–16 October 2003; pp. 1–8.

41. Bosch, A.; Zisserman, A. PHOG Descriptor. Available online: http://www.robots.ox.ac.uk/~vgg/research/
caltech/phog.htm (accessed on 15 June 2017).

42. Classification Learner Apps of Matlab. MathWork. Available online: https://www.mathworks.com/help/
stats/classification-learner-app.html (accessed on 24 April 2018).

43. Nanni, L.; Ghidoni, S.; Brahnam, S. Handcrafted vs. non-handcrafted features for computer vision
classification. Pattern Recognit. 2017, 71, 158–172. [CrossRef]

44. Nanni, L.; Ghidono, S. How could a subcellular image, or a painting by Van Gogh, be similar to a great white
shark or to a pizza? Pattern Recognit. 2017, 85, 1–7. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1011139631724
http://dx.doi.org/10.1023/B:VISI.0000027790.02288.f2
http://dx.doi.org/10.1023/B:VISI.0000020671.28016.e8
http://dx.doi.org/10.1561/0600000017
http://www.vlfeat.org
http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.htm
http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.htm
https://www.mathworks.com/help/stats/classification-learner-app.html
https://www.mathworks.com/help/stats/classification-learner-app.html
http://dx.doi.org/10.1016/j.patcog.2017.05.025
http://dx.doi.org/10.1016/j.patrec.2016.11.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Related Works
	Machine-Learning Techniques for Diagnosing and Analyzing Hairy Scalps
	Deep Learning
	Backpropagation (BP)
	Convolution
	Rectified Linear Unit (ReLU)
	Max-Pooling
	Fully Connected Layers (FC)
	Softmax
	Data Augmentation

	Bag of Words (BOW)
	Feature Detection
	Feature Description
	Cluster (K-Means)
	Histogram

	Histogram of Oriented Gradient (HOG)
	Pyramid Histogram of Oriented Gradient (PHOG)
	Machine-Learning Classifiers
	Support Vector Machine (SVM)
	Decision Tree
	Linear Discriminant Analysis (LDA)
	k-Nearest Neighbor Algorithm (K-NN)
	Ensemble Learning

	Measurements and Experimental Results
	Experimental Results of Deep Learning
	Experimental Results of BOW with Machine-Learning Classifiers
	Experimental Results of PHOG/HOG with SVM
	Summary

	Conclusions and Future Works
	Conclusions
	Future Works

	References

