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Abstract: In this paper, we review the differential signalling techniques and investigate its
implementation of in free-space optical (FSO) communication systems. The paper is an extended
version of our previous works, where the effects of background noise, weak turbulence and pointing
errors (PE) were investigated separately. Here, for the first time, we present a thorough description of
the differential signalling scheme including for combined effects. At first, we present an extension of
the analysis of differential signalling to the case of moderate to strong atmospheric turbulence. Next,
we investigate a more general case where both channel turbulence and PE are taken into consideration.
We provide closed-form expressions for the optimal detection threshold and the average bit-error-rate,
and present a set of numerical results to illustrate the performance improvement offered by the
proposed differential signalling under various turbulence and PE conditions.

Keywords: free-space optical communication; differential signalling; atmospheric turbulence;
pointing errors; optimal signal detection; NRZ-OOK

1. Introduction

The received signal in a free-space optical (FSO) communication system is subject to the
deterministic and random factors associated with the atmospheric channel, such as geometric
loss, particle scattering due to fog, smoke, low clouds, snow, and the influence of the
atmospheric turbulence [1–5]. Additionally, pointing errors (PE) due to building sway and thermal
expansions can further deteriorate the FSO link performance [6–8], whereas fog, smoke, rain,
etc. result in a constant power loss; both turbulence and PE lead to random fluctuations of the
amplitude and the phase of the received signal. In non-return-to-zero on-off keying (NRZ-OOK)
intensity-modulation/direct-detection (IM/DD) based FSO systems, an optimal detection threshold
level (DTL) at the receiver (Rx) should be used to distinguish the received ‘0’ and ‘1’ bits [3,4,9].
However, turbulence and PE can result in signal fading [7], which necessitates adaptive setting of the
DTL [9]. Recently, a differential signalling scheme (DSS) or differential detection was proposed for
on-off keying- (OOK)-based FSO links, which allows using a pre-fixed DTL under various channel
conditions such as fog, smoke [9], weak turbulence [3], and PE [4].
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Compared to the already proposed detection techniques [10–13] summarized hereafter, DSS offers
the lower complexity of implementation and also does not require the channel state information
(CSI). As in [11], a maximum-likelihood sequence detection (MLSD) scheme was proposed for an
NRZ-OOK FSO link, and it was shown that provided the temporal turbulence correlation τ0 is
known, MLSD outperforms the maximum-likelihood symbol-by-symbol detection scheme. However,
given that typically τ0 = 1− 10 ms the proposed MLSD suffers from high computational burden at
the Rx, thus making its implementation too complex [14]. To reduce the computational complexity of
MLSD, two suboptimal schemes based on the single-step Markov chain model were derived in [12].
However, aforementioned schemes require instantaneous CSI at the Rx. The classical approach for
CSI estimation is to periodically insert some symbols in the data frames, which is usually referred
to as pilot-symbol assisted modulation (PSAM) [13,15]. The obvious drawback of PSAM is the
reduced system throughput due to pilot overhead [13]. A decision–feedback detection scheme was
proposed in [16] allowing data detection based on the knowledge of previous decisions within an
observation window of τ0. The drawback of this scheme lies in the dependence on τ0 and on the
data pattern (i.e., bits ‘0’ and ‘1’ in the underlying data stream). The “fast multi-symbol detection”
was demonstrated in [10], which works based on block-wise decisions and a fast search algorithm.
However, due to the dependency of the system on the search algorithm complexity, there is a trade-off
between the throughput and performance of the system. Iterative channel estimation based on the
expectation maximization was proposed in [17], but the proposed approach has a relatively high
computational complexity. A blind detection scheme requiring no knowledge of CSI as well as the
one using a sub-optimum maximum-likelihood detection were introduced in [18,19], respectively.
However, these schemes offer rather poor performance over short observation windows. Recently a
maximum-likelihood sequence Rx with no knowledge of CSI and channel distribution was proposed
in [20] for different channel conditions, which is however too complex to implement.

The DSS investigated in this paper allows performing signal detection without the need to
precise setting of DTL in a dynamic FSO channel. Provided that the received differential signals
are highly correlated, the DTL of the received differential signal is not influenced by turbulence
induced fluctuation [3,4]. Note that, to avoid an adaptive setting of the DTL, high pass filtering
(e.g., AC-coupled circuitry) could be a solution, but this will necessitate an increase in the transmit
power to compensate for the filter loss and also induces a baseline wander effect [21]. In summary,
the main advantages of the DSS technique are: (i) no requirement for CSI or high complexity blind
signal detection at the Rx; (ii) no need for a feedback signal to adjust the threshold level; (iii) no pilot
overhead and hence on loss in the system throughput; (iv) reducing the adverse effect of background
noise at the Rx [22]; (v) mitigation of the effects of the atmospheric channel such as fog and smoke [9],
turbulence [3], and PE [4]; and (vii) the use of a single aperture for both FSO links (that ensures high
correlation between two FSO channels).

A practically-feasible implementation of DSS with a highly correlated turbulence influenced
channel was also proposed in [3]. In [4], we adopted the same concept to mitigate PE induced fading.
It was practically shown that DSS was effectively reducing the fluctuations in the DTL of the signal.
In addition, a closed-form expression for bit-error-rate (BER) of FSO DSS link with PE was derived
and confirmed by simulations. The Monte Carlo technique was used to simulate each case scenario.

This paper presents a considerable extension of our previous results, presenting the closed-form
expressions of DTL and BER for an FSO link with both effects of turbulence and PE derived, which have
not been reported before. Note that, compared with previous works, in particular [3,4], the original
contributions made are: (i) considering a differential signaling technique in correlated channels;
(ii) in [3], we only considered weak turbulence, whereas, in this paper, moderate to strong turbulence is
investigated; and (iii) in [3,4], turbulence and PE effects were investigated separately, whereas, in this
paper, we consider joint effects of both in a FSO link. The work presented here is also different from
works of other teams [23–26], where the joint model of turbulence and pointing errors were presented.
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In [23–26], no differential signalling was considered and the analysis reported cannot be applied to the
FSO link with differential signalling in correlated channels.

The paper is organised as follows. In Section 2, the concept and theory behind the DSS technique
are explained. Section 3 considers the case of the lossy channel as well as the background noise,
whereas the influences of weak and moderate to strong turbulence regimes are discussed in Section 4.
In Section 5, the channel with PE effect is investigated. The joint influence of turbulence and PE is
introduced in Section 6. Section 7 presents an example of numerical results illustrating the performance
improvement offered by DSS, and, lastly, Section 8 concludes the paper.

2. Differential Signalling Scheme

The proposed system block diagram is depicted in Figure 1. The NRZ-OOK signal S ∈ {0, 1} and
its inverted version S are used for intensity-modulation of two optical sources at wavelengths of λ1

and λ2, respectively. It is worth mentioning that by comparing S to the optimal DTL Sthresh = E[S]
where E[·] denotes the expected value, the original data bits (i.e., bit is “0” for S < Sthresh and “1”
elsewhere) can be retrieved. Note that the optimal DTL for S is also Sthresh. The output intensities Ii
(i = 1, 2) of optical sources (OSs) are given by[

I1

I2

]
=

[
Γ1 0
0 Γ2

][
S
S

]
, (1)

where Γi denotes the electrical-to-optical conversion coefficient of i-th OS. Outputs of OSs are then
passed through a beam combiner (BC) to ensure that both beams are transmitted over the L-length
FSO channel. The optical signals y at the Rx are given by[

y1

y2

]
=

[
h1 0
0 h2

][
Γ1 0
0 Γ2

][
S
S

]
, (2)

where 0 ≤ hi ≤ 1 denotes the channel coefficient (response) including the effects of geometrical and
atmospheric losses, PE, and atmospheric turbulence. y is passed through a 50/50 beam splitter (BS)
and optical filters (OF) with the centre wavelengths of λ1 and λ2 prior to being collected by an optical
Rx. The generated photocurrents are amplified by transimpedance amplifiers (TIA) with outputs
given by [

v1

v2

]
=

1
2

[
<1G1h1Γ1 0

0 <2G2h2Γ2

][
S
S

]
+

[
n1

n2

]
, (3)

where <i is the photodetector responsivity, Gi is gain of TIA, ni is the additive white Gaussian noise
(AWGN) with zero mean and variance σ2

n,i = N0/2, and N0 denotes the noise power spectral density.
The combined output vt = v1 − v2 is given by

vt = 0.5
[
Γ1h1R1G1S− Γ2h2R2G2S

]
+ ∆n, (4)

where ∆n = n1 − n2. A sampler, sampling at the centre of bit duration, and a threshold detector are
used to regenerate the transmit data. From Label (4), the optimal DTL for vt is given by

Vthresh = 0.5Sthresh(Γ1h1R1G1 − Γ2h2R2G2) + ∆n. (5)
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transimpedance amplifier, respectively. T is the bit duration.

For simplicity, we make the following assumptions: (i) links are identical; therefore, we let
0.5ΓiRiGi = η; (ii) channels (i.e., transmission path) are very close to each other with h1 and h2 having
the same statistical properties, thus E[·] being the expected value, E[h1

n] = E[h2
n], where n ∈ N);

and (iii) the chosen wavelengths are close enough to ensure that the channel effects on the propagating
optical beams are almost the same. Next, we have [27]

Mean(Vthresh) = ηSthresh[Mean(h1)−Mean(h2)], (6a)

Var(Vthresh) = η2Sthresh
2
[

Var(h1) + Var(h2)− 2ρ
√

Var(h1)Var(h2)

]
+ σ2

n,1 + σ2
n,2, (6b)

where Mean(·) and Var(·) are the mean and variance, respectively, and ρ is the correlation coefficient
between h1 and h2. To recover the transmit bit stream, the optimal DTL should be set to the value
given by Label (6a), with the variance given in Label (6).

In the electrical domain, S is represented by two distinct signal levels of vlow and vhigh
corresponding to bits “0” and “1”, respectively. For S bits, “0” and “1” are recognised as vhigh and vlow,
respectively. This means that, for the link 1 in Figure 1, the received electrical signals corresponding
to bits “0” and “1” are vlowηh + n1 and vhighηh + n2, respectively. Therefore, the corresponding

received differential signals for bits “0” and “1” are
(

vlow − vhigh

)
ηh + ∆n and

(
vhigh − vlow

)
ηh + ∆n,

respectively. Note that the difference between the two bits is twice that of a single link, so without
the loss of generality we replace the levels for bits “0” and “1” with 2vlowηh + ∆n and 2vhighηh + ∆n,
respectively, and substitute the subtraction of channel responses by hDS, and rewrite Label (4) as

vt = ηhDSSS + ∆n. (7)

The BER expression for a NRZ-OOK FSO link with an equiprobable data transmission condition
is Pe = 0.5(P(e|1) + P(e|0)), provided that P(e|0) and P(e|1) are the conditional probabilities given as

P(e|0) = P(e|1) =
+∞∫
0

fh(h)Q
(

ηh√
2N0

)
dh, (8)

where Q(·) denotes the Gaussian Q-function defined as Q(x) =
∫ +∞

x exp
(
−t2/2

)
dt, fh(·) is related

to the channel condition, and the electrical signal-to-noise ratio (SNR) = (ηh)2/2N0. In the rest of the
paper, we will show that, under different channel conditions, in an FSO system with DSS, the average
of DTL is always zero and the variance of DTL has the minimum value if the channels are highly
correlated. In addition, for highly correlated channels condition, we derive the BER expressions for
different channel fading conditions.



Appl. Sci. 2018, 8, 872 5 of 20

3. Lossy Channel and Background Noise

As was mentioned earlier, hi can represent the total loss in the channel including geometrical
loss, fog, or other particle induced scattering. The geometrical loss, which depends on the optical link
configuration, is a constant quantity for a fixed point-to-point FSO link. On the other hand, losses
due to fog/smoke, which are classified as slow fade events, can be assumed to be relatively constant
over the channel for a given time. Under these conditions, both h1 and h2 can be considered constant,
and therefore the DTL average and its variance can be determined using Label (6). Note that, since hi
is constant, we can therefore substitute in Label (8) fh(h) = δ(h− hDSS), where δ(·) is the Dirac delta
function. Thus, the averaging integral operation is simplified to the Gaussian Q-function.

3.1. Geometrical Loss

At the Rx, the received optical beam radius wRx = wTx + θ0L, and the geometrical loss is defined
as [28]

hgeo = 1− exp
(

DRx
2

2wRx2

)
, (9)

where wTX, and θ0 are the laser beam radius, beam divergence angle at the transmitter (Tx), respectively.
L is the link span and DRx is the aperture diameter at the Rx. Note that, if the maximum Tx lens radius
is known, then θ0 = λFSO

πwTx
can be readily determined [29].

3.2. Fog/Smoke Attenuation

The fog loss is determined based on the visibility (Vis) of the channel, which is described by two
well-known models of Kim and Kruse [28], and is defined as [30]

Vis =
17
βλ

(
λ

λ0

)−q
, (10)

where λ0 denotes the maximum sensitive wavelength for the human eye, which is normally set to
550 nm (i.e., the green colour). λ is the wavelength of the laser being used and βλ denotes the loss
coefficient. Based on the Kim model, q is defined as [31]

q =



1.6, Vis > 50
1.3, 6 < Vis < 50

1.6×Vis + 0.34, 1 < Vis < 6
Vis− 0.5, 0.5 < Vis < 0.1

0, Vis < 0.1.

(11)

The relation between the total loss due to the absorption and scattering of light βλ and loss due to
fog hfog is given by the Beer–Lambert law as [31]

h f og = exp(−βλL). (12)

Since, for each individual channel, hi remains constant; therefore, we have Mean(hi) = hi and
Var(hi) = 0. In addition, based on the assumption we made (i.e., h1 ≈ h2), the average of DTL from
Label (6a) is zero. The total channel coefficient for a DSS based FSO system with geometrical and
fog/smoke loss is hDSS = hgeo × hfog. Therefore, using Label (9) and Label (12), the channel coefficient
can be obtained for determining the BER expressions, which are summarised in Table 1.
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Table 1. Summary of closed-form expressions of the variance of detection threshold level (DTL) and bit-error-rate (BER) for a free space optical (FSO) link under
pointing errors under different channel conditions.

Channel Variance of DTL, Var(Vthresh) BER

Lossy 2σ2
n Q

(
ηh0hDSS√

2N0

)
Background Noise 2σ2

n Q
(

ηh0√
2N0

)

Pointing Errors 2(ηSthresh)
2
(

A2
0γ2

2+γ2 exp
(
− r2

b
(2+γ2)σ2

j

)
− A2

0γ4

(1+γ2)2 exp
(
− r2

b
(1+γ2)σ2

j

))
(1− ρPE) + 2σ2

n

D

 e1/(4Cγ2)

2Cγ2 − 2√
π

∞
∑

n=0

(−1)n

n!(2n+1)

(
ηA0
2σn

)2n+1

× e{1/(4(Cγ2+(2n+1)C))}

2(Cγ2+(2n+1)C)


D = γ2

A−1
0

e−s2/2σ2
j C = 2γ2

s2

σ4
j

w2
eq

e−s2/2σ2
j , C =

σ4
j

s2
2

w2
eq

, s is the boresight displacement

Weak Turbulence 2(ηSthresh)
2
(

exp
(

4σ2
h,1

)
− 1
)
(1− ρAT) + 2σ2

n

1√
π

k
∑

i=1
ωiQ

(
ηh0 exp

[
2σ2

DSS + xi

√
8σ2

DSS

]
/
√

2N0

)
σ2

DSS is obtained by (19). For k, xi and ωi refer to Appendix A.

Moderate to Strong
Turbulence 2(ηSthresh)

2
(

1
a + 1

b + 1
ab

)
(1− ρAT) + 2σ2

n P(e|1) = 2α+β

8π
3
2 Γ(α)Γ(β)

G2,4
5,2

(
4(h0)

2

N0(αβ)2 |
1−α

2 , 1− α
2 , 1−β

2 , 1− β
2 , 1

0, 1
2

)

Weak Turbulence and
Pointing Errors

2(ηSthresh)
2
(

A2
0γ2

2+γ2 exp
(

4σ2
h −

r2
b

(2+γ2)σ2
j

)
− A2

0γ4

(1+γ2)2 exp
(
− r2

b
(1+γ2)σ2

j

))
(1− ρc) + 2σ2

n

ρc is the combined channel correlation coefficient
Substitute Label (4.3) into Label (3.8)

Moderate to Strong
Turbulence and
Pointing Errors

2(ηSthresh)
2
[

h2
o

(
1 + 1

a + 1
b + 1

ab

)
A2

0γ2

2+γ2 exp
(
− 2r2

b
2(2+γ2)σ2

j

)
− h2

o
A2

0γ4

(1+γ2)2 exp
(
− r2

b
2(1+γ2)σ2

j

)]
(1− ρc) + 2σ2

n

ρc is the combined channel correlation coefficient
Substitute Label (5.2) into Label (3.8)
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3.3. Background Noise

Considering the background noise nbg,i (i.e., due to sun and artificial lights) [22] the optimal DTL
in Label (5) can be reformulated as

Vthresh = 0.5Sthresh(Γ1h1R1G1 − Γ2h2R2G2) +
(

n1 + nbg,1

)
−
(

n2 + nbg,2

)
. (13)

Therefore, the variance of DTL in Label (6b) is given as

Var(Vthresh) = σ2
n,1 + σ2

n,2 + σ2
bg,1 + σ2

bg,2 − 2ρbg

√
σ2

bg,1σ2
bg,2, (14)

where ρbg is the correlation coefficient between nbg,1 and nbg,2. Using the differential signalling scheme
proposed in [22] for the case of using two close wavelengths, here we have σ2

bg,1 = σ2
bg,2 and ρbg ≈ 1.

Assuming the same photodetector parameters at the receiver for the two wavelengths, we have
Var(Vthresh) = 2σ2

n . Under these conditions, the background noise can be effectively rejected after
differential detection, and we can obtain the BER formula for the corresponding FSO system with DSS
similar to the case in the previous subsection, as presented in Table 1. Note that this BER expression is
valid as long as the Rx is not saturated by the ambient light [22].

4. Accounting Atmospheric Turbulence

4.1. Weak Turbulence

In FSO under weak turbulence, the fading of the optical signal can be modelled as h = h0 exp(2X),
where X is a distributed normal random variable (RV) with mean and variance of mh and σ2

h ,
respectively [32]. This way, h has a lognormal probability distribution function (PDF) given as [32]

fh(h) =
1

2h
1√

2πσ2
h

exp

(
− (ln(h/h0)− 2mh)

2

8σ2
h

)
. (15)

For the log-normal distribution, we have

Mean(hi) = exp
(

2mh,i + 2σ2
h,i

)
, (16a)

Var(hi) =
(

exp
(

4σ2
h,i

)
− 1
)
× exp

(
4mh,i + 4σ2

h,i

)
, (16b)

where mh,i = −σ2
h,i [32]; therefore,

Mean(Vthresh) = 0, (17a)

Var(Vthresh) = (ηSthresh)
2[

exp
(

4σ2
h,1

)
+ exp

(
4σ2

h,2

)
− 2− 2ρAT

√
exp
(

4σ2
h,1

)
− 1
√

exp
(

4σ2
h,2

)
− 1
]
+ σ2

n,1 + σ2
n,2

(17b)

where ρAT is the correlation coefficient between the turbulence influenced channels. To determine
the strength of the turbulence, Rytov variance σ2

R can be used [33]. For weak turbulence σ2
R < 1 [34],

the simplified form of Label (17b) can be used (see Table 1). In the case of a plane wave propagation
through a turbulence channel, we have [33]

σ2
h,i = σ2

R/4 = 0.3075(2π/λ)7/6C2
nL11/6, (18)

where C2
n (in m−2/3) is the refractive index structure parameter.

The summation of two lognormal variables can be approximated by a lognormal variable [35,36];
therefore, hDSS = h0 exp(2XDSS), where XDSS is a Gaussian RV with mean mDSS and variance σ2

DSS. We
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will adopt the same procedure as in Wilkinson’s method [35] to estimate the required parameters of
hDSS. To further normalize hDSS, we set the mean value to [27]

mDSS = −σ2
DSS = ln

(
1 +

Var[hDSS]

h02

)
, (19)

where Var(hDS) is given by Label (17b) replacing Vthresh by hDSS and letting ηSthresh = 1. Once σ2
DSS is

determined, it is possible to specify the PDF of a DSS based FSO system using Label (8). The simplified
BER expression for weak turbulence is summarised in Table 1. To obtain the closed form equations in
weak turbulence, the Gauss–Hermite quadrature formula was used [37]; for details, see Appendix A.

4.2. Moderate to Strong Turbulence

For moderate (σ2
R ≈ 1) to strong (σ2

R > 1) turbulence regimes, we assume h = XY, where X and Y
refer to large-scale and small-scale atmospheric turbulence effects, respectively [33]. Knowing that
both X and Y are expressed by the gamma distribution, we model h by the PDF of gamma–gamma
(GG) distribution as [38]

fh(h) =
2(ab)

a+b
2 h

a+b
2 −1

Γ(a)Γ(b)h0
a+b

2
Ka−b

(
2

√
ab

h
h0

)
, (20)

where a ≥ 0 and b ≥ 0 are also known as the effective numbers of large- and small-scale turbulence
cells, respectively [38,39]. Kl(·), and Γ(·) denote the modified Bessel function of 2nd kind and order
l, and the gamma function, respectively. The two parameters of a and b characterize the irradiance
fluctuation PDF and are related to the atmospheric conditions, which are given by [33]

a =
1

exp
(
σ2

lnX
)
− 1

, (21a)

b =
1

exp
(
σ2

lnY
)
− 1

. (21b)

For the plane wave propagation model and considering the Rx aperture diameter DRx, the closed
form expressions for σ2

lnX and σ2
lnY are given by [33]

σ2
lnX =

0.49σ2
R(

1 + 0.65d2 + 1.11σ12/5
R

)7/6
,

(22a)

σ2
lnY =

0.51σ2
R

(
1 + 0.69σ12/5

R

)−5/6

1 + 0.90d2 + 0.62d2σ12/5
R

, (22b)

where d =
(
kD2

Rx/4L
)0.5 [40]. Knowing that for GG distribution, we have [41,42]

E[hn] =

(
ab
h0

)−n Γ(a + n)Γ(b + n)
Γ(a)Γ(b)

, (23)

then it is easy to show that
Mean(hi) = h0, (24a)

Var(hi) = h0
2
(

1
a
+

1
b
+

1
ab

)
. (24b)

Thus, it is possible to formulate DTL average and variance of the DSS link with the closed-form
expression as in Table 1. To derive the BER expression, the Bessel function in Label (20) is replaced
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with Meijer-G function, which results in simplified BER expression in Table 1. See Appendix A for
more details.

5. The Case of Pointing Errors

In a terrestrial FSO link, the joint geometrical loss and PE induced fading within the channel is
given by [23]

hi(r; L) ≈ A0exp

(
− 2r2

w2
eq

)
, (25)

where r, A0 and weq correspond to beam displacement, the geometrical loss and equivalent

beamwidth, respectively. Note that A0 = [erf(v)]2 and w2
eq = w2

√
πerf(v)

2v exp(−v2)
, where v =

√
π/2 a

w and

erf(x) = 2√
π

∫ x
0 e−t2

dt [23]. Note that, if the geometrical loss is taken into account by using Label (9),
A0 = 1 in Label (25). The PE induced displacement has two major components: (i) the boresight
rb—displacement between the beam centre and centre of the detector; and (ii) jitter rj—offset of the
beam centre at detector plane [24]. The mean offset of PE rb represents a deviation originated from
thermal expansion of buildings [8], whereas rj is a RV originated from building sway and vibrations [8].
From the statistical point of view, the jitter corresponds to the random variation of the optical beam
footprint around the boresight direction with the jitter variance of σ2

j [43]. It is shown in [8] that r in
Label (25) has a Rician PDF as below

fr(r) =
r

σ2
j

(
−
(
r2 + s2)
2σ2

j

)
I0

(
rs
σ2

j

)
(26)

with the mean and 2nd moment given by

Mean(hi) = E[hi] =
A0γ2

1 + γ2 exp

(
−

r2
b

2(1 + γ2)σ2
j

)
, (27a)

E
[

hi
2
]
=

A0
2γ2

2 + γ2 exp

(
−

2r2
b

2(2 + γ2)σ2
j

)
, (27b)

where s is the boresight displacement and I0(·) is the modified Bessel function of the 1st kind with
order zero and γ = weq/2σj. Therefore, the variance of hi is

Var(hi) =
A2

0γ2

2 + γ2 exp

(
−

r2
b

(2 + γ2)σ2
j

)
−

A2
0γ4

(1 + γ2)
2 exp

(
−

r2
b

(1 + γ2)σ2
j

)
. (28)

Substituting Label (27) and Label (28) in Label (6) yields in the DTL average and variance
expressions as given in Table 1. Note that we have used ρPE to refer to the correlation between PE
fading effects within the channels. By using the tail probability of the error events, we can derive
the BER for this special scenario where only the PE is considered. The simplified BER expression is
outlined in Table 1, whereas detailed derivation for the BER is given in Appendix A.

It is also possible to estimate the equivalent parameters of the DSS based FSO link. For this,
we have adopted a single input single output (SISO) link with Rayleigh PE PDF and derived the
parameters, which have the same PE variance as DSS. For the simplified case, where rb,1 = rb,2 = 0,
assuming that γ1 = γ2 and A1 = A2 = ADSS, and simplifying Var(hDSS) = Var(h1 − h2), the following
equation is derived from which γDSS of the equivalent PE PDF as(

2 + γ1
2
)(

1 + γ1
2
)2

/
(

2 + γDSS
2
)(

1 + γDSS
2
)2

= 2(1− ρ)γ1
2/γDSS

2. (29)
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For rb,1 = rb,2 = 0, Rician distribution becomes Rayleigh and we assume that the PDF of
equivalent PE is also Rayleigh for comparison.

6. Combined Atmospheric Turbulence and Pointing Errors

6.1. Weak Turbulence and PE

The PDF of hi = hahp, where ha is the fading coefficient due to turbulence and hp represents the
effect of PE under log-normal (weak turbulence) channel is given by

fhi (hi) =
γ2eua

2(Ao)
γ2 hγ2−1

i er f c

(
ln hi

Ao
+ ub

uc

)
, (30)

where ua =
r2

b
σ2

j
+ 2σ2

h γ2 + 2σ2
h γ4, ub =

6r2
b

w2
zeq

+ 2 σ2
h + 4 σ2

h γ2, and uc =

√
8
(

4 r2
bσ2

j

w4
zeq

+ σ2
h

)
. The nth order

moment of the above PDF is

E[hn] =
(Ao)

nγ2

n + γ2 exp

(
−2σ2

h n + 2σ2
h n2 −

nr2
b

(n + γ2)2σ2
j

)
, (31)

and therefore

Mean(hi) =
A0γ2

1 + γ2 exp

(
−

r2
b

2(1 + γ2)σ2
j

)
, (32a)

Var(hi) =
A2

0γ2

2 + γ2 exp

(
4 σ2

h −
2r2

b
2(2 + γ2)σ2

j

)
−

A2
0 γ4

(1 + γ2)
2 exp

(
−

r2
b

(1 + γ2)σ2
j

)
. (32b)

Therefore, in terms of both ha and hi, Label (32a) is re-written as

Mean(hi) = E
(
hahp

)
= E(ha)E

(
hp
)
=

A0γ2

1 + γ2 exp

(
−

r2
b

2(1 + γ2)σ2
j

)
. (33)

Considering the assumption that h1 ≈ h2, similar to the other channel conditions, the average of
DTL will be zero. Then, knowing that Var(hi) = Var

(
hahp

)
= E

[
h2

a
]
E
[

h2
p

]
−
(
E[ha]E

[
hp
])2, Var(hi) is

determined using Label (23) and Label (27), which is already given in Label (32b). Finally, using Label
(6) and Label (32b), Var(Vthresh) is obtained as given in Table 1. Deriving the expression for the BER in
weak turbulence with the presence of PE provides a very complex closed-form expression, which is
not convenient to provide here; however, the instruction for a numerical approach to calculate BER is
given in Appendix A.

6.2. Moderate to Strong Turbulence and PE

Similar to the weak turbulence regime, the mean and variance for moderate-strong turbulence
under the GG channel with the PE are given by

Mean(hi) = E(ha)E
(
hp
)
= ho

A0γ2

1 + γ2 exp

(
−

r2
b

2(1 + γ2)σ2
j

)
, (34a)

Var(hi) = E
[
h2

a
]
E
[

h2
p

]
−

(
E[ha]E

[
hp
])2

= h2
o

(
1 + 1

a +
1
b +

1
ab

)
A2

0γ2

2+γ2 exp
(
− 2r2

b
2(2+γ2)σ2

j

)
−h2

o
A2

0γ4

(1+γ2)
2 exp

(
− r2

b
2(1+γ2)σ2

j

) (34b)
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Using Label (6), and Label (34b), Var(Vthresh) is determined as given in Table 1. Deriving the
expression for the BER in the moderate to strong turbulence regime with the presence of PE again
do not result in a simple closed-form expression, however, the instruction to simplify the numerical
approach of BER is given in Appendix A.

Using Label (6), and Label (34b), Var(Vthresh) is determined as given in Table 1. Deriving the
expression for the BER in the moderate to strong turbulence regime with the presence of PE again
do not result in a simple closed-form expression, however, the instruction to simplify the numerical
approach of BER is given in Appendix A.

7. Results and Discussion

In this section, we will present and further discuss the equations derived in the previous section.
For each studied case, the variance of DTL as well as the BER of the link is obtained. The wavelengths
adopted are 850 and 830 nm and we have assumed that both links have identical parameters.
Furthermore, the normalised noise variance is set to 0.06. For the lossy channel and with the ambient
light, where channels are inherently highly correlated, the variance of DTL and BER expressions
remains the same as under the clear channel condition; therefore, here we focus on the other channel
conditions of PE and turbulence. Regarding the series expressions with infinite upper limit in Table 1,
it worth mentioning that we did not study the convergence of them. However, we considered between
30–50 terms to calculate the results.

Figure 2 illustrates the results for weak turbulence. The predicted data shown are obtained using
the equations given in Section 4.1. Using Label (17b), the predicted normalised variance of DTL against
the turbulence for a range of correlation coefficients for SISO and DSS based schemes is shown in
Figure 2a. Regardless of turbulence the variance of DTL approaches the minimum value in the cases of
highly correlated channels. Note that, on the contrary, the variance of a SISO remains constant, whereas
the DSS based scheme offers improved performance at higher turbulence levels. Figure 2b illustrates
the BER as a function of SNR for the DSS system for a range turbulence levels. Also displayed are the
simulated results, which show a close match with the predicted data. As can be observed, the DSS
link, which is assumed to have a high correlation coefficient, display negligible deterioration at higher
turbulence levels.Appl. Sci. 2018, 7, x FOR PEER REVIEW  11 of 19 
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R.
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As discussed previously, in the case of moderate to strong turbulence, other models should be
adopted to assess the link performance. Here, we have used a GG turbulence model as outlined in
Section 6.2 to determine the variance of DTL and the BER of a DSS link as shown in Figure 3. As in
the weak turbulence case, for higher levels of turbulence in highly correlated channels, DSS offers
improved performance compared with SISO.
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optical (FSO) links with moderate to strong turbulence: (a) the normalised variance of detection
threshold level (DTL) versus the correlation coefficient of the channels; and (b) bit-error-rate (BER)
against signal-to-noise ratio (SNR) for a range of σ2

R.

Figure 4a depicts the variance of DTL versus the ρPE for both SISO and DSS links for a range
of equivalent beamwidth weq. The plots display the same profile as in Figure 2a with DSS offering
improved performance at more significant PE. The benefit of highly correlated DSS compared to the
SISO link with the same weq is more outstanding when weq reduces. Smaller weq can be interpreted as
the reduced effect of PE on the optical beam. Using the predicted γDSS from Label (29), the variance of
equivalent DSS PE (σj,DSS) can be determined for a range of ρPE. Figure 4b depicts the jitter standard
deviation against ρPE for a SISO link and an equivalent DSS link with a = 10 cm, w = 100 cm, and
σj,1 = σj,2 = 10 cm. It is observed that the PE induced fading effect reduces with increasing value of ρ.
For instance, for an uncorrelated channel with weq = 0.3, the normalised variance is ~0.16, whereas,
in highly correlated channels, the normalised variance is reduced to ~0.06. Also from both Label (29)
and Figure 4b and for ρPE ≥ 0.5, we have γDSS ≤ γ1. The predicted BER results against the SNR for
a range of weq are displayed in Figure 4c showing a good match with the simulated data. Note that,
for lower values of weq, the SNR penalty is rather high for a given BER. For instance, at a BER of 10−2,
the SNR penalty is ~14 dB for weq = 3 cm compared weq = 7 cm. Note that, in Figure 4c, the different
SNR vales are obtained by varying the value of noise variance σ2

n for η = 1.
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Figure 4. Single-input single-output (SISO) and differential signaling scheme (DSS) based free-space
optical (FSO) links with pointing errors (PE): (a) the normalised variance of detection threshold level
(DTL) versus the correlation coefficient of the channels; (b) the jitter standard deviation of the equivalent
DSS PE vs. correlation coefficient ρPE, for the SISO system with DSS and for a = 10 cm, and w = 100 cm,
and (c) bit-error-rate (BER) against signal-to-noise ratio (SNR) for σj = 1, s = 1, A0 = 1, and different
values of weq with unit of cm.

Figure 5a shows the variance of DTL for simultaneous PE and weak turbulence as a function
of the channel correlation coefficient for range of 0 to 1. Again, it is seen that, for higher turbulence
levels and PE, the DSS system offers improved performance compared to the SISO. The BER versus
the SNR for a range of weq for the combined effects of PE and weak turbulence is plotted in Figure 5b,
showing performance degradation at higher levels of turbulence and PE. As expected from Figure 4c,
larger weq improves the BER performance of DSS. Compared to the cases where only turbulence or
PE exist in the channel, we observe a significant degradation in the performance. For instance, in a
weak turbulence case for σ2

R = 0.3 and SNR of 10 dB, the BER is less than 10−3. However, for the same
turbulence situation, weq = 1, and SNR of 10 dB, the BER is less than 10−2.
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Finally, the combined effects of PE and moderate to strong turbulence on the variance of DTL as
well as the BER performance are illustrated in Figure 6a,b, respectively. For these cases, we can observe
that even DDS is not mitigating the cannel fading efficiently. Therefore, a designer might consider
additional methods such as using a larger aperture to improve the system performance by aperture
averaging. The plots show further degradation in both the variance of DTL and the BER compared
to Figure 5. The same trend of the larger weq and the better BER performance of DSS are also seen
in Figure 6b. In a strong turbulence regime, PE are less dominant than turbulence. In all variance
of DTL plots, one can see that once the channels are highly correlated, the normalised variance of
DSS is reduced to the normalised variance of noise with the value of ~0.06. Therefore, under a highly
correlated turbulence channel with significant channel fading, it is highly advantageous to implement
a DSS FSO scheme in comparison to a SISO one.
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8. Conclusions 

In this paper, we outlined the essentials of differential signalling based FSO systems subject to 
the both effects of pointing errors and turbulence. We provided a description comprehensive 
investigation of the system performance under different conditions of turbulence and/or pointing 
errors. We derived closed-form expressions for various channel conditions for the DSS based FSO 
system and showed predicted and simulated results for the variance of DTL and the BER for both 
SISO and DSS based FSO links. We showed that the DSS based link offers improved performance at 
higher turbulence and pointing error levels compared to the simple SISO link. 
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8. Conclusions
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both effects of pointing errors and turbulence. We provided a description comprehensive investigation
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Appendix A

A.1. BER Expression in Weak Turbulence

When dealing with the BER expression in weak turbulence in Label (8), the mathematical
simplification will result in an expression in the following form:

P(e|1) =
+∞∫
0

1
2h

1√
2πσ2

exp

(
− (ln(h/h0)− 2µ)2

8σ2

)
Q(ψh)dh. (A1)

By substituting h = h0 exp(2X), where X has a normal random distribution, dh = 2hdx and
setting the integral range, we have

P(e|1) = 1√
2πσ2

∫ +∞

−∞
exp

(
− (x− µ)2

2σ2

)
Q(ψI0 exp(2x))dx. (A2)

Next, substituting u = (x− µ)/
√

2σ2, Label (A2) is re-written as

P(e|1) = 1√
π

+∞∫
−∞

e−u2
Q
(

ψh0e2µ+u
√

8σ2
)

du. (A3)

In Label (A3),
∫ +∞
−∞ e−x2

f (x)dx can be approximated by Gauss–Hermite quadrature formula
as ∑k

i=1 ωi f (xi) [44], where k is the order of approximation, xi is the zero of the kth-order Hermite
polynomial, and ωi denotes the kth-order weight factor.

A.2. BER Expression in Strong Turbulence

Given that the BER expression is

P(e|1) = 1
2

∫ ∞

0
Q(ψh) fh(h) dh, (A4)

where fh(x) is given in Label (20), and using the results given in [45], we can solve the integral in Label
(A4), thus yielding

P(e|1) = 2α+β

8π
3
2 Γ(α)Γ(β)

G2,4
5,2

(
8ψ2

(αβ)2 |
1−α

2 , 1− α
2 , 1−β

2 , 1− β
2 , 1

0, 1
2

)
, (A5)

where Gm,n
p,q (.|) is the Meijer-G function defined in [45].

A.3. BER Expression in PE

Let us consider the transmission of the OOK signal, where the received signal can be written
corresponding to both states of s as

y1 = ηh1 + n1 − n2 if S = 1, (A6a)

y2 = −ηh2 + n1 − n2 if S = 0. (A6b)

The decision for the value of S is taken by comparing Y = y1 − y2 with Yth = 0. Considering two
cases of (i) Y < 0 for S = 1; and (ii) Y > 0 for S = 0, the instantaneous probability of error is given by

P(e|h1, h2) = 0.5[P{Y〈0|S = 1}+ P{Y > 0|S = 0}], (A7a)
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P(e|h1, h2) =0.5[P{n1 − n2 < −ηh1}+ P{n1 − n2 > ηh2}], (A7b)

P(e|h1, h2) == 0.5[1− P{n1 − n2 > −ηh1}+ P{n1 − n2 > ηh2}]. (A7c)

By substituting Label (A6a) and Label (A6b) in Label (A7a), we obtain Label (A7b); Label (A7c) is
a consequence of the property that P{x < v} = 1− P{x > v}, where P{x} stands for the probability
of x. Since ni ∼ N

(
0, σ2

n
)
, i = 1, 2, it can be easily shown that n1 − n2 ∼ N

(
0, 2σ2

n
)
, and the PDF of

n1 − n2 is given by

fn1−n2(x) =
1

2
√

πσn
e−x2/(4σ2

n). (A8)

From Label (A7), we have

P{n1 − n2 > −ηh1} =
1

2
√

πσn

∫ ∞

−ηh1

e−x2/(4σ2
n)dx. (A9)

Substituting x√
2σn

= y in Label (A9) and following some algebra, we have

P{n1 − n2 > −ηh1} =
1√
2π

∫ ∞

−ηh1√
2σn

ey2/2dy = Q
(
−ηh1√

2σn

)
, (A10)

P{n1 − n2 > ηh2} = Q
(

ηh2√
2σn

)
. (A11)

Hence, from Label (A7c), Label (A10), and Label (A11):

P(e|h1, h2) =
1
2

[
1−Q

(
−ηh1√

2σn

)
+ Q

(
ηh2√
2σn

)]
. (A12)

Since 1−Q(−x) = Q(x), therefore, Label (A12) can be rewritten as

P(e|h1, h2) =
1
2

[
Q
(

ηh1√
2σn

)
+ Q

(
ηh2√
2σn

)]
. (A13)

The PDF of hi (unconditional on the instantaneous value of r) under the boresight, PE (i.e., Rician
distribution of r) is given by ([8] Equation (5)),

fhi (hi) = Ahγ2−1
i I0

(
B
(

ln
(

hi
A0

))1/2
)

, 0 ≤ hi ≤ A0, (A14)

where A = γ2

Aγ2−1
0

e−s2/2σ2
j , B = s

σ2
j

√
−w2

eq
2 . For fully correlated h1 and h2 ρ = 1 and h1 = h2, thus the

average BER is given by

Pe = Eh1

[
Q
(

ηh1√
2σn

)]
. (A15)

Using Label (A14) and the relation Q
(

ηh1√
2σn

)
= 1

2 er f c
(

ηh1
2σn

)
, where er f c(·) is the complimentary

error function, in Label (A15), we have

Pe =
A
2

∫ A0

0
hγ2−1

1 er f c
(

ηh1

2σn

)
I0

(
B
(

ln
(

h1

A0

))1/2
)

dh1, (A16)

where ln(·) is a natural logarithm function. Employing a substitution x = B
(

ln
(

hi
A0

))1/2
and
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= − 1
B2 =

σ4
j

s2
2

w2
eq

, and following simplifications in Label (A16), we have

Pe = D
∫ ∞

0
xe−γ2Cx2

er f c
(

η

2σn
A0e−Cx2

)
I0(x)dx, (A17)

where D = AAγ2

0 C = 2γ2

s2

σ4
j

w2
eq

e−s2/2σ2
j . Let us now use a power series expansion of the complimentary

error function

er f c(x) = 1− 2√
π

∞

∑
n=0

(−1)nx2n+1

n!(2n + 1)
(A18)

in Label (A17), which results in

Pe = D
∫ ∞

0 xe−γ2Cx2
I0(x)dx− 2√

π
D

∞
∑

n=0

(−1)n

n!(2n+1) ×
(

ηA0
2σn

)2n+1 ∫ ∞
0 xe−(γ

2C+C(2n+1))x2
I0(x)dx. (A19)

Utilizing an identity ∫ ∞

0
xe−αx2

I0(x)dx =
e1/(4α)

2α
(A20)

in Label (A19) results in the power series based BER expression of the considered scheme.

A.4. BER Expression in Weak Turbulence with PE

The instantaneous BER of the considered scheme is given by Label (A13). The PDF of hi = hahp

for weak turbulence with boresight PE is evaluated as

fhi (hi) =
∫ ∞

hi
A0

fhp

(
hi
ha

)
fha(ha)dha, (A21)

where fha(x) is given in Label (15) and

fhp(x) =
γ2

Aγ2
o

xγ2−1 , 0 ≤ x ≤ A0. (A22)

In addition,

Ehi

[
Q
(

ηhi√
2σn

)]
=
∫ ∞

0
Ehi

[
Q
(

ηhi√
2σn

)]
fhi (hi)dhi. (A23)

Since there is no closed-form available of the integral Label (A23), we evaluated this integral using
MATLAB (R2016b, US). On substituting the result of Label (A23) into Label (A13), the average BER of
the considered system can be obtained.

A.5. BER Expression for Moderate to Strong Turbulence and PE

Similar to weak turbulence with PE, the BER expression under moderate to strong turbulence
with PE can be evaluated. Therefore, the PDF of hi = hahp is evaluated as

fhi (hi) =
∫ ∞

hi
A0

fhp

(
hi
ha

)
fha(ha)dha, (A24)

where fha(x) and fhp(x) is given in Label (20) and Label (A22), respectively.
In addition,

Ehi

[
Q
(

ηhi√
2σn

)]
=
∫ ∞

0
Ehi

[
Q
(

ηhi√
2σn

)]
fhi (hi)dhi. (A25)

Integral Label (A25) is determined by numerical integration using MATLAB. Substituting Label
(A25) into Label (A13) gives an average BER of the considered system.
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